mirror of
https://git.proxmox.com/git/efi-boot-shim
synced 2025-06-08 20:56:25 +00:00
1075 lines
30 KiB
C
1075 lines
30 KiB
C
// SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
/*
|
|
* mok.c - MoK variable processing
|
|
* Copyright 2017 Peter Jones <pjones@redhat.com>
|
|
*/
|
|
|
|
#include "shim.h"
|
|
|
|
/*
|
|
* Check if a variable exists
|
|
*/
|
|
static BOOLEAN check_var(CHAR16 *varname)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
UINTN size = sizeof(UINT32);
|
|
UINT32 MokVar;
|
|
UINT32 attributes;
|
|
|
|
efi_status = gRT->GetVariable(varname, &SHIM_LOCK_GUID, &attributes,
|
|
&size, (void *)&MokVar);
|
|
if (!EFI_ERROR(efi_status) || efi_status == EFI_BUFFER_TOO_SMALL)
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
#define SetVariable(name, guid, attrs, varsz, var) \
|
|
({ \
|
|
EFI_STATUS efi_status_; \
|
|
efi_status_ = gRT->SetVariable(name, guid, attrs, varsz, var); \
|
|
dprint_(L"%a:%d:%a() SetVariable(\"%s\", ... varsz=0x%llx) = %r\n", \
|
|
__FILE__, __LINE__ - 5, __func__, name, varsz, \
|
|
efi_status_); \
|
|
efi_status_; \
|
|
})
|
|
|
|
/*
|
|
* If the OS has set any of these variables we need to drop into MOK and
|
|
* handle them appropriately
|
|
*/
|
|
static EFI_STATUS check_mok_request(EFI_HANDLE image_handle)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
|
|
if (check_var(L"MokNew") || check_var(L"MokSB") ||
|
|
check_var(L"MokPW") || check_var(L"MokAuth") ||
|
|
check_var(L"MokDel") || check_var(L"MokDB") ||
|
|
check_var(L"MokXNew") || check_var(L"MokXDel") ||
|
|
check_var(L"MokXAuth")) {
|
|
efi_status = start_image(image_handle, MOK_MANAGER);
|
|
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to start MokManager: %r\n", efi_status);
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
typedef enum {
|
|
VENDOR_ADDEND_DB,
|
|
VENDOR_ADDEND_X509,
|
|
VENDOR_ADDEND_NONE,
|
|
} vendor_addend_category_t;
|
|
|
|
struct mok_state_variable;
|
|
typedef vendor_addend_category_t (vendor_addend_categorizer_t)(struct mok_state_variable *);
|
|
|
|
/*
|
|
* MoK variables that need to have their storage validated.
|
|
*
|
|
* The order here is important, since this is where we measure for the
|
|
* tpm as well.
|
|
*/
|
|
struct mok_state_variable {
|
|
CHAR16 *name; /* UCS-2 BS|NV variable name */
|
|
char *name8; /* UTF-8 BS|NV variable name */
|
|
CHAR16 *rtname; /* UCS-2 RT variable name */
|
|
char *rtname8; /* UTF-8 RT variable name */
|
|
EFI_GUID *guid; /* variable GUID */
|
|
|
|
/*
|
|
* these are used during processing, they shouldn't be filled out
|
|
* in the static table below.
|
|
*/
|
|
UINT8 *data;
|
|
UINTN data_size;
|
|
|
|
/*
|
|
* addend are added to the input variable, as part of the runtime
|
|
* variable, so that they're visible to the kernel. These are
|
|
* where we put vendor_cert / vendor_db / vendor_dbx
|
|
*
|
|
* These are indirect pointers just to make initialization saner...
|
|
*/
|
|
vendor_addend_categorizer_t *categorize_addend; /* determines format */
|
|
/*
|
|
* we call categorize_addend() and it determines what kind of thing
|
|
* this is. That is, if this shim was built with VENDOR_CERT, for
|
|
* the DB entry it'll return VENDOR_ADDEND_X509; if you used
|
|
* VENDOR_DB instead, it'll return VENDOR_ADDEND_DB. If you used
|
|
* neither, it'll do VENDOR_ADDEND_NONE.
|
|
*
|
|
* The existing categorizers are for db and dbx; they differ
|
|
* because we don't currently support a CERT for dbx.
|
|
*/
|
|
UINT8 **addend;
|
|
UINT32 *addend_size;
|
|
|
|
/*
|
|
* build_cert is our build-time cert. Like addend, this is added
|
|
* to the input variable, as part of the runtime variable, so that
|
|
* they're visible to the kernel. This is the ephemeral cert used
|
|
* for signing MokManager.efi and fallback.efi.
|
|
*
|
|
* These are indirect pointers just to make initialization saner...
|
|
*/
|
|
UINT8 **build_cert;
|
|
UINT32 *build_cert_size;
|
|
|
|
UINT32 yes_attr; /* var attrs that must be set */
|
|
UINT32 no_attr; /* var attrs that must not be set */
|
|
UINT32 flags; /* flags on what and how to mirror */
|
|
/*
|
|
* MOK_MIRROR_KEYDB mirror this as a key database
|
|
* MOK_MIRROR_DELETE_FIRST delete any existing variable first
|
|
* MOK_VARIABLE_MEASURE extend PCR 7 and log the hash change
|
|
* MOK_VARIABLE_LOG measure into whatever .pcr says and log
|
|
*/
|
|
UINTN pcr; /* PCR to measure and hash to */
|
|
|
|
/*
|
|
* if this is a state value, a pointer to our internal state to be
|
|
* mirrored.
