mirror of
https://git.proxmox.com/git/efi-boot-shim
synced 2025-05-08 15:48:56 +00:00

If we're called as /BOOT/EFI/BOOT*.EFI, and /BOOT/EFI/FALLBACK.EFI exists, give it a shot. Signed-off-by: Peter Jones <pjones@redhat.com>
1547 lines
39 KiB
C
1547 lines
39 KiB
C
/*
|
|
* shim - trivial UEFI first-stage bootloader
|
|
*
|
|
* Copyright 2012 Red Hat, Inc <mjg@redhat.com>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Significant portions of this code are derived from Tianocore
|
|
* (http://tianocore.sf.net) and are Copyright 2009-2012 Intel
|
|
* Corporation.
|
|
*/
|
|
|
|
#include <efi.h>
|
|
#include <efilib.h>
|
|
#include <Library/BaseCryptLib.h>
|
|
#include "PeImage.h"
|
|
#include "shim.h"
|
|
#include "signature.h"
|
|
#include "netboot.h"
|
|
#include "shim_cert.h"
|
|
#include "ucs2.h"
|
|
|
|
#define DEFAULT_LOADER L"\\grub.efi"
|
|
#define FALLBACK L"\\fallback.efi"
|
|
#define MOK_MANAGER L"\\MokManager.efi"
|
|
|
|
static EFI_SYSTEM_TABLE *systab;
|
|
static EFI_STATUS (EFIAPI *entry_point) (EFI_HANDLE image_handle, EFI_SYSTEM_TABLE *system_table);
|
|
|
|
static CHAR16 *second_stage;
|
|
static void *load_options;
|
|
static UINT32 load_options_size;
|
|
|
|
/*
|
|
* The vendor certificate used for validating the second stage loader
|
|
*/
|
|
extern UINT8 vendor_cert[];
|
|
extern UINT32 vendor_cert_size;
|
|
extern EFI_SIGNATURE_LIST *vendor_dbx;
|
|
extern UINT32 vendor_dbx_size;
|
|
|
|
#define EFI_IMAGE_SECURITY_DATABASE_GUID { 0xd719b2cb, 0x3d3a, 0x4596, { 0xa3, 0xbc, 0xda, 0xd0, 0x0e, 0x67, 0x65, 0x6f }}
|
|
|
|
static UINT8 insecure_mode;
|
|
|
|
typedef enum {
|
|
DATA_FOUND,
|
|
DATA_NOT_FOUND,
|
|
VAR_NOT_FOUND
|
|
} CHECK_STATUS;
|
|
|
|
typedef struct {
|
|
UINT32 MokSize;
|
|
UINT8 *Mok;
|
|
} MokListNode;
|
|
|
|
static EFI_STATUS get_variable (CHAR16 *name, EFI_GUID guid, UINT32 *attributes,
|
|
UINTN *size, void **buffer)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
char allocate = !(*size);
|
|
|
|
efi_status = uefi_call_wrapper(RT->GetVariable, 5, name, &guid,
|
|
attributes, size, buffer);
|
|
|
|
if (efi_status != EFI_BUFFER_TOO_SMALL || !allocate) {
|
|
return efi_status;
|
|
}
|
|
|
|
*buffer = AllocatePool(*size);
|
|
|
|
if (!*buffer) {
|
|
Print(L"Unable to allocate variable buffer\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
efi_status = uefi_call_wrapper(RT->GetVariable, 5, name, &guid,
|
|
attributes, size, *buffer);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Perform basic bounds checking of the intra-image pointers
|
|
*/
|
|
static void *ImageAddress (void *image, int size, unsigned int address)
|
|
{
|
|
if (address > size)
|
|
return NULL;
|
|
|
|
return image + address;
|
|
}
|
|
|
|
/*
|
|
* Perform the actual relocation
|
|
*/
|
|
static EFI_STATUS relocate_coff (PE_COFF_LOADER_IMAGE_CONTEXT *context,
|
|
void *data)
|
|
{
|
|
EFI_IMAGE_BASE_RELOCATION *RelocBase, *RelocBaseEnd;
|
|
UINT64 Adjust;
|
|
UINT16 *Reloc, *RelocEnd;
|
|
char *Fixup, *FixupBase, *FixupData = NULL;
