Before this change calling FuUsbDevice->open() opened the device, and
also unconditionally added various GUIDs and InstanceIDs which we
normally do in setup.
Then fu_device_setup() would call the FuSubclass->setup() vfunc which
would have no way of either opting out of the FuUsbDevice->setup()-like
behaviour, or controlling if the parent class ->setup is run before or
after the subclass setup.
Split up FuUsbDevice->open() into clear ->open() and ->setup() phases
and add the parent class calls where appropriate.
This means that ->setup() now behaves the same as all the other vfuncs.
Do not manually call config setup before adding the parent.
The ->setup() action is called on children explicitly in fu_device_setup()
after the parent device has all the required properties.
Fixes https://github.com/fwupd/fwupd/issues/3364
Devices may want to support more than one protocol, and for some devices
(e.g. Unifying peripherals stuck in bootloader mode) you might not even be able
to query for the correct protocol anyway.
This allows a device subclass to call the parent method after doing an initial
action, or even deliberately not call the *generic* parent method at all.
It also simplifies the plugins; you no longer have to remember what the plugin
is deriving from and accidentally clobber the wrong superclass method.
That giant uint64_t isn't looking so big now, and we'll want to add even more
to it in the future. Split out some private flags that are never useful to the
client, although the #defines will have to remain until we break API again.
The fprint daemon only keeps the device open for 5 seconds and then releases it,
which seems like a small window to hit.
But! We're asking the user to authenticate with the same device we're about to
upgrade so a different part of the stack woke up the hardware just before we're
about to deploy an update onto it.
Just retry a few times to make sure the device is idle. Use a flag to prevent
accidentally causing regressions in other plugins.
Fixes https://github.com/fwupd/fwupd/issues/2650
The FWUPD_INSTALL_FLAG_FORCE flag has really unclear semantics, and ignoring a
file CRC, checksum or model ID should only be done when using fwupdtool actually
debugging a plugin or firmware parser.
Use the existing --force flag when we want a "gentle nudge" like reuploading
previously processed reports.
This is nice in theory, until you need to look at the bootloader status of the
parent, or of a different device entirely. Handle this in plugins for the few
cases we care about and stop setting or clearing IS_BOOTLOADER manually just to
get the vfuncs to be run.
Note: I do not think we want to use cleanup() for attaching devices not in
bootloader states -- as cleanup is only run at the end of the composite update.
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.
Some plugins have devices with more than one protocol. Logically the protocol
belongs to the device, not the plugin, and in the future we could use this to
further check firmware that's about to be deployed.
This is also not exported into libfwupd (yet?) as it's remains a debug-feature
only -- protocols are not actually required for devices to be added.
We can't use the IOTA mechanism in bootloader mode, and failing to create the
FuSynapromDevice object means we can't recover the hardware if the flash failed.
In many plugins we've wanted to use ->prepare_firmware() to parse the firmware
ahead of ->detach() and ->write_firmware() but this has the limitation that it
can only return a single blob of data.
For many devices, multiple binary blobs are required from one parsed image,
for instance providing signatures, config and data blobs that have to be pushed
to the device in different way.
This also means we parse the firmware *before* we ask the user to detach.
Break the internal FuDevice API to support these firmware types as they become
more popular.
This also allows us to move the Intel HEX and SREC parsing out of the dfu plugin
as they are used by a few plugins now, and resolving symbols between plugins
isn't exactly awesome.