|
|
*/
|
|
UINT8 *state;
|
|
};
|
|
|
|
static vendor_addend_category_t
|
|
categorize_authorized(struct mok_state_variable *v)
|
|
{
|
|
if (!(v->addend && v->addend_size &&
|
|
*v->addend && *v->addend_size)) {
|
|
return VENDOR_ADDEND_NONE;
|
|
}
|
|
|
|
return vendor_authorized_category;
|
|
}
|
|
|
|
static vendor_addend_category_t
|
|
categorize_deauthorized(struct mok_state_variable *v)
|
|
{
|
|
if (!(v->addend && v->addend_size &&
|
|
*v->addend && *v->addend_size)) {
|
|
return VENDOR_ADDEND_NONE;
|
|
}
|
|
|
|
return VENDOR_ADDEND_DB;
|
|
}
|
|
|
|
#define MOK_MIRROR_KEYDB 0x01
|
|
#define MOK_MIRROR_DELETE_FIRST 0x02
|
|
#define MOK_VARIABLE_MEASURE 0x04
|
|
#define MOK_VARIABLE_LOG 0x08
|
|
|
|
struct mok_state_variable mok_state_variables[] = {
|
|
{.name = L"MokList",
|
|
.name8 = "MokList",
|
|
.rtname = L"MokListRT",
|
|
.rtname8 = "MokListRT",
|
|
.guid = &SHIM_LOCK_GUID,
|
|
.yes_attr = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_NON_VOLATILE,
|
|
.no_attr = EFI_VARIABLE_RUNTIME_ACCESS,
|
|
.categorize_addend = categorize_authorized,
|
|
.addend = &vendor_authorized,
|
|
.addend_size = &vendor_authorized_size,
|
|
#if defined(ENABLE_SHIM_CERT)
|
|
.build_cert = &build_cert,
|
|
.build_cert_size = &build_cert_size,
|
|
#endif /* defined(ENABLE_SHIM_CERT) */
|
|
.flags = MOK_MIRROR_KEYDB |
|
|
MOK_MIRROR_DELETE_FIRST |
|
|
MOK_VARIABLE_LOG,
|
|
.pcr = 14,
|
|
},
|
|
{.name = L"MokListX",
|
|
.name8 = "MokListX",
|
|
.rtname = L"MokListXRT",
|
|
.rtname8 = "MokListXRT",
|
|
.guid = &SHIM_LOCK_GUID,
|
|
.yes_attr = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_NON_VOLATILE,
|
|
.no_attr = EFI_VARIABLE_RUNTIME_ACCESS,
|
|
.categorize_addend = categorize_deauthorized,
|
|
.addend = &vendor_deauthorized,
|
|
.addend_size = &vendor_deauthorized_size,
|
|
.flags = MOK_MIRROR_KEYDB |
|
|
MOK_MIRROR_DELETE_FIRST |
|
|
MOK_VARIABLE_LOG,
|
|
.pcr = 14,
|
|
},
|
|
{.name = L"MokSBState",
|
|
.name8 = "MokSBState",
|
|
.rtname = L"MokSBStateRT",
|
|
.rtname8 = "MokSBStateRT",
|
|
.guid = &SHIM_LOCK_GUID,
|
|
.yes_attr = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_NON_VOLATILE,
|
|
.no_attr = EFI_VARIABLE_RUNTIME_ACCESS,
|
|
.flags = MOK_MIRROR_DELETE_FIRST |
|
|
MOK_VARIABLE_MEASURE |
|
|
MOK_VARIABLE_LOG,
|
|
.pcr = 14,
|
|
.state = &user_insecure_mode,
|
|
},
|
|
{.name = L"MokDBState",
|
|
.name8 = "MokDBState",
|
|
.rtname = L"MokIgnoreDB",
|
|
.rtname8 = "MokIgnoreDB",
|
|
.guid = &SHIM_LOCK_GUID,
|
|
.yes_attr = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_NON_VOLATILE,
|
|
.no_attr = EFI_VARIABLE_RUNTIME_ACCESS,
|
|
.state = &ignore_db,
|
|
},
|
|
{.name = SBAT_VAR_NAME,
|
|
.name8 = SBAT_VAR_NAME8,
|
|
.rtname = SBAT_RT_VAR_NAME,
|
|
.rtname8 = SBAT_RT_VAR_NAME8,
|
|
.guid = &SHIM_LOCK_GUID,
|
|
.yes_attr = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_NON_VOLATILE,
|
|
/*
|
|
* we're enforcing that SBAT can't have an RT flag here because
|
|
* there's no way to tell whether it's an authenticated variable.
