efi-boot-shim/PasswordCrypt.c
Kees Cook 47a9d2c908 additional bounds-checking on section sizes
This adds additional bounds-checking on the section sizes. Also adds
-Wsign-compare to the Makefile and replaces some signed variables with
unsigned counteparts for robustness.

Signed-off-by: Kees Cook <kees@ubuntu.com>
2014-04-11 14:41:22 -04:00

343 lines
7.8 KiB
C

#include <efi.h>
#include <efilib.h>
#include <Library/BaseCryptLib.h>
#include <openssl/sha.h>
#include <openssl/md5.h>
#include <openssl/des.h>
#include "PasswordCrypt.h"
#include "crypt_blowfish.h"
#define TRAD_DES_HASH_SIZE 13 /* (64/6+1) + (12/6) */
#define BSDI_DES_HASH_SIZE 20 /* (64/6+1) + (24/6) + 4 + 1 */
#define BLOWFISH_HASH_SIZE 31 /* 184/6+1 */
UINT16 get_hash_size (const UINT16 method)
{
switch (method) {
case TRADITIONAL_DES:
return TRAD_DES_HASH_SIZE;
case EXTEND_BSDI_DES:
return BSDI_DES_HASH_SIZE;
case MD5_BASED:
return MD5_DIGEST_LENGTH;
case SHA256_BASED:
return SHA256_DIGEST_LENGTH;
case SHA512_BASED:
return SHA512_DIGEST_LENGTH;
case BLOWFISH_BASED:
return BLOWFISH_HASH_SIZE;
}
return 0;
}
static EFI_STATUS trad_des_crypt (const char *key, const char *salt, UINT8 *hash)
{
char result[TRAD_DES_HASH_SIZE + 1];
char *ret;
ret = DES_fcrypt(key, salt, result);
if (ret) {
CopyMem(hash, result, TRAD_DES_HASH_SIZE);
return EFI_SUCCESS;
}
return EFI_UNSUPPORTED;
}
static const char md5_salt_prefix[] = "$1$";
static EFI_STATUS md5_crypt (const char *key, UINT32 key_len,
const char *salt, UINT32 salt_size,
UINT8 *hash)
{
MD5_CTX ctx, alt_ctx;
UINT8 alt_result[MD5_DIGEST_LENGTH];
UINTN cnt;
MD5_Init(&ctx);
MD5_Update(&ctx, key, key_len);
MD5_Update(&ctx, md5_salt_prefix, sizeof(md5_salt_prefix) - 1);
MD5_Update(&ctx, salt, salt_size);
MD5_Init(&alt_ctx);
MD5_Update(&alt_ctx, key, key_len);
MD5_Update(&alt_ctx, salt, salt_size);
MD5_Update(&alt_ctx, key, key_len);
MD5_Final(alt_result, &alt_ctx);
for (cnt = key_len; cnt > 16; cnt -= 16)
MD5_Update(&ctx, alt_result, 16);
MD5_Update(&ctx, alt_result, cnt);
*alt_result = '\0';
for (cnt = key_len; cnt > 0; cnt >>= 1) {
if ((cnt & 1) != 0) {
MD5_Update(&ctx, alt_result, 1);
} else {
MD5_Update(&ctx, key, 1);
}
}
MD5_Final(alt_result, &ctx);
for (cnt = 0; cnt < 1000; ++cnt) {
MD5_Init(&ctx);
if ((cnt & 1) != 0)
MD5_Update(&ctx, key, key_len);
else
MD5_Update(&ctx, alt_result, 16);
if (cnt % 3 != 0)
MD5_Update(&ctx, salt, salt_size);
if (cnt % 7 != 0)
MD5_Update(&ctx, key, key_len);
if ((cnt & 1) != 0)
MD5_Update(&ctx, alt_result, 16);
else
MD5_Update(&ctx, key, key_len);
MD5_Final(alt_result, &ctx);
}
CopyMem(hash, alt_result, MD5_DIGEST_LENGTH);
return EFI_SUCCESS;
