efi-boot-shim/fallback.c
Peter Jones aedb8470bd Fix up a bunch of our license statements and add SPDX most places
The license statements in our source files were getting to be a giant
mess, and mostly they all just say the same thing.  I've switched most
of it to SPDX labels, but left copyright statements in place (where they
were not obviously incorrect copy-paste jobs that I did...).

If there's some change here you don't think is valid, let me know and
we can fix it up together.

Signed-off-by: Peter Jones <pjones@redhat.com>
2021-02-16 09:12:48 +01:00

1054 lines
26 KiB
C

// SPDX-License-Identifier: BSD-2-Clause-Patent
/*
* Copyright Red Hat, Inc.
* Copyright Peter Jones <pjones@redhat.com>
*/
#include <efi.h>
#include <efilib.h>
#include "shim.h"
EFI_LOADED_IMAGE *this_image = NULL;
int
get_fallback_verbose(void)
{
UINT8 *data = NULL;
UINTN dataSize = 0;
EFI_STATUS efi_status;
unsigned int i;
static int state = -1;
if (state != -1)
return state;
efi_status = get_variable(L"FALLBACK_VERBOSE",
&data, &dataSize, SHIM_LOCK_GUID);
if (EFI_ERROR(efi_status)) {
state = 0;
return state;
}
state = 0;
for (i = 0; i < dataSize; i++) {
if (data[i]) {
state = 1;
break;
}
}
if (data)
FreePool(data);
return state;
}
#define VerbosePrintUnprefixed(fmt, ...) \
({ \
UINTN ret_ = 0; \
if (get_fallback_verbose()) \
ret_ = console_print((fmt), ##__VA_ARGS__); \
ret_; \
})
#define VerbosePrint(fmt, ...) \
({ \
UINTN line_ = __LINE__ - 2; \
UINTN ret_ = 0; \
if (get_fallback_verbose()) { \
console_print(L"%a:%d: ", __func__, line_); \
ret_ = console_print((fmt), ##__VA_ARGS__); \
} \
ret_; \
})
static EFI_STATUS
FindSubDevicePath(EFI_DEVICE_PATH *In, UINT8 Type, UINT8 SubType,
EFI_DEVICE_PATH **Out)
{
EFI_DEVICE_PATH *dp = In;
if (!In || !Out)
return EFI_INVALID_PARAMETER;
CHAR16 *dps = DevicePathToStr(In);
VerbosePrint(L"input device path: \"%s\"\n", dps);
FreePool(dps);
for (dp = In; !IsDevicePathEnd(dp); dp = NextDevicePathNode(dp)) {
if (DevicePathType(dp) == Type &&
DevicePathSubType(dp) == SubType) {
dps = DevicePathToStr(dp);
VerbosePrint(L"sub-path (%hhd,%hhd): \"%s\"\n",
Type, SubType, dps);
FreePool(dps);
*Out = DuplicateDevicePath(dp);
if (!*Out)
return EFI_OUT_OF_RESOURCES;
return EFI_SUCCESS;
}
}
*Out = NULL;
return EFI_NOT_FOUND;
}
static EFI_STATUS
get_file_size(EFI_FILE_HANDLE fh, UINTN *retsize)
{
EFI_STATUS efi_status;
void *buffer = NULL;
UINTN bs = 0;
/* The API here is "Call it once with bs=0, it fills in bs,
* then allocate a buffer and ask again to get it filled. */
efi_status = fh->GetInfo(fh, &EFI_FILE_INFO_GUID, &bs, NULL);
if (EFI_ERROR(efi_status) && efi_status != EFI_BUFFER_TOO_SMALL)
return efi_status;
if (bs == 0)
return EFI_SUCCESS;
buffer = AllocateZeroPool(bs);
if (!buffer) {
console_print(L"Could not allocate memory\n");
return EFI_OUT_OF_RESOURCES;
}
efi_status = fh->GetInfo(fh, &EFI_FILE_INFO_GUID, &bs, buffer);
/* This checks *either* the error from the first GetInfo, if it isn't