|
|
*/
|
|
#if !defined(ENABLE_SHIM_DEVEL)
|
|
.no_attr = EFI_VARIABLE_RUNTIME_ACCESS,
|
|
#else
|
|
.no_attr = 0,
|
|
#endif
|
|
.flags = MOK_MIRROR_DELETE_FIRST |
|
|
MOK_VARIABLE_MEASURE,
|
|
.pcr = 7,
|
|
},
|
|
{ NULL, }
|
|
};
|
|
|
|
#define should_mirror_addend(v) (((v)->categorize_addend) && ((v)->categorize_addend(v) != VENDOR_ADDEND_NONE))
|
|
|
|
static inline BOOLEAN NONNULL(1)
|
|
should_mirror_build_cert(struct mok_state_variable *v)
|
|
{
|
|
return (v->build_cert && v->build_cert_size &&
|
|
*v->build_cert && *v->build_cert_size) ? TRUE : FALSE;
|
|
}
|
|
|
|
static const uint8_t null_sha256[32] = { 0, };
|
|
|
|
typedef UINTN SIZE_T;
|
|
|
|
static EFI_STATUS
|
|
get_max_var_sz(UINT32 attrs, SIZE_T *max_var_szp)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
uint64_t max_storage_sz = 0;
|
|
uint64_t remaining_sz = 0;
|
|
uint64_t max_var_sz = 0;
|
|
|
|
*max_var_szp = 0;
|
|
efi_status = gRT->QueryVariableInfo(attrs, &max_storage_sz,
|
|
&remaining_sz, &max_var_sz);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Could not get variable storage info: %r\n", efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* I just don't trust implementations to not be showing static data
|
|
* for max_var_sz
|
|
*/
|
|
*max_var_szp = (max_var_sz < remaining_sz) ? max_var_sz : remaining_sz;
|
|
dprint("max_var_sz:%lx remaining_sz:%lx max_storage_sz:%lx\n",
|
|
max_var_sz, remaining_sz, max_storage_sz);
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* If any entries fit in < maxsz, and nothing goes wrong, create a variable
|
|
* of the given name and guid with as many esd entries as possible in it,
|
|
* and updates *esdp with what would be the next entry (even if makes *esdp
|
|
* > esl+esl->SignatureListSize), and returns whatever SetVariable()
|
|
* returns
|
|
*
|
|
* If no entries fit (i.e. sizeof(esl) + esl->SignatureSize > maxsz),
|
|
* returns EFI_BUFFER_TOO_SMALL;
|
|
*/
|
|
static EFI_STATUS
|
|
mirror_one_esl(CHAR16 *name, EFI_GUID *guid, UINT32 attrs,
|
|
EFI_SIGNATURE_LIST *esl, EFI_SIGNATURE_DATA *esd,
|
|
SIZE_T howmany)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
SIZE_T varsz = 0;
|
|
UINT8 *var;
|
|
|
|
/*
|
|
* We always assume esl->SignatureHeaderSize is 0 (and so far,
|
|
* that's true as per UEFI 2.8)
|
|
*/
|
|
dprint(L"Trying to add %lx signatures to \"%s\" of size %lx\n",
|
|
howmany, name, esl->SignatureSize);
|
|
|
|
/*
|
|
* Because of the semantics of variable_create_esl(), the first
|
|
* owner guid from the data is not part of esdsz, or the data.
|
|
*
|
|
* Compensate here.
|
|
*/
|
|
efi_status = variable_create_esl(esd, howmany,
|
|
&esl->SignatureType,
|
|
esl->SignatureSize,
|
|
&var, &varsz);
|
|
if (EFI_ERROR(efi_status) || !var || !varsz) {
|
|
LogError(L"Couldn't allocate %lu bytes for mok variable \"%s\": %r\n",
|
|
varsz, var, efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
dprint(L"new esl:\n");
|
|
dhexdumpat(var, varsz, 0);
|
|
|
|
efi_status = SetVariable(name, guid, attrs, varsz, var);
|
|
FreePool(var);
|
|
if (EFI_ERROR(efi_status)) {
|
|
LogError(L"Couldn't create mok variable \"%s\": %r\n",
|
|
varsz, var, efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
static EFI_STATUS
|
|
mirror_mok_db(CHAR16 *name, CHAR8 *name8, EFI_GUID *guid, UINT32 attrs,
|
|
UINT8 *FullData, SIZE_T FullDataSize, BOOLEAN only_first)
|
|
{
|
|
EFI_STATUS efi_status = EFI_SUCCESS;
|
|
SIZE_T max_var_sz;
|
|
|
|
efi_status = get_max_var_sz(attrs, &max_var_sz);
|
|
if (EFI_ERROR(efi_status)) {
|
|
LogError(L"Could not get maximum variable size: %r",
|
|
efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
if (FullDataSize <= max_var_sz) {
|
|
if (only_first)
|
|
efi_status = SetVariable(name, guid, attrs,
|
|
FullDataSize, FullData);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
CHAR16 *namen;
|
|
CHAR8 *namen8;
|
|
UINTN namelen, namesz;
|
|
|
|
namelen = StrLen(name);
|
|
namesz = namelen * 2;
|
|
if (only_first) {
|
|
namen = name;
|
|
namen8 = name8;
|
|
} else {
|
|
namelen += 18;
|
|
namesz += 34;
|
|
namen = AllocateZeroPool(namesz);
|
|
if (!namen) {
|
|
LogError(L"Could not allocate %lu bytes", namesz);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
namen8 = AllocateZeroPool(namelen);
|
|
if (!namen8) {
|
|
FreePool(namen);
|
|
LogError(L"Could not allocate %lu bytes", namelen);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
}
|
|
|
|
UINTN pos, i;
|
|
const SIZE_T minsz = sizeof(EFI_SIGNATURE_LIST)
|
|
+ sizeof(EFI_SIGNATURE_DATA)
|
|
+ SHA1_DIGEST_SIZE;
|
|
BOOLEAN did_one = FALSE;
|
|
|
|
/*
|
|
* Create any entries that can fit.
