There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.
Rather than trying to guess typos, force each plugin to register the quirk
keys it supports, so we can show a sensible warning if required at startup on
the console.
There are now two 'backends' of device plug/unplug events, and there is about
to become three. Rather than just adding two more vfuncs for every backend type
define common ones that all providers can use.
Also fix up the existing in-tree plugins to use the new vfunc names and filter
on the correct GType.
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
It's unusual, but if BIOS lock enable is enabled (so we cannot *change* the
value of BIOSWE) but the BIOS is already WE then we can write to the hardware
just fine.
To do this, rely on the AppStream ID to map to a translated string (providing a
fallback for clients that do not care) and switch the free-form result string
into a set of enumerated values that can be translated.
This fixes some of the problems where some things have to be enabled to "pass"
and other attributes have to be some other state. For cases where we want the
user to "do" something, provide a URL to a wiki page that we update out-of-band
of fwupd releases.
We can read this from userspace even when SB is turned on and with the kernel
locked down. The kernel securityfs patches are still in-progress, but will take
significant time to get upstream.
The kernel patches are needed when the PCI device is hidden from userspace.