Some plugins have devices with more than one protocol. Logically the protocol
belongs to the device, not the plugin, and in the future we could use this to
further check firmware that's about to be deployed.
This is also not exported into libfwupd (yet?) as it's remains a debug-feature
only -- protocols are not actually required for devices to be added.
In many plugins we've wanted to use ->prepare_firmware() to parse the firmware
ahead of ->detach() and ->write_firmware() but this has the limitation that it
can only return a single blob of data.
For many devices, multiple binary blobs are required from one parsed image,
for instance providing signatures, config and data blobs that have to be pushed
to the device in different way.
This also means we parse the firmware *before* we ask the user to detach.
Break the internal FuDevice API to support these firmware types as they become
more popular.
This also allows us to move the Intel HEX and SREC parsing out of the dfu plugin
as they are used by a few plugins now, and resolving symbols between plugins
isn't exactly awesome.
This leads to madness, as some formats are supersets of the detected types,
e.g. 'intel-me' is detected as 'quad' and 'bcd' is detected as 'pair'.
Where the version format is defined in a specification or hardcoded in the
source use a hardcoded enum value, otherwise use a quirk override.
Additionally, warn if the version does not match the defined version format
This will allow us to switch to the new firmware version during shutdown when
the filesystems have been remounted readonly.
Activating manually means we don't have to get the user to shutdown and then
do a fresh power-on, rather than the more usual restart.
This also allows us to write mixed-endian structures and adds tests. As part of
this commit we've also changed the API of something that's not yet been in any
tarball release, so no pitchforks please.
This allows hardware from OEMs to *not* match generic firmware supplied by the
device manufacturer. The idea being, that the OEM will supply firmware that
will actually work on the device.
Based on a patch from Mario Limonciello, many thanks.
Similar to NVME, ATA drives distributed by Dell have special values
that should be used to designate fwupd GUIDs and only run correct
firmware.
When detecting Dell GUIDs remove the standard fwupd GUIDs. "Generic"
firmware targeted to those GUIDs will fail to install.
During download and activation we have to reset the drive to apply the new
firmware. If the kernel gets an unexpected ATA reset then it might panic.
Default to activating the command on the next drive power-up to be safe.
Many thanks to the Dell storage team for the advice.