}
static EFI_STATUS sha256_crypt (const char *key, UINT32 key_len,
const char *salt, UINT32 salt_size,
const UINT32 rounds, UINT8 *hash)
{
SHA256_CTX ctx, alt_ctx;
UINT8 alt_result[SHA256_DIGEST_SIZE];
UINT8 tmp_result[SHA256_DIGEST_SIZE];
UINT8 *cp, *p_bytes, *s_bytes;
UINTN cnt;
SHA256_Init(&ctx);
SHA256_Update(&ctx, key, key_len);
SHA256_Update(&ctx, salt, salt_size);
SHA256_Init(&alt_ctx);
SHA256_Update(&alt_ctx, key, key_len);
SHA256_Update(&alt_ctx, salt, salt_size);
SHA256_Update(&alt_ctx, key, key_len);
SHA256_Final(alt_result, &alt_ctx);
for (cnt = key_len; cnt > 32; cnt -= 32)
SHA256_Update(&ctx, alt_result, 32);
SHA256_Update(&ctx, alt_result, cnt);
for (cnt = key_len; cnt > 0; cnt >>= 1) {
if ((cnt & 1) != 0) {
SHA256_Update(&ctx, alt_result, 32);
} else {
SHA256_Update(&ctx, key, key_len);
}
}
SHA256_Final(alt_result, &ctx);
SHA256_Init(&alt_ctx);
for (cnt = 0; cnt < key_len; ++cnt)
SHA256_Update(&alt_ctx, key, key_len);
SHA256_Final(tmp_result, &alt_ctx);
cp = p_bytes = AllocatePool(key_len);
for (cnt = key_len; cnt >= 32; cnt -= 32) {
CopyMem(cp, tmp_result, 32);
cp += 32;
}
CopyMem(cp, tmp_result, cnt);
SHA256_Init(&alt_ctx);
for (cnt = 0; cnt < 16ul + alt_result[0]; ++cnt)
SHA256_Update(&alt_ctx, salt, salt_size);
SHA256_Final(tmp_result, &alt_ctx);
cp = s_bytes = AllocatePool(salt_size);
for (cnt = salt_size; cnt >= 32; cnt -= 32) {
CopyMem(cp, tmp_result, 32);
cp += 32;
}
CopyMem(cp, tmp_result, cnt);
for (cnt = 0; cnt < rounds; ++cnt) {
SHA256_Init(&ctx);
if ((cnt & 1) != 0)
SHA256_Update(&ctx, p_bytes, key_len);
else
SHA256_Update(&ctx, alt_result, 32);
if (cnt % 3 != 0)
SHA256_Update(&ctx, s_bytes, salt_size);
if (cnt % 7 != 0)
SHA256_Update(&ctx, p_bytes, key_len);
if ((cnt & 1) != 0)
SHA256_Update(&ctx, alt_result, 32);
else
SHA256_Update(&ctx, p_bytes, key_len);
SHA256_Final(alt_result, &ctx);
}
CopyMem(hash, alt_result, SHA256_DIGEST_SIZE);
FreePool(p_bytes);
FreePool(s_bytes);
return EFI_SUCCESS;
}
static EFI_STATUS sha512_crypt (const char *key, UINT32 key_len,
const char *salt, UINT32 salt_size,
const UINT32 rounds, UINT8 *hash)
{
SHA512_CTX ctx, alt_ctx;
UINT8 alt_result[SHA512_DIGEST_LENGTH];
UINT8 tmp_result[SHA512_DIGEST_LENGTH];
UINT8 *cp, *p_bytes, *s_bytes;
UINTN cnt;
SHA512_Init(&ctx);
SHA512_Update(&ctx, key, key_len);
SHA512_Update(&ctx, salt, salt_size);
SHA512_Init(&alt_ctx);
SHA512_Update(&alt_ctx, key, key_len);
SHA512_Update(&alt_ctx, salt, salt_size);
SHA512_Update(&alt_ctx, key, key_len);
SHA512_Final(alt_result, &alt_ctx);
for (cnt = key_len; cnt > 64; cnt -= 64)
SHA512_Update(&ctx, alt_result, 64);
SHA512_Update(&ctx, alt_result, cnt);
