mirror of
https://git.proxmox.com/git/efi-boot-shim
synced 2025-06-11 19:52:51 +00:00

This is needed for shim to verify itself when booting, to make sure that shim binaries can't be executed anymore after been revoked by SBAT. Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
1160 lines
33 KiB
C
1160 lines
33 KiB
C
// SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
/*
|
|
* pe.c - helper functions for pe binaries.
|
|
* Copyright Peter Jones <pjones@redhat.com>
|
|
*/
|
|
|
|
#include "shim.h"
|
|
#include "hexdump.h"
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/ocsp.h>
|
|
#include <openssl/pkcs12.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/ssl.h>
|
|
#include <openssl/x509.h>
|
|
#include <openssl/x509v3.h>
|
|
#include <openssl/rsa.h>
|
|
#include <openssl/dso.h>
|
|
|
|
#include <Library/BaseCryptLib.h>
|
|
|
|
/*
|
|
* Perform basic bounds checking of the intra-image pointers
|
|
*/
|
|
void *
|
|
ImageAddress (void *image, uint64_t size, uint64_t address)
|
|
{
|
|
/* ensure our local pointer isn't bigger than our size */
|
|
if (address > size)
|
|
return NULL;
|
|
|
|
/* Insure our math won't overflow */
|
|
if (UINT64_MAX - address < (uint64_t)(intptr_t)image)
|
|
return NULL;
|
|
|
|
/* return the absolute pointer */
|
|
return image + address;
|
|
}
|
|
|
|
/*
|
|
* Perform the actual relocation
|
|
*/
|
|
EFI_STATUS
|
|
relocate_coff (PE_COFF_LOADER_IMAGE_CONTEXT *context,
|
|
EFI_IMAGE_SECTION_HEADER *Section,
|
|
void *orig, void *data)
|
|
{
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBase, *RelocBaseEnd;
|
|
UINT64 Adjust;
|
|
UINT16 *Reloc, *RelocEnd;
|
|
char *Fixup, *FixupBase;
|
|
UINT16 *Fixup16;
|
|
UINT32 *Fixup32;
|
|
UINT64 *Fixup64;
|
|
int size = context->ImageSize;
|
|
void *ImageEnd = (char *)orig + size;
|
|
int n = 0;
|
|
|
|
/* Alright, so here's how this works:
|
|
*
|
|
* context->RelocDir gives us two things:
|
|
* - the VA the table of base relocation blocks are (maybe) to be
|
|
* mapped at (RelocDir->VirtualAddress)
|
|
* - the virtual size (RelocDir->Size)
|
|
*
|
|
* The .reloc section (Section here) gives us some other things:
|
|
* - the name! kind of. (Section->Name)
|
|
* - the virtual size (Section->VirtualSize), which should be the same
|
|
* as RelocDir->Size
|
|
* - the virtual address (Section->VirtualAddress)
|
|
* - the file section size (Section->SizeOfRawData), which is
|
|
* a multiple of OptHdr->FileAlignment. Only useful for image
|
|
* validation, not really useful for iteration bounds.
|
|
* - the file address (Section->PointerToRawData)
|
|
* - a bunch of stuff we don't use that's 0 in our binaries usually
|
|
* - Flags (Section->Characteristics)
|
|
*
|
|
* and then the thing that's actually at the file address is an array
|
|
* of EFI_IMAGE_BASE_RELOCATION structs with some values packed behind
|
|
* them. The SizeOfBlock field of this structure includes the
|
|
* structure itself, and adding it to that structure's address will
|
|
* yield the next entry in the array.
|
|
*/
|
|
RelocBase = ImageAddress(orig, size, Section->PointerToRawData);
|
|
/* RelocBaseEnd here is the address of the first entry /past/ the
|
|
* table. */
|
|
RelocBaseEnd = ImageAddress(orig, size, Section->PointerToRawData +
|
|
Section->Misc.VirtualSize);
|
|
|
|
if (!RelocBase && !RelocBaseEnd)
|
|
return EFI_SUCCESS;
|
|
|
|
if (!RelocBase || !RelocBaseEnd) {
|
|
perror(L"Reloc table overflows binary\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
Adjust = (UINTN)data - context->ImageAddress;
|
|
|
|
if (Adjust == 0)
|
|
return EFI_SUCCESS;
|
|
|
|
while (RelocBase < RelocBaseEnd) {
|
|
Reloc = (UINT16 *) ((char *) RelocBase + sizeof (EFI_IMAGE_BASE_RELOCATION));
|
|
|
|
if (RelocBase->SizeOfBlock == 0) {
|
|
perror(L"Reloc %d block size 0 is invalid\n", n);
|
|
return EFI_UNSUPPORTED;
|
|
} else if (RelocBase->SizeOfBlock > context->RelocDir->Size) {
|
|
perror(L"Reloc %d block size %d greater than reloc dir"
|
|
"size %d, which is invalid\n", n,
|
|
RelocBase->SizeOfBlock,
|
|
context->RelocDir->Size);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
RelocEnd = (UINT16 *) ((char *) RelocBase + RelocBase->SizeOfBlock);
|
|
if ((void *)RelocEnd < orig || (void *)RelocEnd > ImageEnd) {
