The daemon creates a baseclass of either FuUsbDevice or FuUdevDevice when the
devices are added or coldplugged to match the quirk database and to find out
what plugin to run.
This is proxied to plugins, but they are given the GUsbDevice or GUdevDevice and
the FuDevice is just thrown away. Most plugins either use a FuUsbDevice or
superclassed version like FuNvmeDevice and so we re-create the FuDevice, re-probe
the hardware, re-query the quirk database and then return this to the daemon.
In some cases, plugins actually probe the hardware three times (!) by creating
a FuUsbDevice to get the quirks, so that the plugin knows what kind of
superclass to create, which then itself probes the hardware again.
Passing the temporary FuDevice to the plugins means that the simplest ones can
just fu_plugin_device_add() the passed in object, or create a superclass and
incorporate the actual GUsbDevice and all the GUIDs.
This breaks internal plugin API but speeds up startup substantially and deletes
a lot of code.
This pivots the data storage so that the group is used as the preconditon
and the key name is used as the parameter to change. This allows a more natural
data flow, where a new device needs one new group and a few few keys, rather
than multiple groups, each with one key.
This also allows us to remove the key globbing when matching the version format
which is often a source of confusion.
Whilst changing all the quirk files, change the key prefixes to be more familiar
to Windows users (e.g. Hwid -> Smbios, and FuUsbDevice -> DeviceInstanceId)
who have to use the same IDs in Windows Update.
This also allows us to pre-match the desired plugin, rather than calling the
probe() function on each plugin.
This saves all the USB plugins from connecting to the context and managing the
device lifecycle and allows devices that uses FuUsbDevice to be removed
automatically.
This makes supported plugins *much* smaller indeed.