for (cnt = key_len; cnt > 0; cnt >>= 1) {
if ((cnt & 1) != 0) {
SHA512_Update(&ctx, alt_result, 64);
} else {
SHA512_Update(&ctx, key, key_len);
}
}
SHA512_Final(alt_result, &ctx);
SHA512_Init(&alt_ctx);
for (cnt = 0; cnt < key_len; ++cnt)
SHA512_Update(&alt_ctx, key, key_len);
SHA512_Final(tmp_result, &alt_ctx);
cp = p_bytes = AllocatePool(key_len);
for (cnt = key_len; cnt >= 64; cnt -= 64) {
CopyMem(cp, tmp_result, 64);
cp += 64;
}
CopyMem(cp, tmp_result, cnt);
SHA512_Init(&alt_ctx);
for (cnt = 0; cnt < 16ul + alt_result[0]; ++cnt)
SHA512_Update(&alt_ctx, salt, salt_size);
SHA512_Final(tmp_result, &alt_ctx);
cp = s_bytes = AllocatePool(salt_size);
for (cnt = salt_size; cnt >= 64; cnt -= 64) {
CopyMem(cp, tmp_result, 64);
cp += 64;
}
CopyMem(cp, tmp_result, cnt);
for (cnt = 0; cnt < rounds; ++cnt) {
SHA512_Init(&ctx);
if ((cnt & 1) != 0)
SHA512_Update(&ctx, p_bytes, key_len);
else
SHA512_Update(&ctx, alt_result, 64);
if (cnt % 3 != 0)
SHA512_Update(&ctx, s_bytes, salt_size);
if (cnt % 7 != 0)
SHA512_Update(&ctx, p_bytes, key_len);
if ((cnt & 1) != 0)
SHA512_Update(&ctx, alt_result, 64);
else
SHA512_Update(&ctx, p_bytes, key_len);
SHA512_Final(alt_result, &ctx);
}
CopyMem(hash, alt_result, SHA512_DIGEST_LENGTH);
FreePool(p_bytes);
FreePool(s_bytes);
return EFI_SUCCESS;
}
#define BF_RESULT_SIZE (7 + 22 + 31 + 1)
static EFI_STATUS blowfish_crypt (const char *key, const char *salt, UINT8 *hash)
{
char *retval, result[BF_RESULT_SIZE];
retval = crypt_blowfish_rn (key, salt, result, BF_RESULT_SIZE);
if (!retval)
return EFI_UNSUPPORTED;
CopyMem(hash, result + 7 + 22, BF_RESULT_SIZE);
return EFI_SUCCESS;
}
EFI_STATUS password_crypt (const char *password, UINT32 pw_length,
const PASSWORD_CRYPT *pw_crypt, UINT8 *hash)
{
EFI_STATUS status;
if (!pw_crypt)
return EFI_INVALID_PARAMETER;
switch (pw_crypt->method) {
case TRADITIONAL_DES:
status = trad_des_crypt (password, (char *)pw_crypt->salt, hash);
break;
case EXTEND_BSDI_DES:
status = EFI_UNSUPPORTED;
break;
case MD5_BASED:
status = md5_crypt (password, pw_length, (char *)pw_crypt->salt,
pw_crypt->salt_size, hash);
break;
case SHA256_BASED:
status = sha256_crypt(password, pw_length, (char *)pw_crypt->salt,
pw_crypt->salt_size, pw_crypt->iter_count,
hash);
break;
case SHA512_BASED:
status = sha512_crypt(password, pw_length, (char *)pw_crypt->salt,
pw_crypt->salt_size, pw_crypt->iter_count,
hash);
break;
case BLOWFISH_BASED:
if (pw_crypt->salt_size != (7 + 22 + 1)) {
status = EFI_INVALID_PARAMETER;
break;
}
status = blowfish_crypt(password, (char *)pw_crypt->salt, hash);
break;
default:
return EFI_INVALID_PARAMETER;
}
return status;
}