|
|
perror(L"Reloc %d entry overflows binary\n", n);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
FixupBase = ImageAddress(data, size, RelocBase->VirtualAddress);
|
|
if (!FixupBase) {
|
|
perror(L"Reloc %d Invalid fixupbase\n", n);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
while (Reloc < RelocEnd) {
|
|
Fixup = FixupBase + (*Reloc & 0xFFF);
|
|
switch ((*Reloc) >> 12) {
|
|
case EFI_IMAGE_REL_BASED_ABSOLUTE:
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGH:
|
|
Fixup16 = (UINT16 *) Fixup;
|
|
*Fixup16 = (UINT16) (*Fixup16 + ((UINT16) ((UINT32) Adjust >> 16)));
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_LOW:
|
|
Fixup16 = (UINT16 *) Fixup;
|
|
*Fixup16 = (UINT16) (*Fixup16 + (UINT16) Adjust);
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGHLOW:
|
|
Fixup32 = (UINT32 *) Fixup;
|
|
*Fixup32 = *Fixup32 + (UINT32) Adjust;
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_DIR64:
|
|
Fixup64 = (UINT64 *) Fixup;
|
|
*Fixup64 = *Fixup64 + (UINT64) Adjust;
|
|
break;
|
|
|
|
default:
|
|
perror(L"Reloc %d Unknown relocation\n", n);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
Reloc += 1;
|
|
}
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION *) RelocEnd;
|
|
n++;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
#define check_size_line(data, datasize_in, hashbase, hashsize, l) ({ \
|
|
if ((unsigned long)hashbase > \
|
|
(unsigned long)data + datasize_in) { \
|
|
efi_status = EFI_INVALID_PARAMETER; \
|
|
perror(L"shim.c:%d Invalid hash base 0x%016x\n", l, \
|
|
hashbase); \
|
|
goto done; \
|
|
} \
|
|
if ((unsigned long)hashbase + hashsize > \
|
|
(unsigned long)data + datasize_in) { \
|
|
efi_status = EFI_INVALID_PARAMETER; \
|
|
perror(L"shim.c:%d Invalid hash size 0x%016x\n", l, \
|
|
hashsize); \
|
|
goto done; \
|
|
} \
|
|
})
|
|
#define check_size(d, ds, h, hs) check_size_line(d, ds, h, hs, __LINE__)
|
|
|
|
EFI_STATUS
|
|
get_section_vma (UINTN section_num,
|
|
char *buffer, size_t bufsz,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context,
|
|
char **basep, size_t *sizep,
|
|
EFI_IMAGE_SECTION_HEADER **sectionp)
|
|
{
|
|
EFI_IMAGE_SECTION_HEADER *sections = context->FirstSection;
|
|
EFI_IMAGE_SECTION_HEADER *section;
|
|
char *base = NULL, *end = NULL;
|
|
|
|
if (section_num >= context->NumberOfSections)
|
|
return EFI_NOT_FOUND;
|
|
|
|
if (context->FirstSection == NULL) {
|
|
perror(L"Invalid section %d requested\n", section_num);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
section = §ions[section_num];
|
|
|
|
base = ImageAddress (buffer, context->ImageSize, section->VirtualAddress);
|
|
end = ImageAddress (buffer, context->ImageSize,
|
|
section->VirtualAddress + section->Misc.VirtualSize - 1);
|
|
|
|
if (!(section->Characteristics & EFI_IMAGE_SCN_MEM_DISCARDABLE)) {
|
|
if (!base) {
|
|
perror(L"Section %d has invalid base address\n", section_num);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
if (!end) {
|
|
perror(L"Section %d has zero size\n", section_num);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
if (!(section->Characteristics & EFI_IMAGE_SCN_CNT_UNINITIALIZED_DATA) &&
|
|
(section->VirtualAddress < context->SizeOfHeaders ||
|
|
section->PointerToRawData < context->SizeOfHeaders)) {
|
|
perror(L"Section %d is inside image headers\n", section_num);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (end < base) {
|
|
perror(L"Section %d has negative size\n", section_num);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
*basep = base;
|
|
*sizep = end - base;
|
|
*sectionp = section;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
get_section_vma_by_name (char *name, size_t namesz,
|
|
char *buffer, size_t bufsz,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context,
|
|
char **basep, size_t *sizep,
|
|
EFI_IMAGE_SECTION_HEADER **sectionp)
|
|
{
|
|
UINTN i;
|
|
char namebuf[9];
|
|
|
|
if (!name || namesz == 0 || !buffer || bufsz < namesz || !context
|
|
|| !basep || !sizep || !sectionp)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
/*
|
|
* This code currently is only used for ".reloc\0\0" and
|
|
* ".sbat\0\0\0", and it doesn't know how to look up longer section
|
|
* names.