|
|
*/
|
|
if (!only_first) {
|
|
dprint(L"full data for \"%s\":\n", name);
|
|
dhexdumpat(FullData, FullDataSize, 0);
|
|
}
|
|
EFI_SIGNATURE_LIST *esl = NULL;
|
|
UINTN esl_end_pos = 0;
|
|
for (i = 0, pos = 0; FullDataSize - pos >= minsz && FullData; ) {
|
|
EFI_SIGNATURE_DATA *esd = NULL;
|
|
|
|
dprint(L"pos:0x%llx FullDataSize:0x%llx\n", pos, FullDataSize);
|
|
if (esl == NULL || pos >= esl_end_pos) {
|
|
UINT8 *nesl = FullData + pos;
|
|
dprint(L"esl:0x%llx->0x%llx\n", esl, nesl);
|
|
esl = (EFI_SIGNATURE_LIST *)nesl;
|
|
esl_end_pos = pos + esl->SignatureListSize;
|
|
dprint(L"pos:0x%llx->0x%llx\n", pos, pos + sizeof(*esl));
|
|
pos += sizeof(*esl);
|
|
}
|
|
esd = (EFI_SIGNATURE_DATA *)(FullData + pos);
|
|
if (pos >= FullDataSize)
|
|
break;
|
|
if (esl->SignatureListSize == 0 || esl->SignatureSize == 0)
|
|
break;
|
|
|
|
dprint(L"esl[%lu] 0x%llx = {sls=0x%lx, ss=0x%lx} esd:0x%llx\n",
|
|
i, esl, esl->SignatureListSize, esl->SignatureSize, esd);
|
|
|
|
if (!only_first) {
|
|
SPrint(namen, namelen, L"%s%lu", name, i);
|
|
namen[namelen-1] = 0;
|
|
/* uggggh */
|
|
UINTN j;
|
|
for (j = 0; j < namelen; j++)
|
|
namen8[j] = (CHAR8)(namen[j] & 0xff);
|
|
namen8[namelen - 1] = 0;
|
|
}
|
|
|
|
/*
|
|
* In case max_var_sz is computed dynamically, refresh the
|
|
* value here.
|
|
*/
|
|
efi_status = get_max_var_sz(attrs, &max_var_sz);
|
|
if (EFI_ERROR(efi_status)) {
|
|
LogError(L"Could not get maximum variable size: %r",
|
|
efi_status);
|
|
if (!only_first) {
|
|
FreePool(namen);
|
|
FreePool(namen8);
|
|
}
|
|
return efi_status;
|
|
}
|
|
|
|
/* The name counts towards the size of the variable */
|
|
max_var_sz -= (StrLen(namen) + 1) * 2;
|
|
dprint(L"max_var_sz - name: %lx\n", max_var_sz);
|
|
|
|
SIZE_T howmany;
|
|
howmany = MIN((max_var_sz - sizeof(*esl)) / esl->SignatureSize,
|
|
(esl_end_pos - pos) / esl->SignatureSize);
|
|
if (howmany == 0) {
|
|
/* No signatures from this ESL can be mirrored in to a
|
|
* single variable, so skip it.
|
|
*/
|
|
dprint(L"skipping esl, pos:0x%llx->0x%llx\n", pos, esl_end_pos);
|
|
pos = esl_end_pos;
|
|
continue;
|
|
}
|
|
|
|
UINTN adj = howmany * esl->SignatureSize;
|
|
|
|
if (!only_first && i == 0) {
|
|
dprint(L"pos:0x%llx->0x%llx\n", pos, pos + adj);
|
|
pos += adj;
|
|
i++;
|
|
continue;
|
|
|
|
}
|
|
|
|
efi_status = mirror_one_esl(namen, guid, attrs,
|
|
esl, esd, howmany);
|
|
dprint(L"esd:0x%llx adj:0x%llx\n", esd, adj);
|
|
if (EFI_ERROR(efi_status)) {
|
|
LogError(L"Could not mirror mok variable \"%s\": %r\n",
|
|
namen, efi_status);
|
|
break;
|
|
}
|
|
|
|
dprint(L"pos:0x%llx->0x%llx\n", pos, pos + adj);
|
|
pos += adj;
|
|
did_one = TRUE;
|
|
if (only_first)
|
|
break;
|
|
i++;
|
|
}
|
|
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to set %s: %r\n", name, efi_status);
|
|
} else if (only_first && !did_one) {
|
|
/*
|
|
* In this case we're going to try to create a
|
|
* dummy variable so that there's one there. It
|
|
* may or may not work, because on some firmware
|
|
* builds when the SetVariable call above fails it
|
|
* does actually set the variable(!), so aside from
|
|
* not using the allocation if it doesn't work, we
|
|
* don't care about failures here.