* the EFI_BUFFER_TOO_SMALL we're expecting, or the second GetInfo
* call in *any* case. */
if (EFI_ERROR(efi_status)) {
console_print(L"Could not get file info: %r\n", efi_status);
if (buffer)
FreePool(buffer);
return efi_status;
}
EFI_FILE_INFO *fi = buffer;
*retsize = fi->FileSize;
FreePool(buffer);
return EFI_SUCCESS;
}
EFI_STATUS
read_file(EFI_FILE_HANDLE fh, CHAR16 *fullpath, CHAR16 **buffer, UINT64 *bs)
{
EFI_FILE_HANDLE fh2;
EFI_STATUS efi_status;
efi_status = fh->Open(fh, &fh2, fullpath, EFI_FILE_READ_ONLY, 0);
if (EFI_ERROR(efi_status)) {
console_print(L"Couldn't open \"%s\": %r\n", fullpath, efi_status);
return efi_status;
}
UINTN len = 0;
CHAR16 *b = NULL;
efi_status = get_file_size(fh2, &len);
if (EFI_ERROR(efi_status)) {
console_print(L"Could not get file size for \"%s\": %r\n",
fullpath, efi_status);
fh2->Close(fh2);
return efi_status;
}
if (len > 1024 * PAGE_SIZE) {
fh2->Close(fh2);
return EFI_BAD_BUFFER_SIZE;
}
b = AllocateZeroPool(len + 2);
if (!buffer) {
console_print(L"Could not allocate memory\n");
fh2->Close(fh2);
return EFI_OUT_OF_RESOURCES;
}
efi_status = fh->Read(fh, &len, b);
if (EFI_ERROR(efi_status)) {
FreePool(buffer);
fh2->Close(fh2);
console_print(L"Could not read file: %r\n", efi_status);
return efi_status;
}
*buffer = b;
*bs = len;
fh2->Close(fh2);
return EFI_SUCCESS;
}
EFI_STATUS
make_full_path(CHAR16 *dirname, CHAR16 *filename, CHAR16 **out, UINT64 *outlen)
{
UINT64 len;
len = StrLen(L"\\EFI\\") + StrLen(dirname)
+ StrLen(L"\\") + StrLen(filename)
+ 2;
CHAR16 *fullpath = AllocateZeroPool(len*sizeof(CHAR16));
if (!fullpath) {
console_print(L"Could not allocate memory\n");
return EFI_OUT_OF_RESOURCES;
}
StrCat(fullpath, L"\\EFI\\");
StrCat(fullpath, dirname);
StrCat(fullpath, L"\\");
StrCat(fullpath, filename);
*out = fullpath;
*outlen = len;
return EFI_SUCCESS;
}
CHAR16 *bootorder = NULL;
int nbootorder = 0;
EFI_DEVICE_PATH *first_new_option = NULL;
VOID *first_new_option_args = NULL;
UINTN first_new_option_size = 0;
EFI_STATUS
add_boot_option(EFI_DEVICE_PATH *hddp, EFI_DEVICE_PATH *fulldp,
CHAR16 *filename, CHAR16 *label, CHAR16 *arguments)
{
static int i = 0;
CHAR16 varname[] = L"Boot0000";
CHAR16 hexmap[] = L"0123456789ABCDEF";
EFI_STATUS efi_status;
for(; i <= 0xffff; i++) {
varname[4] = hexmap[(i & 0xf000) >> 12];
varname[5] = hexmap[(i & 0x0f00) >> 8];
varname[6] = hexmap[(i & 0x00f0) >> 4];
varname[7] = hexmap[(i & 0x000f) >> 0];
void *var = LibGetVariable(varname, &GV_GUID);
if (!var) {
int size = sizeof(UINT32) + sizeof (UINT16) +
StrLen(label)*2 + 2 + DevicePathSize(hddp) +
StrLen(arguments) * 2;
CHAR8 *data = AllocateZeroPool(size + 2);
CHAR8 *cursor = data;
*(UINT32 *)cursor = LOAD_OPTION_ACTIVE;
cursor += sizeof (UINT32);
*(UINT16 *)cursor = DevicePathSize(hddp);
cursor += sizeof (UINT16);
StrCpy((CHAR16 *)cursor, label);
cursor += StrLen(label)*2 + 2;
CopyMem(cursor, hddp, DevicePathSize(hddp));
cursor += DevicePathSize(hddp);
StrCpy((CHAR16 *)cursor, arguments);