|
|
*/
|
|
if (namesz > 8)
|
|
return EFI_UNSUPPORTED;
|
|
|
|
SetMem(namebuf, sizeof(namebuf), 0);
|
|
CopyMem(namebuf, name, MIN(namesz, 8));
|
|
|
|
/*
|
|
* Copy the executable's sections to their desired offsets
|
|
*/
|
|
for (i = 0; i < context->NumberOfSections; i++) {
|
|
EFI_STATUS status;
|
|
EFI_IMAGE_SECTION_HEADER *section = NULL;
|
|
char *base = NULL;
|
|
size_t size = 0;
|
|
|
|
status = get_section_vma(i, buffer, bufsz, context, &base, &size, §ion);
|
|
if (!EFI_ERROR(status)) {
|
|
if (CompareMem(section->Name, namebuf, 8) == 0) {
|
|
*basep = base;
|
|
*sizep = size;
|
|
*sectionp = section;
|
|
return EFI_SUCCESS;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
switch(status) {
|
|
case EFI_NOT_FOUND:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/*
|
|
* Calculate the SHA1 and SHA256 hashes of a binary
|
|
*/
|
|
|
|
EFI_STATUS
|
|
generate_hash(char *data, unsigned int datasize_in,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context, UINT8 *sha256hash,
|
|
UINT8 *sha1hash)
|
|
{
|
|
unsigned int sha256ctxsize, sha1ctxsize;
|
|
unsigned int size = datasize_in;
|
|
void *sha256ctx = NULL, *sha1ctx = NULL;
|
|
char *hashbase;
|
|
unsigned int hashsize;
|
|
unsigned int SumOfBytesHashed, SumOfSectionBytes;
|
|
unsigned int index, pos;
|
|
unsigned int datasize;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
EFI_IMAGE_SECTION_HEADER *SectionHeader = NULL;
|
|
EFI_STATUS efi_status = EFI_SUCCESS;
|
|
EFI_IMAGE_DOS_HEADER *DosHdr = (void *)data;
|
|
unsigned int PEHdr_offset = 0;
|
|
|
|
size = datasize = datasize_in;
|
|
|
|
if (datasize <= sizeof (*DosHdr) ||
|
|
DosHdr->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
|
|
perror(L"Invalid signature\n");
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
PEHdr_offset = DosHdr->e_lfanew;
|
|
|
|
sha256ctxsize = Sha256GetContextSize();
|
|
sha256ctx = AllocatePool(sha256ctxsize);
|
|
|
|
sha1ctxsize = Sha1GetContextSize();
|
|
sha1ctx = AllocatePool(sha1ctxsize);
|
|
|
|
if (!sha256ctx || !sha1ctx) {
|
|
perror(L"Unable to allocate memory for hash context\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (!Sha256Init(sha256ctx) || !Sha1Init(sha1ctx)) {
|
|
perror(L"Unable to initialise hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash start to checksum */
|
|
hashbase = data;
|
|
hashsize = (char *)&context->PEHdr->Pe32.OptionalHeader.CheckSum -
|
|
hashbase;
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash post-checksum to start of certificate table */
|
|
hashbase = (char *)&context->PEHdr->Pe32.OptionalHeader.CheckSum +
|
|
sizeof (int);
|
|
hashsize = (char *)context->SecDir - hashbase;
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash end of certificate table to end of image header */
|
|
EFI_IMAGE_DATA_DIRECTORY *dd = context->SecDir + 1;
|
|
hashbase = (char *)dd;
|
|
hashsize = context->SizeOfHeaders - (unsigned long)((char *)dd - data);
|
|
if (hashsize > datasize_in) {
|
|
perror(L"Data Directory size %d is invalid\n", hashsize);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Sort sections */
|
|
SumOfBytesHashed = context->SizeOfHeaders;
|
|
|
|
/*
|
|
* XXX Do we need this here, or is it already done in all cases?
|
|
*/
|
|
if (context->NumberOfSections == 0 ||
|
|
context->FirstSection == NULL) {
|
|
uint16_t opthdrsz;
|
|
uint64_t addr;
|
|
uint16_t nsections;
|
|
EFI_IMAGE_SECTION_HEADER *section0, *sectionN;
|
|
|
|
nsections = context->PEHdr->Pe32.FileHeader.NumberOfSections;
|
|
opthdrsz = context->PEHdr->Pe32.FileHeader.SizeOfOptionalHeader;
|
|
|
|
/* Validate section0 is within image */
|
|
addr = PEHdr_offset + sizeof(UINT32)
|
|
+ sizeof(EFI_IMAGE_FILE_HEADER)
|
|
+ opthdrsz;
|
|
section0 = ImageAddress(data, datasize, addr);
|
|
if (!section0) {
|
|
perror(L"Malformed file header.\n");
|
|
perror(L"Image address for Section Header 0 is 0x%016llx\n",
|
|
addr);
|
|
perror(L"File size is 0x%016llx\n", datasize);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
|
|
/* Validate sectionN is within image */
|
|
addr += (uint64_t)(intptr_t)§ion0[nsections-1] -
|
|
(uint64_t)(intptr_t)section0;
|
|
sectionN = ImageAddress(data, datasize, addr);
|
|
if (!sectionN) {
|
|
perror(L"Malformed file header.\n");
|
|
perror(L"Image address for Section Header %d is 0x%016llx\n",
|
|
nsections - 1, addr);
|
|
perror(L"File size is 0x%016llx\n", datasize);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
|
|
context->NumberOfSections = nsections;
|
|
context->FirstSection = section0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new section table so we can sort them without
|
|
* modifying the image.