|
|
*/
|
|
UINT8 *var;
|
|
UINTN varsz;
|
|
|
|
efi_status = variable_create_esl_with_one_signature(
|
|
null_sha256, sizeof(null_sha256),
|
|
&EFI_CERT_SHA256_GUID, &SHIM_LOCK_GUID,
|
|
&var, &varsz);
|
|
/*
|
|
* from here we don't really care if it works or
|
|
* doesn't.
|
|
*/
|
|
if (!EFI_ERROR(efi_status) && var && varsz) {
|
|
efi_status = SetVariable(name, guid,
|
|
EFI_VARIABLE_BOOTSERVICE_ACCESS
|
|
| EFI_VARIABLE_RUNTIME_ACCESS,
|
|
varsz, var);
|
|
FreePool(var);
|
|
}
|
|
}
|
|
return efi_status;
|
|
}
|
|
|
|
|
|
static EFI_STATUS NONNULL(1)
|
|
mirror_one_mok_variable(struct mok_state_variable *v,
|
|
BOOLEAN only_first)
|
|
{
|
|
EFI_STATUS efi_status = EFI_SUCCESS;
|
|
uint8_t *FullData = NULL;
|
|
size_t FullDataSize = 0;
|
|
vendor_addend_category_t addend_category = VENDOR_ADDEND_NONE;
|
|
uint8_t *p = NULL;
|
|
uint32_t attrs = EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
EFI_VARIABLE_RUNTIME_ACCESS;
|
|
BOOLEAN measure = v->flags & MOK_VARIABLE_MEASURE;
|
|
BOOLEAN log = v->flags & MOK_VARIABLE_LOG;
|
|
size_t build_cert_esl_sz = 0, addend_esl_sz = 0;
|
|
bool reuse = FALSE;
|
|
|
|
if (v->categorize_addend)
|
|
addend_category = v->categorize_addend(v);
|
|
|
|
/*
|
|
* if it is, there's more data
|
|
*/
|
|
if (v->flags & MOK_MIRROR_KEYDB) {
|
|
|
|
/*
|
|
* We're mirroring (into) an efi security database, aka an
|
|
* array of EFI_SIGNATURE_LIST. Its layout goes like:
|
|
*
|
|
* existing_variable_data
|
|
* existing_variable_data_size
|
|
* if flags & MOK_MIRROR_KEYDB
|
|
* if build_cert
|
|
* build_cert_esl
|
|
* build_cert_header (always sz=0)
|
|
* build_cert_esd[0] { owner, data }
|
|
* if addend==vendor_db
|
|
* for n=[1..N]
|
|
* vendor_db_esl_n
|
|
* vendor_db_header_n (always sz=0)
|
|
* vendor_db_esd_n[m] {{ owner, data }, ... }
|
|
* elif addend==vendor_cert
|
|
* vendor_cert_esl
|
|
* vendor_cert_header (always sz=0)
|
|
* vendor_cert_esd[1] { owner, data }
|
|
*
|
|
* first we determine the size of the variable, then alloc
|
|
* and add the data.
|
|
*/
|
|
|
|
/*
|
|
* *first* vendor_db or vendor_cert
|
|
*/
|
|
switch (addend_category) {
|
|
case VENDOR_ADDEND_DB:
|
|
/*
|
|
* if it's an ESL already, we use it wholesale
|
|
*/
|
|
FullDataSize += *v->addend_size;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx\n",
|
|
FullDataSize, FullData);
|
|
break;
|
|
case VENDOR_ADDEND_X509:
|
|
efi_status = fill_esl_with_one_signature(*v->addend,
|
|
*v->addend_size,
|
|
&EFI_CERT_TYPE_X509_GUID,
|
|
&SHIM_LOCK_GUID,
|
|
NULL,
|
|
&addend_esl_sz);
|
|
if (efi_status != EFI_BUFFER_TOO_SMALL) {
|
|
perror(L"Could not add built-in cert to %s: %r\n",
|
|
v->name, efi_status);
|
|
return efi_status;
|
|
}
|
|
FullDataSize += addend_esl_sz;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx\n",
|
|
FullDataSize, FullData);
|
|
break;
|
|
default:
|
|
case VENDOR_ADDEND_NONE:
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx\n",
|
|
FullDataSize, FullData);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* then the build cert if it's there
|
|
*/
|
|
if (should_mirror_build_cert(v)) {
|
|
efi_status = fill_esl_with_one_signature(*v->build_cert,
|
|
*v->build_cert_size,
|
|
&EFI_CERT_TYPE_X509_GUID,
|
|
&SHIM_LOCK_GUID,
|
|
NULL, &build_cert_esl_sz);
|
|
if (efi_status != EFI_BUFFER_TOO_SMALL) {
|
|
perror(L"Could not add built-in cert to %s: %r\n",
|
|
v->name, efi_status);
|
|
return efi_status;
|
|
}
|
|
FullDataSize += build_cert_esl_sz;
|
|
dprint(L"FullDataSize:0x%lx FullData:0x%llx\n",
|
|
FullDataSize, FullData);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* we're always mirroring the original data, whether this is an efi
|
|
* security database or not
|
|
*/
|
|
dprint(L"v->name:\"%s\" v->rtname:\"%s\"\n", v->name, v->rtname);
|
|
dprint(L"v->data_size:%lu v->data:0x%llx\n", v->data_size, v->data);
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx\n", FullDataSize, FullData);
|
|
if (v->data_size) {
|
|
FullDataSize += v->data_size;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx\n",
|
|
FullDataSize, FullData);
|
|
}
|
|
if (v->data_size == FullDataSize)
|
|
reuse = TRUE;
|
|
|
|
/*
|
|
* Now we have the full size
|
|
*/
|
|
if (FullDataSize) {
|
|
/*
|
|
* allocate the buffer, or use the old one if it's just the
|
|
* existing data.