console_print(L"Creating boot entry \"%s\" with label \"%s\" "
L"for file \"%s\"\n",
varname, label, filename);
if (!first_new_option) {
first_new_option = DuplicateDevicePath(fulldp);
first_new_option_args = arguments;
first_new_option_size = StrLen(arguments) * sizeof (CHAR16);
}
efi_status = gRT->SetVariable(varname, &GV_GUID,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
size, data);
FreePool(data);
if (EFI_ERROR(efi_status)) {
console_print(L"Could not create variable: %r\n",
efi_status);
return efi_status;
}
CHAR16 *newbootorder = AllocateZeroPool(sizeof (CHAR16)
* (nbootorder + 1));
if (!newbootorder)
return EFI_OUT_OF_RESOURCES;
int j = 0;
newbootorder[0] = i & 0xffff;
if (nbootorder) {
for (j = 0; j < nbootorder; j++)
newbootorder[j+1] = bootorder[j];
FreePool(bootorder);
}
bootorder = newbootorder;
nbootorder += 1;
#ifdef DEBUG_FALLBACK
console_print(L"nbootorder: %d\nBootOrder: ",
nbootorder);
for (j = 0 ; j < nbootorder ; j++)
console_print(L"%04x ", bootorder[j]);
console_print(L"\n");
#endif
return EFI_SUCCESS;
}
}
return EFI_OUT_OF_RESOURCES;
}
/*
* AMI BIOS (e.g, Intel NUC5i3MYHE) may automatically hide and patch BootXXXX
* variables with ami_masked_device_path_guid. We can get the valid device path
* if just skipping it and its next end path.
*/
static EFI_GUID ami_masked_device_path_guid = {
0x99e275e7, 0x75a0, 0x4b37,
{ 0xa2, 0xe6, 0xc5, 0x38, 0x5e, 0x6c, 0x0, 0xcb }
};
static unsigned int
calc_masked_boot_option_size(unsigned int size)
{
return size + sizeof(EFI_DEVICE_PATH) +
sizeof(ami_masked_device_path_guid) + sizeof(EFI_DEVICE_PATH);
}
static int
check_masked_boot_option(CHAR8 *candidate, unsigned int candidate_size,
CHAR8 *data, unsigned int data_size)
{
/*
* The patched BootXXXX variables contain a hardware device path and
* an end path, preceding the real device path.
*/
if (calc_masked_boot_option_size(data_size) != candidate_size)
return 1;
CHAR8 *cursor = candidate;
/* Check whether the BootXXXX is patched */
cursor += sizeof(UINT32) + sizeof(UINT16);
cursor += StrSize((CHAR16 *)cursor);
unsigned int min_valid_size = cursor - candidate + sizeof(EFI_DEVICE_PATH);
if (candidate_size <= min_valid_size)
return 1;
EFI_DEVICE_PATH *dp = (EFI_DEVICE_PATH *)cursor;
unsigned int node_size = DevicePathNodeLength(dp) - sizeof(EFI_DEVICE_PATH);
min_valid_size += node_size;
if (candidate_size <= min_valid_size ||
DevicePathType(dp) != HARDWARE_DEVICE_PATH ||
DevicePathSubType(dp) != HW_VENDOR_DP ||
node_size != sizeof(ami_masked_device_path_guid) ||
CompareGuid((EFI_GUID *)(cursor + sizeof(EFI_DEVICE_PATH)),
&ami_masked_device_path_guid))
return 1;
/* Check whether the patched guid is followed by an end path */
min_valid_size += sizeof(EFI_DEVICE_PATH);
if (candidate_size <= min_valid_size)
return 1;
dp = NextDevicePathNode(dp);
if (!IsDevicePathEnd(dp))
return 1;
/*
* OK. We may really get a masked BootXXXX variable. The next
* step is to test whether it is hidden.