|
|
*/
|
|
SectionHeader = AllocateZeroPool (sizeof (EFI_IMAGE_SECTION_HEADER)
|
|
* context->NumberOfSections);
|
|
if (SectionHeader == NULL) {
|
|
perror(L"Unable to allocate section header\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Validate section locations and sizes, and sort the table into
|
|
* our newly allocated header table
|
|
*/
|
|
SumOfSectionBytes = 0;
|
|
Section = context->FirstSection;
|
|
for (index = 0; index < context->NumberOfSections; index++) {
|
|
EFI_IMAGE_SECTION_HEADER *SectionPtr;
|
|
char *base;
|
|
size_t size;
|
|
|
|
efi_status = get_section_vma(index, data, datasize, context,
|
|
&base, &size, &SectionPtr);
|
|
if (efi_status == EFI_NOT_FOUND)
|
|
break;
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Malformed section header\n");
|
|
goto done;
|
|
}
|
|
|
|
/* Validate section size is within image. */
|
|
if (SectionPtr->SizeOfRawData >
|
|
datasize - SumOfBytesHashed - SumOfSectionBytes) {
|
|
perror(L"Malformed section %d size\n", index);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
SumOfSectionBytes += SectionPtr->SizeOfRawData;
|
|
|
|
pos = index;
|
|
while ((pos > 0) && (Section->PointerToRawData < SectionHeader[pos - 1].PointerToRawData)) {
|
|
CopyMem (&SectionHeader[pos], &SectionHeader[pos - 1], sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
pos--;
|
|
}
|
|
CopyMem (&SectionHeader[pos], Section, sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Section += 1;
|
|
|
|
}
|
|
|
|
/* Hash the sections */
|
|
for (index = 0; index < context->NumberOfSections; index++) {
|
|
Section = &SectionHeader[index];
|
|
if (Section->SizeOfRawData == 0) {
|
|
continue;
|
|
}
|
|
|
|
hashbase = ImageAddress(data, size, Section->PointerToRawData);
|
|
if (!hashbase) {
|
|
perror(L"Malformed section header\n");
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
|
|
/* Verify hashsize within image. */
|
|
if (Section->SizeOfRawData >
|
|
datasize - Section->PointerToRawData) {
|
|
perror(L"Malformed section raw size %d\n", index);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
hashsize = (unsigned int) Section->SizeOfRawData;
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
SumOfBytesHashed += Section->SizeOfRawData;
|
|
}
|
|
|
|
/* Hash all remaining data up to SecDir if SecDir->Size is not 0 */
|
|
if (datasize > SumOfBytesHashed && context->SecDir->Size) {
|
|
hashbase = data + SumOfBytesHashed;
|
|
hashsize = datasize - context->SecDir->Size - SumOfBytesHashed;
|
|
|
|
if ((datasize - SumOfBytesHashed < context->SecDir->Size) ||
|
|
(SumOfBytesHashed + hashsize != context->SecDir->VirtualAddress)) {
|
|
perror(L"Malformed binary after Attribute Certificate Table\n");
|
|
console_print(L"datasize: %u SumOfBytesHashed: %u SecDir->Size: %lu\n",
|
|
datasize, SumOfBytesHashed, context->SecDir->Size);
|
|
console_print(L"hashsize: %u SecDir->VirtualAddress: 0x%08lx\n",
|
|
hashsize, context->SecDir->VirtualAddress);
|
|
efi_status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
#if 1
|
|
}
|
|
#else // we have to migrate to doing this later :/
|
|
SumOfBytesHashed += hashsize;
|
|
}
|
|
|
|
/* Hash all remaining data */
|
|
if (datasize > SumOfBytesHashed) {
|
|
hashbase = data + SumOfBytesHashed;
|
|
hashsize = datasize - SumOfBytesHashed;
|
|
|
|
check_size(data, datasize_in, hashbase, hashsize);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
perror(L"Unable to generate hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
SumOfBytesHashed += hashsize;
|
|
}
|
|
#endif
|
|
|
|
if (!(Sha256Final(sha256ctx, sha256hash)) ||
|
|
!(Sha1Final(sha1ctx, sha1hash))) {
|
|
perror(L"Unable to finalise hash\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
dprint(L"sha1 authenticode hash:\n");
|
|
dhexdumpat(sha1hash, SHA1_DIGEST_SIZE, 0);
|
|
dprint(L"sha256 authenticode hash:\n");
|
|
dhexdumpat(sha256hash, SHA256_DIGEST_SIZE, 0);
|
|
|
|
done:
|
|
if (SectionHeader)
|
|
FreePool(SectionHeader);
|
|
if (sha1ctx)
|
|
FreePool(sha1ctx);
|
|
if (sha256ctx)
|
|
FreePool(sha256ctx);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
/* here's a chart:
|
|
* i686 x86_64 aarch64