|
|
*/
|
|
if (FullDataSize == v->data_size) {
|
|
FullData = v->data;
|
|
FullDataSize = v->data_size;
|
|
p = FullData + FullDataSize;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
v->data = NULL;
|
|
v->data_size = 0;
|
|
} else {
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx allocating FullData\n",
|
|
FullDataSize, FullData);
|
|
/*
|
|
* make sure we've got some zeroes at the end, just
|
|
* in case.
|
|
*/
|
|
UINTN new, allocsz;
|
|
|
|
allocsz = FullDataSize + sizeof(EFI_SIGNATURE_LIST);
|
|
new = ALIGN_VALUE(allocsz, 4096);
|
|
allocsz = new == allocsz ? new + 4096 : new;
|
|
FullData = AllocateZeroPool(allocsz);
|
|
if (!FullData) {
|
|
perror(L"Failed to allocate %lu bytes for %s\n",
|
|
FullDataSize, v->name);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
p = FullData;
|
|
}
|
|
}
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
|
|
/*
|
|
* Now fill it.
|
|
*/
|
|
if (v->flags & MOK_MIRROR_KEYDB) {
|
|
/*
|
|
* first vendor_cert or vendor_db
|
|
*/
|
|
switch (addend_category) {
|
|
case VENDOR_ADDEND_DB:
|
|
CopyMem(p, *v->addend, *v->addend_size);
|
|
p += *v->addend_size;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
break;
|
|
case VENDOR_ADDEND_X509:
|
|
efi_status = fill_esl_with_one_signature(*v->addend,
|
|
*v->addend_size,
|
|
&EFI_CERT_TYPE_X509_GUID,
|
|
&SHIM_LOCK_GUID,
|
|
p, &addend_esl_sz);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Could not add built-in cert to %s: %r\n",
|
|
v->name, efi_status);
|
|
return efi_status;
|
|
}
|
|
p += addend_esl_sz;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
break;
|
|
default:
|
|
case VENDOR_ADDEND_NONE:
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* then is the build cert
|
|
*/
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
if (should_mirror_build_cert(v)) {
|
|
efi_status = fill_esl_with_one_signature(*v->build_cert,
|
|
*v->build_cert_size,
|
|
&EFI_CERT_TYPE_X509_GUID,
|
|
&SHIM_LOCK_GUID,
|
|
p, &build_cert_esl_sz);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Could not add built-in cert to %s: %r\n",
|
|
v->name, efi_status);
|
|
return efi_status;
|
|
}
|
|
p += build_cert_esl_sz;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* last bit is existing data, unless it's the only thing,
|
|
* in which case it's already there.
|
|
*/
|
|
if (!reuse) {
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
if (v->data && v->data_size) {
|
|
CopyMem(p, v->data, v->data_size);
|
|
p += v->data_size;
|
|
}
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
}
|
|
|
|
/*
|
|
* We always want to create our key databases, so in this case we
|
|
* need a dummy entry
|
|
*/
|
|
if ((v->flags & MOK_MIRROR_KEYDB) && FullDataSize == 0) {
|
|
efi_status = variable_create_esl_with_one_signature(
|
|
null_sha256, sizeof(null_sha256),
|
|
&EFI_CERT_SHA256_GUID, &SHIM_LOCK_GUID,
|
|
&FullData, &FullDataSize);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to allocate %lu bytes for %s\n",
|
|
FullDataSize, v->name);
|
|
return efi_status;
|
|
}
|
|
p = FullData + FullDataSize;
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
}
|
|
|
|
dprint(L"FullDataSize:%lu FullData:0x%llx p:0x%llx pos:%lld\n",
|
|
FullDataSize, FullData, p, p-(uintptr_t)FullData);
|
|
if (FullDataSize && v->flags & MOK_MIRROR_KEYDB) {
|
|
dprint(L"calling mirror_mok_db(\"%s\", datasz=%lu)\n",
|
|
v->rtname, FullDataSize);
|
|
efi_status = mirror_mok_db(v->rtname, (CHAR8 *)v->rtname8, v->guid,
|
|
attrs, FullData, FullDataSize,
|
|
only_first);
|
|
dprint(L"mirror_mok_db(\"%s\", datasz=%lu) returned %r\n",
|
|
v->rtname, FullDataSize, efi_status);
|
|
} else if (FullDataSize && only_first) {
|
|
efi_status = SetVariable(v->rtname, v->guid, attrs,
|
|
FullDataSize, FullData);
|
|
}
|
|
if (FullDataSize && only_first) {
|
|
if (measure) {
|
|
/*
|
|
* Measure this into PCR 7 in the Microsoft format
|
|
*/
|
|
efi_status = tpm_measure_variable(v->name, *v->guid,
|
|
FullDataSize, FullData);
|
|
if (EFI_ERROR(efi_status)) {
|
|
dprint(L"tpm_measure_variable(\"%s\",%lu,0x%llx)->%r\n",
|
|
v->name, FullDataSize, FullData, efi_status);
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
if (log) {
|
|
/*
|
|
* Log this variable into whichever PCR the table
|
|
* says.