*/
UINT32 attrs = *(UINT32 *)candidate;
#ifndef LOAD_OPTION_HIDDEN
# define LOAD_OPTION_HIDDEN 0x00000008
#endif
if (!(attrs & LOAD_OPTION_HIDDEN))
return 1;
attrs &= ~LOAD_OPTION_HIDDEN;
/* Compare the field Attributes */
if (attrs != *(UINT32 *)data)
return 1;
/* Compare the field FilePathListLength */
data += sizeof(UINT32);
candidate += sizeof(UINT32);
if (calc_masked_boot_option_size(*(UINT16 *)data) !=
*(UINT16 *)candidate)
return 1;
/* Compare the field Description */
data += sizeof(UINT16);
candidate += sizeof(UINT16);
if (CompareMem(candidate, data, cursor - candidate))
return 1;
/* Compare the filed FilePathList */
cursor = (CHAR8 *)NextDevicePathNode(dp);
data += sizeof(UINT16);
data += StrSize((CHAR16 *)data);
return CompareMem(cursor, data, candidate_size - min_valid_size);
}
EFI_STATUS
find_boot_option(EFI_DEVICE_PATH *dp, EFI_DEVICE_PATH *fulldp,
CHAR16 *filename, CHAR16 *label, CHAR16 *arguments,
UINT16 *optnum)
{
unsigned int size = sizeof(UINT32) + sizeof (UINT16) +
StrLen(label)*2 + 2 + DevicePathSize(dp) +
StrLen(arguments) * 2;
CHAR8 *data = AllocateZeroPool(size + 2);
if (!data)
return EFI_OUT_OF_RESOURCES;
CHAR8 *cursor = data;
*(UINT32 *)cursor = LOAD_OPTION_ACTIVE;
cursor += sizeof (UINT32);
*(UINT16 *)cursor = DevicePathSize(dp);
cursor += sizeof (UINT16);
StrCpy((CHAR16 *)cursor, label);
cursor += StrLen(label)*2 + 2;
CopyMem(cursor, dp, DevicePathSize(dp));
cursor += DevicePathSize(dp);
StrCpy((CHAR16 *)cursor, arguments);
int i = 0;
CHAR16 varname[] = L"Boot0000";
CHAR16 hexmap[] = L"0123456789ABCDEF";
EFI_STATUS efi_status;
UINTN max_candidate_size = calc_masked_boot_option_size(size);
CHAR8 *candidate = AllocateZeroPool(max_candidate_size);
if (!candidate) {
FreePool(data);
return EFI_OUT_OF_RESOURCES;
}
for(i = 0; i < nbootorder && i < 0x10000; i++) {
varname[4] = hexmap[(bootorder[i] & 0xf000) >> 12];
varname[5] = hexmap[(bootorder[i] & 0x0f00) >> 8];
varname[6] = hexmap[(bootorder[i] & 0x00f0) >> 4];
varname[7] = hexmap[(bootorder[i] & 0x000f) >> 0];
UINTN candidate_size = max_candidate_size;
efi_status = gRT->GetVariable(varname, &GV_GUID, NULL,
&candidate_size, candidate);
if (EFI_ERROR(efi_status))
continue;
if (candidate_size != size) {
if (check_masked_boot_option(candidate, candidate_size,
data, size))
continue;
} else if (CompareMem(candidate, data, size))
continue;
VerbosePrint(L"Found boot entry \"%s\" with label \"%s\" "
L"for file \"%s\"\n", varname, label, filename);
/* at this point, we have duplicate data. */
if (!first_new_option) {
first_new_option = DuplicateDevicePath(fulldp);
first_new_option_args = arguments;
first_new_option_size = StrLen(arguments) * sizeof (CHAR16);
}
*optnum = i;
FreePool(candidate);
FreePool(data);
return EFI_SUCCESS;
}
FreePool(candidate);
FreePool(data);
return EFI_NOT_FOUND;
}
EFI_STATUS
set_boot_order(void)
{
CHAR16 *oldbootorder;
UINTN size;
oldbootorder = LibGetVariableAndSize(L"BootOrder", &GV_GUID, &size);
if (oldbootorder) {
nbootorder = size / sizeof (CHAR16);
bootorder = oldbootorder;
}
return EFI_SUCCESS;
}
EFI_STATUS
update_boot_order(void)
{
UINTN size;
UINTN len = 0;
CHAR16 *newbootorder = NULL;
EFI_STATUS efi_status;
size = nbootorder * sizeof(CHAR16);
newbootorder = AllocateZeroPool(size);
if (!newbootorder)
return EFI_OUT_OF_RESOURCES;
CopyMem(newbootorder, bootorder, size);
VerbosePrint(L"nbootorder: %d\nBootOrder: ", size / sizeof (CHAR16));
UINTN j;
for (j = 0 ; j < size / sizeof (CHAR16); j++)
VerbosePrintUnprefixed(L"%04x ", newbootorder[j]);
console_print(L"\n");
efi_status = gRT->GetVariable(L"BootOrder", &GV_GUID, NULL, &len, NULL);
if (efi_status == EFI_BUFFER_TOO_SMALL)