|
|
* 64-on-64: nyet yes yes
|
|
* 64-on-32: nyet yes nyet
|
|
* 32-on-32: yes yes no
|
|
*/
|
|
static int
|
|
allow_64_bit(void)
|
|
{
|
|
#if defined(__x86_64__) || defined(__aarch64__)
|
|
return 1;
|
|
#elif defined(__i386__) || defined(__i686__)
|
|
/* Right now blindly assuming the kernel will correctly detect this
|
|
* and /halt the system/ if you're not really on a 64-bit cpu */
|
|
if (in_protocol)
|
|
return 1;
|
|
return 0;
|
|
#else /* assuming everything else is 32-bit... */
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
allow_32_bit(void)
|
|
{
|
|
#if defined(__x86_64__)
|
|
#if defined(ALLOW_32BIT_KERNEL_ON_X64)
|
|
if (in_protocol)
|
|
return 1;
|
|
return 0;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
#elif defined(__i386__) || defined(__i686__)
|
|
return 1;
|
|
#elif defined(__aarch64__)
|
|
return 0;
|
|
#else /* assuming everything else is 32-bit... */
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
image_is_64_bit(EFI_IMAGE_OPTIONAL_HEADER_UNION *PEHdr)
|
|
{
|
|
/* .Magic is the same offset in all cases */
|
|
if (PEHdr->Pe32Plus.OptionalHeader.Magic
|
|
== EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const UINT16 machine_type =
|
|
#if defined(__x86_64__)
|
|
IMAGE_FILE_MACHINE_X64;
|
|
#elif defined(__aarch64__)
|
|
IMAGE_FILE_MACHINE_ARM64;
|
|
#elif defined(__arm__)
|
|
IMAGE_FILE_MACHINE_ARMTHUMB_MIXED;
|
|
#elif defined(__i386__) || defined(__i486__) || defined(__i686__)
|
|
IMAGE_FILE_MACHINE_I386;
|
|
#elif defined(__ia64__)
|
|
IMAGE_FILE_MACHINE_IA64;
|
|
#else
|
|
#error this architecture is not supported by shim
|
|
#endif
|
|
|
|
static int
|
|
image_is_loadable(EFI_IMAGE_OPTIONAL_HEADER_UNION *PEHdr)
|
|
{
|
|
/* If the machine type doesn't match the binary, bail, unless
|
|
* we're in an allowed 64-on-32 scenario */
|
|
if (PEHdr->Pe32.FileHeader.Machine != machine_type) {
|
|
if (!(machine_type == IMAGE_FILE_MACHINE_I386 &&
|
|
PEHdr->Pe32.FileHeader.Machine == IMAGE_FILE_MACHINE_X64 &&
|
|
allow_64_bit())) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* If it's not a header type we recognize at all, bail */
|
|
switch (PEHdr->Pe32Plus.OptionalHeader.Magic) {
|
|
case EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC:
|
|
case EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC:
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* and now just check for general 64-vs-32 compatibility */
|
|
if (image_is_64_bit(PEHdr)) {
|
|
if (allow_64_bit())
|
|
return 1;
|
|
} else {
|
|
if (allow_32_bit())
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the binary header and grab appropriate information from it
|
|
*/
|
|
EFI_STATUS
|
|
read_header(void *data, unsigned int datasize,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context)
|
|
{
|
|
EFI_IMAGE_DOS_HEADER *DosHdr = data;
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *PEHdr = data;
|
|
unsigned long HeaderWithoutDataDir, SectionHeaderOffset, OptHeaderSize;
|
|
unsigned long FileAlignment = 0;
|
|
|
|
if (datasize < sizeof (PEHdr->Pe32)) {
|
|
perror(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE)
|
|
PEHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((char *)data + DosHdr->e_lfanew);
|
|
|
|
if (!image_is_loadable(PEHdr)) {
|
|
perror(L"Platform does not support this image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (image_is_64_bit(PEHdr)) {
|
|
context->NumberOfRvaAndSizes = PEHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes;
|
|
context->SizeOfHeaders = PEHdr->Pe32Plus.OptionalHeader.SizeOfHeaders;
|
|
context->ImageSize = PEHdr->Pe32Plus.OptionalHeader.SizeOfImage;
|
|
context->SectionAlignment = PEHdr->Pe32Plus.OptionalHeader.SectionAlignment;
|
|
FileAlignment = PEHdr->Pe32Plus.OptionalHeader.FileAlignment;
|
|
OptHeaderSize = sizeof(EFI_IMAGE_OPTIONAL_HEADER64);
|
|
} else {
|
|
context->NumberOfRvaAndSizes = PEHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes;
|
|
context->SizeOfHeaders = PEHdr->Pe32.OptionalHeader.SizeOfHeaders;
|
|
context->ImageSize = (UINT64)PEHdr->Pe32.OptionalHeader.SizeOfImage;
|
|
context->SectionAlignment = PEHdr->Pe32.OptionalHeader.SectionAlignment;