|
|
*/
|
|
EFI_PHYSICAL_ADDRESS datap =
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)FullData,
|
|
efi_status = tpm_log_event(datap, FullDataSize,
|
|
v->pcr, (CHAR8 *)v->name8);
|
|
if (EFI_ERROR(efi_status)) {
|
|
dprint(L"tpm_log_event(0x%llx, %lu, %lu, \"%s\")->%r\n",
|
|
FullData, FullDataSize, v->pcr, v->name,
|
|
efi_status);
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
}
|
|
if (v->data && v->data_size && v->data != FullData) {
|
|
FreePool(v->data);
|
|
v->data = NULL;
|
|
v->data_size = 0;
|
|
}
|
|
v->data = FullData;
|
|
v->data_size = FullDataSize;
|
|
dprint(L"returning %r\n", efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Mirror a variable if it has an rtname, and preserve any
|
|
* EFI_SECURITY_VIOLATION status at the same time.
|
|
*/
|
|
static EFI_STATUS NONNULL(1)
|
|
maybe_mirror_one_mok_variable(struct mok_state_variable *v,
|
|
EFI_STATUS ret, BOOLEAN only_first)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
BOOLEAN present = FALSE;
|
|
|
|
if (v->rtname) {
|
|
if (!only_first && (v->flags & MOK_MIRROR_DELETE_FIRST)) {
|
|
dprint(L"deleting \"%s\"\n", v->rtname);
|
|
efi_status = LibDeleteVariable(v->rtname, v->guid);
|
|
dprint(L"LibDeleteVariable(\"%s\",...) => %r\n", v->rtname, efi_status);
|
|
}
|
|
|
|
efi_status = mirror_one_mok_variable(v, only_first);
|
|
if (EFI_ERROR(efi_status)) {
|
|
if (ret != EFI_SECURITY_VIOLATION)
|
|
ret = efi_status;
|
|
perror(L"Could not create %s: %r\n", v->rtname,
|
|
efi_status);
|
|
}
|
|
}
|
|
|
|
present = (v->data && v->data_size) ? TRUE : FALSE;
|
|
if (!present)
|
|
return ret;
|
|
|
|
if (v->data_size == sizeof(UINT8) && v->state) {
|
|
*v->state = v->data[0];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct mok_variable_config_entry {
|
|
CHAR8 name[256];
|
|
UINT64 data_size;
|
|
UINT8 data[];
|
|
};
|
|
|
|
EFI_STATUS import_one_mok_state(struct mok_state_variable *v,
|
|
BOOLEAN only_first)
|
|
{
|
|
EFI_STATUS ret = EFI_SUCCESS;
|
|
EFI_STATUS efi_status;
|
|
|
|
user_insecure_mode = 0;
|
|
ignore_db = 0;
|
|
|
|
UINT32 attrs = 0;
|
|
BOOLEAN delete = FALSE;
|
|
|
|
dprint(L"importing mok state for \"%s\"\n", v->name);
|
|
|
|
efi_status = get_variable_attr(v->name,
|
|
&v->data, &v->data_size,
|
|
*v->guid, &attrs);
|
|
if (efi_status == EFI_NOT_FOUND) {
|
|
v->data = NULL;
|
|
v->data_size = 0;
|
|
} else if (EFI_ERROR(efi_status)) {
|
|
perror(L"Could not verify %s: %r\n", v->name,
|
|
efi_status);
|
|
delete = TRUE;
|
|
} else {
|
|
if (!(attrs & v->yes_attr)) {
|
|
perror(L"Variable %s is missing attributes:\n",
|
|
v->name);
|
|
perror(L" 0x%08x should have 0x%08x set.\n",
|
|
attrs, v->yes_attr);
|
|
delete = TRUE;
|
|
}
|
|
if (attrs & v->no_attr) {
|
|
perror(L"Variable %s has incorrect attribute:\n",
|
|
v->name);
|
|
perror(L" 0x%08x should not have 0x%08x set.\n",
|
|
attrs, v->no_attr);
|
|
delete = TRUE;
|
|
}
|
|
}
|
|
if (delete == TRUE) {
|
|
perror(L"Deleting bad variable %s\n", v->name);
|
|
efi_status = LibDeleteVariable(v->name, v->guid);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to erase %s\n", v->name);
|
|
ret = EFI_SECURITY_VIOLATION;
|
|
}
|
|
FreePool(v->data);
|
|
v->data = NULL;
|
|
v->data_size = 0;
|
|
}
|
|
|
|
dprint(L"maybe mirroring \"%s\". original data:\n", v->name);
|
|
dhexdumpat(v->data, v->data_size, 0);
|
|
|
|
ret = maybe_mirror_one_mok_variable(v, ret, only_first);
|
|
dprint(L"returning %r\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Verify our non-volatile MoK state. This checks the variables above
|
|
* accessable and have valid attributes. If they don't, it removes
|
|
* them. If any of them can't be removed, our ability to do this is
|
|
* comprimized, so return EFI_SECURITY_VIOLATION.