LibDeleteVariable(L"BootOrder", &GV_GUID);
efi_status = gRT->SetVariable(L"BootOrder", &GV_GUID,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
size, newbootorder);
FreePool(newbootorder);
return efi_status;
}
EFI_STATUS
add_to_boot_list(CHAR16 *dirname, CHAR16 *filename, CHAR16 *label, CHAR16 *arguments)
{
CHAR16 *fullpath = NULL;
UINT64 pathlen = 0;
EFI_STATUS efi_status;
efi_status = make_full_path(dirname, filename, &fullpath, &pathlen);
if (EFI_ERROR(efi_status))
return efi_status;
EFI_DEVICE_PATH *full_device_path = NULL;
EFI_DEVICE_PATH *dp = NULL;
CHAR16 *dps;
full_device_path = FileDevicePath(this_image->DeviceHandle, fullpath);
if (!full_device_path) {
efi_status = EFI_OUT_OF_RESOURCES;
goto err;
}
dps = DevicePathToStr(full_device_path);
VerbosePrint(L"file DP: %s\n", dps);
FreePool(dps);
efi_status = FindSubDevicePath(full_device_path,
MEDIA_DEVICE_PATH, MEDIA_HARDDRIVE_DP,
&dp);
if (EFI_ERROR(efi_status)) {
if (efi_status == EFI_NOT_FOUND) {
dp = full_device_path;
} else {
efi_status = EFI_OUT_OF_RESOURCES;
goto err;
}
}
{
UINTN s = DevicePathSize(dp);
UINTN i;
UINT8 *dpv = (void *)dp;
for (i = 0; i < s; i++) {
if (i % 16 == 0) {
if (i > 0)
VerbosePrintUnprefixed(L"\n");
VerbosePrint(L"");
}
VerbosePrintUnprefixed(L"%02x ", dpv[i]);
}
VerbosePrintUnprefixed(L"\n");
CHAR16 *dps = DevicePathToStr(dp);
VerbosePrint(L"device path: \"%s\"\n", dps);
FreePool(dps);
}
UINT16 option;
efi_status = find_boot_option(dp, full_device_path, fullpath, label,
arguments, &option);
if (EFI_ERROR(efi_status)) {
add_boot_option(dp, full_device_path, fullpath, label,
arguments);
} else if (option != 0) {
CHAR16 *newbootorder;
newbootorder = AllocateZeroPool(sizeof (CHAR16) * nbootorder);
if (!newbootorder)
return EFI_OUT_OF_RESOURCES;
newbootorder[0] = bootorder[option];
CopyMem(newbootorder + 1, bootorder, sizeof (CHAR16) * option);
CopyMem(newbootorder + option + 1, bootorder + option + 1,
sizeof (CHAR16) * (nbootorder - option - 1));
FreePool(bootorder);
bootorder = newbootorder;
}
err:
if (full_device_path)
FreePool(full_device_path);
if (dp && dp != full_device_path)
FreePool(dp);
if (fullpath)
FreePool(fullpath);
return efi_status;
}
EFI_STATUS
populate_stanza(CHAR16 *dirname, CHAR16 *filename, CHAR16 *csv)
{
CHAR16 *file = csv;
VerbosePrint(L"CSV data: \"%s\"\n", csv);
UINTN comma0 = StrCSpn(csv, L",");
if (comma0 == 0)
return EFI_INVALID_PARAMETER;
file[comma0] = L'\0';
VerbosePrint(L"filename: \"%s\"\n", file);
CHAR16 *label = csv + comma0 + 1;
UINTN comma1 = StrCSpn(label, L",");
if (comma1 == 0)
return EFI_INVALID_PARAMETER;
label[comma1] = L'\0';
VerbosePrint(L"label: \"%s\"\n", label);
CHAR16 *arguments = csv + comma0 +1 + comma1 +1;
UINTN comma2 = StrCSpn(arguments, L",");
arguments[comma2] = L'\0';
/* This one is optional, so don't check if comma2 is 0 */
VerbosePrint(L"arguments: \"%s\"\n", arguments);
add_to_boot_list(dirname, file, label, arguments);
return EFI_SUCCESS;
}
EFI_STATUS
try_boot_csv(EFI_FILE_HANDLE fh, CHAR16 *dirname, CHAR16 *filename)
{
CHAR16 *fullpath = NULL;
UINT64 pathlen = 0;
EFI_STATUS efi_status;
efi_status = make_full_path(dirname, filename, &fullpath, &pathlen);
if (EFI_ERROR(efi_status))
return efi_status;
VerbosePrint(L"Found file \"%s\"\n", fullpath);
CHAR16 *buffer;
UINT64 bs;
efi_status = read_file(fh, fullpath, &buffer, &bs);
if (EFI_ERROR(efi_status)) {
console_print(L"Could not read file \"%s\": %r\n",
fullpath, efi_status);
FreePool(fullpath);
return efi_status;
}
FreePool(fullpath);
VerbosePrint(L"File looks like:\n%s\n", buffer);
CHAR16 *start = buffer;
/* The file may or may not start with the Unicode byte order marker.