|
|
FileAlignment = PEHdr->Pe32.OptionalHeader.FileAlignment;
|
|
OptHeaderSize = sizeof(EFI_IMAGE_OPTIONAL_HEADER32);
|
|
}
|
|
|
|
if (FileAlignment % 2 != 0) {
|
|
perror(L"File Alignment is invalid (%d)\n", FileAlignment);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
if (FileAlignment == 0)
|
|
FileAlignment = 0x200;
|
|
if (context->SectionAlignment == 0)
|
|
context->SectionAlignment = PAGE_SIZE;
|
|
if (context->SectionAlignment < FileAlignment)
|
|
context->SectionAlignment = FileAlignment;
|
|
|
|
context->NumberOfSections = PEHdr->Pe32.FileHeader.NumberOfSections;
|
|
|
|
if (EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES < context->NumberOfRvaAndSizes) {
|
|
perror(L"Image header too small\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
HeaderWithoutDataDir = OptHeaderSize
|
|
- sizeof (EFI_IMAGE_DATA_DIRECTORY) * EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
|
|
if (((UINT32)PEHdr->Pe32.FileHeader.SizeOfOptionalHeader - HeaderWithoutDataDir) !=
|
|
context->NumberOfRvaAndSizes * sizeof (EFI_IMAGE_DATA_DIRECTORY)) {
|
|
perror(L"Image header overflows data directory\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
SectionHeaderOffset = DosHdr->e_lfanew
|
|
+ sizeof (UINT32)
|
|
+ sizeof (EFI_IMAGE_FILE_HEADER)
|
|
+ PEHdr->Pe32.FileHeader.SizeOfOptionalHeader;
|
|
if (((UINT32)context->ImageSize - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER
|
|
<= context->NumberOfSections) {
|
|
perror(L"Image sections overflow image size\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if ((context->SizeOfHeaders - SectionHeaderOffset) / EFI_IMAGE_SIZEOF_SECTION_HEADER
|
|
< (UINT32)context->NumberOfSections) {
|
|
perror(L"Image sections overflow section headers\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if ((((UINT8 *)PEHdr - (UINT8 *)data) + sizeof(EFI_IMAGE_OPTIONAL_HEADER_UNION)) > datasize) {
|
|
perror(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (PEHdr->Te.Signature != EFI_IMAGE_NT_SIGNATURE) {
|
|
perror(L"Unsupported image type\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (PEHdr->Pe32.FileHeader.Characteristics & EFI_IMAGE_FILE_RELOCS_STRIPPED) {
|
|
perror(L"Unsupported image - Relocations have been stripped\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
context->PEHdr = PEHdr;
|
|
|
|
if (image_is_64_bit(PEHdr)) {
|
|
context->ImageAddress = PEHdr->Pe32Plus.OptionalHeader.ImageBase;
|
|
context->EntryPoint = PEHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint;
|
|
context->RelocDir = &PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
|
context->SecDir = &PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
} else {
|
|
context->ImageAddress = PEHdr->Pe32.OptionalHeader.ImageBase;
|
|
context->EntryPoint = PEHdr->Pe32.OptionalHeader.AddressOfEntryPoint;
|
|
context->RelocDir = &PEHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
|
context->SecDir = &PEHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
}
|
|
|
|
context->FirstSection = (EFI_IMAGE_SECTION_HEADER *)((char *)PEHdr + PEHdr->Pe32.FileHeader.SizeOfOptionalHeader + sizeof(UINT32) + sizeof(EFI_IMAGE_FILE_HEADER));
|
|
|
|
if (context->ImageSize < context->SizeOfHeaders) {
|
|
perror(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if ((unsigned long)((UINT8 *)context->SecDir - (UINT8 *)data) >
|
|
(datasize - sizeof(EFI_IMAGE_DATA_DIRECTORY))) {
|
|
perror(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (context->SecDir->VirtualAddress > datasize ||
|
|
(context->SecDir->VirtualAddress == datasize &&
|
|
context->SecDir->Size > 0)) {
|
|
perror(L"Malformed security header\n");
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
handle_sbat(char *SBATBase, size_t SBATSize)
|
|
{
|
|
unsigned int i;
|
|
EFI_STATUS efi_status;
|
|
size_t n;
|
|
struct sbat_entry **entries = NULL;
|
|
char *sbat_data;
|
|
size_t sbat_size;
|
|
|
|
if (list_empty(&sbat_var))
|
|
return EFI_SUCCESS;
|
|
|
|
if (SBATBase == NULL || SBATSize == 0) {
|
|
dprint(L"No .sbat section data\n");
|
|
return EFI_SECURITY_VIOLATION;
|
|
}
|
|
|
|
sbat_size = SBATSize + 1;
|
|