|
|
*
|
|
* Any variable that isn't deleted and has ->measure == TRUE is then
|
|
* measured into the tpm.
|
|
*
|
|
* Any variable with a ->rtname element is then mirrored to a
|
|
* runtime-accessable version. The new ones won't be marked NV, so the OS
|
|
* can't modify them.
|
|
*/
|
|
EFI_STATUS import_mok_state(EFI_HANDLE image_handle)
|
|
{
|
|
UINTN i;
|
|
EFI_STATUS ret = EFI_SUCCESS;
|
|
EFI_STATUS efi_status;
|
|
|
|
user_insecure_mode = 0;
|
|
ignore_db = 0;
|
|
|
|
UINT64 config_sz = 0;
|
|
UINT8 *config_table = NULL;
|
|
size_t npages = 0;
|
|
struct mok_variable_config_entry config_template;
|
|
|
|
dprint(L"importing minimal mok state variables\n");
|
|
for (i = 0; mok_state_variables[i].name != NULL; i++) {
|
|
struct mok_state_variable *v = &mok_state_variables[i];
|
|
|
|
efi_status = import_one_mok_state(v, TRUE);
|
|
if (EFI_ERROR(efi_status)) {
|
|
dprint(L"import_one_mok_state(ih, \"%s\", TRUE): %r\n",
|
|
v->rtname);
|
|
/*
|
|
* don't clobber EFI_SECURITY_VIOLATION from some
|
|
* other variable in the list.
|
|
*/
|
|
if (ret != EFI_SECURITY_VIOLATION)
|
|
ret = efi_status;
|
|
}
|
|
|
|
if (v->data && v->data_size) {
|
|
config_sz += v->data_size;
|
|
config_sz += sizeof(config_template);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Alright, so we're going to copy these to a config table. The
|
|
* table is a packed array of N+1 struct mok_variable_config_entry
|
|
* items, with the last item having all zero's in name and
|
|
* data_size.
|
|
*/
|
|
if (config_sz) {
|
|
config_sz += sizeof(config_template);
|
|
npages = ALIGN_VALUE(config_sz, PAGE_SIZE) >> EFI_PAGE_SHIFT;
|
|
config_table = NULL;
|
|
efi_status = gBS->AllocatePages(AllocateAnyPages,
|
|
EfiRuntimeServicesData,
|
|
npages,
|
|
(EFI_PHYSICAL_ADDRESS *)&config_table);
|
|
if (EFI_ERROR(efi_status) || !config_table) {
|
|
console_print(L"Allocating %lu pages for mok config table failed: %r\n",
|
|
npages, efi_status);
|
|
config_table = NULL;
|
|
} else {
|
|
ZeroMem(config_table, npages << EFI_PAGE_SHIFT);
|
|
}
|
|
}
|
|
|
|
UINT8 *p = (UINT8 *)config_table;
|
|
for (i = 0; p && mok_state_variables[i].name != NULL; i++) {
|
|
struct mok_state_variable *v = &mok_state_variables[i];
|
|
|
|
ZeroMem(&config_template, sizeof(config_template));
|
|
strncpy(config_template.name, (CHAR8 *)v->rtname8, 255);
|
|
config_template.name[255] = '\0';
|
|
|
|
config_template.data_size = v->data_size;
|
|
|
|
CopyMem(p, &config_template, sizeof(config_template));
|
|
p += sizeof(config_template);
|
|
CopyMem(p, v->data, v->data_size);
|
|
p += v->data_size;
|
|
}
|
|
if (p) {
|
|
ZeroMem(&config_template, sizeof(config_template));
|
|
CopyMem(p, &config_template, sizeof(config_template));
|
|
|
|
efi_status = gBS->InstallConfigurationTable(&MOK_VARIABLE_STORE,
|
|
config_table);
|
|
if (EFI_ERROR(efi_status)) {
|
|
console_print(L"Couldn't install MoK configuration table\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is really just to make it easy for userland.
|
|
*/
|
|
dprint(L"importing full mok state variables\n");
|
|
for (i = 0; mok_state_variables[i].name != NULL; i++) {
|
|
struct mok_state_variable *v = &mok_state_variables[i];
|
|
|
|
import_one_mok_state(v, FALSE);
|
|
}
|
|
|
|
/*
|
|
* Enter MokManager if necessary. Any actual *changes* here will
|
|
* cause MokManager to demand a machine reboot, so this is safe to
|
|
* have after the entire loop.
|
|
*/
|
|
dprint(L"checking mok request\n");
|
|
efi_status = check_mok_request(image_handle);
|
|
dprint(L"mok returned %r\n", efi_status);
|
|
if (EFI_ERROR(efi_status)) {
|
|
/*
|
|
* don't clobber EFI_SECURITY_VIOLATION
|
|
*/
|
|
if (ret != EFI_SECURITY_VIOLATION)
|
|
ret = efi_status;
|
|
return ret;
|
|
}
|
|
|
|
dprint(L"returning %r\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
// vim:fenc=utf-8:tw=75:noet
|