* Sadness ensues. Since UEFI is defined as LE, I'm going to decree
* that these files must also be LE.
*
* IT IS THUS SO.
*
* But if we find the LE byte order marker, just skip it.
*/
if (*start == 0xfeff)
start++;
while (*start) {
while (*start == L'\r' || *start == L'\n')
start++;
UINTN l = StrCSpn(start, L"\r\n");
if (l == 0) {
if (start[l] == L'\0')
break;
start++;
continue;
}
CHAR16 c = start[l];
start[l] = L'\0';
populate_stanza(dirname, filename, start);
start[l] = c;
start += l;
}
FreePool(buffer);
return EFI_SUCCESS;
}
EFI_STATUS
find_boot_csv(EFI_FILE_HANDLE fh, CHAR16 *dirname)
{
EFI_STATUS efi_status;
void *buffer = NULL;
UINTN bs = 0;
/* The API here is "Call it once with bs=0, it fills in bs,
* then allocate a buffer and ask again to get it filled. */
efi_status = fh->GetInfo(fh, &EFI_FILE_INFO_GUID, &bs, NULL);
if (EFI_ERROR(efi_status) && efi_status != EFI_BUFFER_TOO_SMALL) {
console_print(L"Could not get directory info for \\EFI\\%s\\: %r\n",
dirname, efi_status);
return efi_status;
}
if (bs == 0)
return EFI_SUCCESS;
buffer = AllocateZeroPool(bs);
if (!buffer) {
console_print(L"Could not allocate memory\n");
return EFI_OUT_OF_RESOURCES;
}
efi_status = fh->GetInfo(fh, &EFI_FILE_INFO_GUID, &bs, buffer);
/* This checks *either* the error from the first GetInfo, if it isn't
* the EFI_BUFFER_TOO_SMALL we're expecting, or the second GetInfo
* call in *any* case. */
if (EFI_ERROR(efi_status)) {
console_print(L"Could not get info for \"%s\": %r\n", dirname,
efi_status);
if (buffer)
FreePool(buffer);
return efi_status;
}
EFI_FILE_INFO *fi = buffer;
if (!(fi->Attribute & EFI_FILE_DIRECTORY)) {
FreePool(buffer);
return EFI_SUCCESS;
}
FreePool(buffer);
buffer = NULL;
CHAR16 *bootcsv=NULL, *bootarchcsv=NULL;
bs = 0;
do {
bs = 0;
efi_status = fh->Read(fh, &bs, NULL);
if (EFI_ERROR(efi_status) &&
efi_status != EFI_BUFFER_TOO_SMALL) {
console_print(L"Could not read \\EFI\\%s\\: %r\n",
dirname, efi_status);
return efi_status;
}
/* If there's no data to read, don't try to allocate 0 bytes
* and read the data... */
if (bs == 0)
break;
buffer = AllocateZeroPool(bs);
if (!buffer) {
console_print(L"Could not allocate memory\n");
return EFI_OUT_OF_RESOURCES;
}
efi_status = fh->Read(fh, &bs, buffer);
if (EFI_ERROR(efi_status)) {
console_print(L"Could not read \\EFI\\%s\\: %r\n",
dirname, efi_status);
FreePool(buffer);
return efi_status;
}
if (bs == 0)
break;
fi = buffer;
if (!bootcsv && !StrCaseCmp(fi->FileName, L"boot.csv"))
bootcsv = StrDuplicate(fi->FileName);
if (!bootarchcsv &&
!StrCaseCmp(fi->FileName, L"boot" EFI_ARCH L".csv"))
bootarchcsv = StrDuplicate(fi->FileName);
FreePool(buffer);
buffer = NULL;
} while (bs != 0);
efi_status = EFI_SUCCESS;
if (bootarchcsv) {
EFI_FILE_HANDLE fh2;
efi_status = fh->Open(fh, &fh2, bootarchcsv,
EFI_FILE_READ_ONLY, 0);
if (EFI_ERROR(efi_status) || fh2 == NULL) {
console_print(L"Couldn't open \\EFI\\%s\\%s: %r\n",
dirname, bootarchcsv, efi_status);
} else {
efi_status = try_boot_csv(fh2, dirname, bootarchcsv);