sbat_data = AllocatePool(sbat_size);
|
|
if (!sbat_data) {
|
|
console_print(L"Failed to allocate .sbat section buffer\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
CopyMem(sbat_data, SBATBase, SBATSize);
|
|
sbat_data[SBATSize] = '\0';
|
|
|
|
efi_status = parse_sbat(sbat_data, sbat_size, &n, &entries);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Could not parse .sbat section data: %r\n", efi_status);
|
|
goto err;
|
|
}
|
|
|
|
dprint(L"SBAT section data\n");
|
|
for (i = 0; i < n; i++) {
|
|
dprint(L"%a, %a, %a, %a, %a, %a\n",
|
|
entries[i]->component_name,
|
|
entries[i]->component_generation,
|
|
entries[i]->vendor_name,
|
|
entries[i]->vendor_package_name,
|
|
entries[i]->vendor_version,
|
|
entries[i]->vendor_url);
|
|
}
|
|
|
|
efi_status = verify_sbat(n, entries);
|
|
|
|
cleanup_sbat_entries(n, entries);
|
|
|
|
err:
|
|
FreePool(sbat_data);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Once the image has been loaded it needs to be validated and relocated
|
|
*/
|
|
EFI_STATUS
|
|
handle_image (void *data, unsigned int datasize,
|
|
EFI_LOADED_IMAGE *li,
|
|
EFI_IMAGE_ENTRY_POINT *entry_point,
|
|
EFI_PHYSICAL_ADDRESS *alloc_address,
|
|
UINTN *alloc_pages)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
char *buffer;
|
|
int i;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
char *base, *end;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT context;
|
|
unsigned int alignment, alloc_size;
|
|
int found_entry_point = 0;
|
|
UINT8 sha1hash[SHA1_DIGEST_SIZE];
|
|
UINT8 sha256hash[SHA256_DIGEST_SIZE];
|
|
|
|
/*
|
|
* The binary header contains relevant context and section pointers
|
|
*/
|
|
efi_status = read_header(data, datasize, &context);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to read header: %r\n", efi_status);
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* We only need to verify the binary if we're in secure mode
|
|
*/
|
|
efi_status = generate_hash(data, datasize, &context, sha256hash,
|
|
sha1hash);
|
|
if (EFI_ERROR(efi_status))
|
|
return efi_status;
|
|
|
|
/* Measure the binary into the TPM */
|
|
#ifdef REQUIRE_TPM
|
|
efi_status =
|
|
#endif
|
|
tpm_log_pe((EFI_PHYSICAL_ADDRESS)(UINTN)data, datasize,
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)context.ImageAddress,
|
|
li->FilePath, sha1hash, 4);
|
|
#ifdef REQUIRE_TPM
|
|
if (efi_status != EFI_SUCCESS) {
|
|
return efi_status;
|
|
}
|
|
#endif
|
|
|
|
/* The spec says, uselessly, of SectionAlignment:
|
|
* =====
|
|
* The alignment (in bytes) of sections when they are loaded into
|
|
* memory. It must be greater than or equal to FileAlignment. The
|
|
* default is the page size for the architecture.
|
|
* =====
|
|
* Which doesn't tell you whose responsibility it is to enforce the
|
|
* "default", or when. It implies that the value in the field must
|
|
* be > FileAlignment (also poorly defined), but it appears visual
|
|
* studio will happily write 512 for FileAlignment (its default) and
|
|
* 0 for SectionAlignment, intending to imply PAGE_SIZE.
|
|
*
|
|
* We only support one page size, so if it's zero, nerf it to 4096.
|
|
*/
|
|
alignment = context.SectionAlignment;
|
|
if (!alignment)
|
|
alignment = 4096;
|
|
|
|
alloc_size = ALIGN_VALUE(context.ImageSize + context.SectionAlignment,
|
|
PAGE_SIZE);
|
|
*alloc_pages = alloc_size / PAGE_SIZE;
|
|
|
|
efi_status = gBS->AllocatePages(AllocateAnyPages, EfiLoaderCode,
|
|
*alloc_pages, alloc_address);
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Failed to allocate image buffer\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
buffer = (void *)ALIGN_VALUE((unsigned long)*alloc_address, alignment);
|
|
|
|
CopyMem(buffer, data, context.SizeOfHeaders);
|
|
|
|
*entry_point = ImageAddress(buffer, context.ImageSize, context.EntryPoint);
|
|
if (!*entry_point) {
|
|
perror(L"Entry point is invalid\n");
|
|
gBS->FreePages(*alloc_address, *alloc_pages);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
char *RelocBase, *RelocBaseEnd;
|
|
/*
|
|
* These are relative virtual addresses, so we have to check them
|
|
* against the image size, not the data size.
|
|
*/
|
|
RelocBase = ImageAddress(buffer, context.ImageSize,
|
|
context.RelocDir->VirtualAddress);
|
|
/*
|
|
* RelocBaseEnd here is the address of the last byte of the table
|
|
*/
|
|
RelocBaseEnd = ImageAddress(buffer, context.ImageSize,
|
|
context.RelocDir->VirtualAddress +
|
|
context.RelocDir->Size - 1);
|
|
|
|
EFI_IMAGE_SECTION_HEADER *RelocSection = NULL;
|
|
|
|
char *SBATBase = NULL;
|
|
size_t SBATSize = 0;
|
|
|
|
/*
|
|
* Copy the executable's sections to their desired offsets
|
|
*/
|
|
Section = context.FirstSection;
|
|
for (i = 0; i < context.NumberOfSections; i++, Section++) {
|
|
/* Don't try to copy discardable sections with zero size */
|
|
if ((Section->Characteristics & EFI_IMAGE_SCN_MEM_DISCARDABLE) &&
|
|
!Section->Misc.VirtualSize)
|
|
continue;
|
|
|
|
base = ImageAddress (buffer, context.ImageSize,
|
|
Section->VirtualAddress);
|
|
end = ImageAddress (buffer, context.ImageSize,
|
|
Section->VirtualAddress
|
|
+ Section->Misc.VirtualSize - 1);
|
|
|
|
if (end < base) {
|
|
perror(L"Section %d has negative size\n", i);
|
|
gBS->FreePages(*alloc_address, *alloc_pages);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Section->VirtualAddress <= context.EntryPoint &&
|
|
(Section->VirtualAddress + Section->SizeOfRawData - 1)
|
|
> context.EntryPoint)
|
|
found_entry_point++;
|
|
|
|
/* We do want to process .reloc, but it's often marked
|
|
* discardable, so we don't want to memcpy it. */
|
|
if (CompareMem(Section->Name, ".reloc\0\0", 8) == 0) {
|
|
if (RelocSection) {
|
|
perror(L"Image has multiple relocation sections\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
/* If it has nonzero sizes, and our bounds check
|
|
* made sense, and the VA and size match RelocDir's
|
|
* versions, then we believe in this section table. */
|
|
if (Section->SizeOfRawData &&
|
|
Section->Misc.VirtualSize &&
|
|
base && end &&
|
|
RelocBase == base &&
|
|
RelocBaseEnd == end) {
|
|
RelocSection = Section;
|
|
}
|
|
} else if (CompareMem(Section->Name, ".sbat\0\0\0", 8) == 0) {
|
|
if (SBATBase || SBATSize) {
|
|
perror(L"Image has multiple resource sections\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Section->NumberOfRelocations != 0 ||
|
|
Section->PointerToRelocations != 0) {
|
|
perror(L"SBAT section has relocations\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
/* If it has nonzero size, and our bounds check made
|
|
* sense, sizes match, then we believe it's okay. */
|
|
if (Section->SizeOfRawData &&
|
|
Section->SizeOfRawData == Section->Misc.VirtualSize &&
|
|
base && end) {
|
|
SBATBase = base;
|
|
/* +1 because of size vs last byte location */
|
|
SBATSize = end - base + 1;
|
|
}
|
|
}
|
|
|
|
if (Section->Characteristics & EFI_IMAGE_SCN_MEM_DISCARDABLE) {
|
|
continue;
|
|
}
|
|
|
|
if (!base) {
|
|
perror(L"Section %d has invalid base address\n", i);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
if (!end) {
|
|
perror(L"Section %d has zero size\n", i);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (!(Section->Characteristics & EFI_IMAGE_SCN_CNT_UNINITIALIZED_DATA) &&
|
|
(Section->VirtualAddress < context.SizeOfHeaders ||
|
|
Section->PointerToRawData < context.SizeOfHeaders)) {
|
|
perror(L"Section %d is inside image headers\n", i);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Section->Characteristics & EFI_IMAGE_SCN_CNT_UNINITIALIZED_DATA) {
|
|
ZeroMem(base, Section->Misc.VirtualSize);
|
|
} else {
|
|
if (Section->PointerToRawData < context.SizeOfHeaders) {
|
|
perror(L"Section %d is inside image headers\n", i);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Section->SizeOfRawData > 0)
|
|
CopyMem(base, data + Section->PointerToRawData,
|
|
Section->SizeOfRawData);
|
|
|
|
if (Section->SizeOfRawData < Section->Misc.VirtualSize)
|
|
ZeroMem(base + Section->SizeOfRawData,
|
|
Section->Misc.VirtualSize - Section->SizeOfRawData);
|
|
}
|
|
}
|
|
|
|
if (secure_mode ()) {
|
|
efi_status = handle_sbat(SBATBase, SBATSize);
|
|
|
|
if (!EFI_ERROR(efi_status))
|
|
efi_status = verify_buffer(data, datasize,
|
|
&context, sha256hash, sha1hash);
|
|
|
|
if (EFI_ERROR(efi_status)) {
|
|
if (verbose)
|
|
console_print(L"Verification failed: %r\n", efi_status);
|
|
else
|
|
console_error(L"Verification failed", efi_status);
|
|
return efi_status;
|
|
} else {
|
|
if (verbose)
|
|
console_print(L"Verification succeeded\n");
|
|
}
|
|
}
|
|
|
|
if (context.NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
|
|
perror(L"Image has no relocation entry\n");
|
|
FreePool(buffer);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (context.RelocDir->Size && RelocSection) {
|
|
/*
|
|
* Run the relocation fixups
|
|
*/
|
|
efi_status = relocate_coff(&context, RelocSection, data,
|
|
buffer);
|
|
|
|
if (EFI_ERROR(efi_status)) {
|
|
perror(L"Relocation failed: %r\n", efi_status);
|
|
FreePool(buffer);
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* grub needs to know its location and size in memory, so fix up
|
|
* the loaded image protocol values
|
|
*/
|
|
li->ImageBase = buffer;
|
|
li->ImageSize = context.ImageSize;
|
|
|
|
/* Pass the load options to the second stage loader */
|
|
if ( load_options ) {
|
|
li->LoadOptions = load_options;
|
|
li->LoadOptionsSize = load_options_size;
|
|
}
|
|
|
|
if (!found_entry_point) {
|
|
perror(L"Entry point is not within sections\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
if (found_entry_point > 1) {
|
|
perror(L"%d sections contain entry point\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
// vim:fenc=utf-8:tw=75:noet
|