fh2->Close(fh2);
if (EFI_ERROR(efi_status))
console_print(L"Could not process \\EFI\\%s\\%s: %r\n",
dirname, bootarchcsv, efi_status);
}
}
if ((EFI_ERROR(efi_status) || !bootarchcsv) && bootcsv) {
EFI_FILE_HANDLE fh2;
efi_status = fh->Open(fh, &fh2, bootcsv,
EFI_FILE_READ_ONLY, 0);
if (EFI_ERROR(efi_status) || fh2 == NULL) {
console_print(L"Couldn't open \\EFI\\%s\\%s: %r\n",
dirname, bootcsv, efi_status);
} else {
efi_status = try_boot_csv(fh2, dirname, bootcsv);
fh2->Close(fh2);
if (EFI_ERROR(efi_status))
console_print(L"Could not process \\EFI\\%s\\%s: %r\n",
dirname, bootarchcsv, efi_status);
}
}
return EFI_SUCCESS;
}
EFI_STATUS
find_boot_options(EFI_HANDLE device)
{
EFI_STATUS efi_status;
EFI_FILE_IO_INTERFACE *fio = NULL;
efi_status = gBS->HandleProtocol(device, &FileSystemProtocol,
(void **) &fio);
if (EFI_ERROR(efi_status)) {
console_print(L"Couldn't find file system: %r\n", efi_status);
return efi_status;
}
/* EFI_FILE_HANDLE is a pointer to an EFI_FILE, and I have
* *no idea* what frees the memory allocated here. Hopefully
* Close() does. */
EFI_FILE_HANDLE fh = NULL;
efi_status = fio->OpenVolume(fio, &fh);
if (EFI_ERROR(efi_status) || fh == NULL) {
console_print(L"Couldn't open file system: %r\n", efi_status);
return efi_status;
}
EFI_FILE_HANDLE fh2 = NULL;
efi_status = fh->Open(fh, &fh2, L"EFI", EFI_FILE_READ_ONLY, 0);
if (EFI_ERROR(efi_status) || fh2 == NULL) {
console_print(L"Couldn't open EFI: %r\n", efi_status);
fh->Close(fh);
return efi_status;
}
efi_status = fh2->SetPosition(fh2, 0);
if (EFI_ERROR(efi_status)) {
console_print(L"Couldn't set file position: %r\n", efi_status);
fh2->Close(fh2);
fh->Close(fh);
return efi_status;
}
void *buffer;
UINTN bs;
do {
bs = 0;
efi_status = fh2->Read(fh2, &bs, NULL);
if (EFI_ERROR(efi_status) && efi_status != EFI_BUFFER_TOO_SMALL) {
console_print(L"Could not read \\EFI\\: %r\n", efi_status);
return efi_status;
}
if (bs == 0)
break;
buffer = AllocateZeroPool(bs);
if (!buffer) {
console_print(L"Could not allocate memory\n");
/* sure, this might work, why not? */
fh2->Close(fh2);
fh->Close(fh);
return EFI_OUT_OF_RESOURCES;
}
efi_status = fh2->Read(fh2, &bs, buffer);
if (EFI_ERROR(efi_status)) {
if (buffer) {
FreePool(buffer);
buffer = NULL;
}
fh2->Close(fh2);
fh->Close(fh);
return efi_status;
}
EFI_FILE_INFO *fi = buffer;
if (!(fi->Attribute & EFI_FILE_DIRECTORY)) {
FreePool(buffer);
buffer = NULL;
continue;
}
if (!StrCmp(fi->FileName, L".") ||
!StrCmp(fi->FileName, L"..") ||
!StrCaseCmp(fi->FileName, L"BOOT")) {
FreePool(buffer);
buffer = NULL;
continue;
}
VerbosePrint(L"Found directory named \"%s\"\n", fi->FileName);
EFI_FILE_HANDLE fh3;
efi_status = fh2->Open(fh2, &fh3, fi->FileName,
EFI_FILE_READ_ONLY, 0);
if (EFI_ERROR(efi_status)) {
console_print(L"%d Couldn't open %s: %r\n", __LINE__,
fi->FileName, efi_status);
FreePool(buffer);
buffer = NULL;
continue;
}
efi_status = find_boot_csv(fh3, fi->FileName);
fh3->Close(fh3);
FreePool(buffer);
buffer = NULL;
if (efi_status == EFI_OUT_OF_RESOURCES)
break;
} while (1);
if (!EFI_ERROR(efi_status) && nbootorder > 0)
efi_status = update_boot_order();
fh2->Close(fh2);
fh->Close(fh);
return efi_status;
}
static EFI_STATUS
try_start_first_option(EFI_HANDLE parent_image_handle)
{
EFI_STATUS efi_status;
EFI_HANDLE image_handle;
if (!first_new_option) {
return EFI_SUCCESS;
}
efi_status = gBS->LoadImage(0, parent_image_handle, first_new_option,
NULL, 0, &image_handle);
if (EFI_ERROR(efi_status)) {
CHAR16 *dps = DevicePathToStr(first_new_option);
UINTN s = DevicePathSize(first_new_option);
unsigned int i;
UINT8 *dpv = (void *)first_new_option;
console_print(L"LoadImage failed: %r\nDevice path: \"%s\"\n",
efi_status, dps);
for (i = 0; i < s; i++) {
if (i > 0 && i % 16 == 0)
console_print(L"\n");
console_print(L"%02x ", dpv[i]);
}
console_print(L"\n");
msleep(500000000);
return efi_status;
}
EFI_LOADED_IMAGE *image;
efi_status = gBS->HandleProtocol(image_handle, &LoadedImageProtocol,
(void *) &image);
if (!EFI_ERROR(efi_status)) {
image->LoadOptions = first_new_option_args;
image->LoadOptionsSize = first_new_option_size;
}
efi_status = gBS->StartImage(image_handle, NULL, NULL);
if (EFI_ERROR(efi_status)) {
console_print(L"StartImage failed: %r\n", efi_status);
msleep(500000000);
}
return efi_status;
}
extern EFI_STATUS
efi_main(EFI_HANDLE image, EFI_SYSTEM_TABLE *systab);
static void
__attribute__((__optimize__("0")))
debug_hook(void)
{
UINT8 *data = NULL;
UINTN dataSize = 0;
EFI_STATUS efi_status;
register volatile int x = 0;
extern char _etext, _edata;
efi_status = get_variable(L"SHIM_DEBUG", &data, &dataSize,
SHIM_LOCK_GUID);
if (EFI_ERROR(efi_status)) {
return;
}
if (data)
FreePool(data);
if (x)
return;
x = 1;
console_print(L"add-symbol-file "DEBUGDIR
L"fb" EFI_ARCH L".efi.debug %p -s .data %p\n",
&_etext, &_edata);
}
EFI_STATUS
efi_main(EFI_HANDLE image, EFI_SYSTEM_TABLE *systab)
{
EFI_STATUS efi_status;
InitializeLib(image, systab);
/*
* if SHIM_DEBUG is set, wait for a debugger to attach.
*/
debug_hook();
efi_status = gBS->HandleProtocol(image, &LoadedImageProtocol,
(void *) &this_image);
if (EFI_ERROR(efi_status)) {
console_print(L"Error: could not find loaded image: %r\n",
efi_status);
return efi_status;
}
console_print(L"System BootOrder not found. Initializing defaults.\n");
set_boot_order();
efi_status = find_boot_options(this_image->DeviceHandle);
if (EFI_ERROR(efi_status)) {
console_print(L"Error: could not find boot options: %r\n",
efi_status);
return efi_status;
}
efi_status = fallback_should_prefer_reset();
if (EFI_ERROR(efi_status)) {
VerbosePrint(L"tpm not present, starting the first image\n");
try_start_first_option(image);
} else {
VerbosePrint(L"tpm present, resetting system\n");
}
console_print(L"Reset System\n");
if (get_fallback_verbose()) {
console_print(L"Verbose enabled, sleeping for half a second\n");
msleep(500000);
}
gRT->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
return EFI_SUCCESS;
}