|
|
UINT16 *Fixup16;
|
|
UINT32 *Fixup32;
|
|
UINT64 *Fixup64;
|
|
int size = context->ImageSize;
|
|
void *ImageEnd = (char *)data + size;
|
|
|
|
context->PEHdr->Pe32Plus.OptionalHeader.ImageBase = (UINT64)data;
|
|
|
|
if (context->NumberOfRvaAndSizes <= EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC) {
|
|
Print(L"Image has no relocation entry\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
RelocBase = ImageAddress(data, size, context->RelocDir->VirtualAddress);
|
|
RelocBaseEnd = ImageAddress(data, size, context->RelocDir->VirtualAddress + context->RelocDir->Size - 1);
|
|
|
|
if (!RelocBase || !RelocBaseEnd) {
|
|
Print(L"Reloc table overflows binary\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
Adjust = (UINT64)data - context->ImageAddress;
|
|
|
|
while (RelocBase < RelocBaseEnd) {
|
|
Reloc = (UINT16 *) ((char *) RelocBase + sizeof (EFI_IMAGE_BASE_RELOCATION));
|
|
RelocEnd = (UINT16 *) ((char *) RelocBase + RelocBase->SizeOfBlock);
|
|
|
|
if ((void *)RelocEnd < data || (void *)RelocEnd > ImageEnd) {
|
|
Print(L"Reloc entry overflows binary\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
FixupBase = ImageAddress(data, size, RelocBase->VirtualAddress);
|
|
if (!FixupBase) {
|
|
Print(L"Invalid fixupbase\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
while (Reloc < RelocEnd) {
|
|
Fixup = FixupBase + (*Reloc & 0xFFF);
|
|
switch ((*Reloc) >> 12) {
|
|
case EFI_IMAGE_REL_BASED_ABSOLUTE:
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGH:
|
|
Fixup16 = (UINT16 *) Fixup;
|
|
*Fixup16 = (UINT16) (*Fixup16 + ((UINT16) ((UINT32) Adjust >> 16)));
|
|
if (FixupData != NULL) {
|
|
*(UINT16 *) FixupData = *Fixup16;
|
|
FixupData = FixupData + sizeof (UINT16);
|
|
}
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_LOW:
|
|
Fixup16 = (UINT16 *) Fixup;
|
|
*Fixup16 = (UINT16) (*Fixup16 + (UINT16) Adjust);
|
|
if (FixupData != NULL) {
|
|
*(UINT16 *) FixupData = *Fixup16;
|
|
FixupData = FixupData + sizeof (UINT16);
|
|
}
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_HIGHLOW:
|
|
Fixup32 = (UINT32 *) Fixup;
|
|
*Fixup32 = *Fixup32 + (UINT32) Adjust;
|
|
if (FixupData != NULL) {
|
|
FixupData = ALIGN_POINTER (FixupData, sizeof (UINT32));
|
|
*(UINT32 *)FixupData = *Fixup32;
|
|
FixupData = FixupData + sizeof (UINT32);
|
|
}
|
|
break;
|
|
|
|
case EFI_IMAGE_REL_BASED_DIR64:
|
|
Fixup64 = (UINT64 *) Fixup;
|
|
*Fixup64 = *Fixup64 + (UINT64) Adjust;
|
|
if (FixupData != NULL) {
|
|
FixupData = ALIGN_POINTER (FixupData, sizeof(UINT64));
|
|
*(UINT64 *)(FixupData) = *Fixup64;
|
|
FixupData = FixupData + sizeof(UINT64);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Print(L"Unknown relocation\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
Reloc += 1;
|
|
}
|
|
RelocBase = (EFI_IMAGE_BASE_RELOCATION *) RelocEnd;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static CHECK_STATUS check_db_cert_in_ram(EFI_SIGNATURE_LIST *CertList,
|
|
UINTN dbsize,
|
|
WIN_CERTIFICATE_EFI_PKCS *data,
|
|
UINT8 *hash)
|
|
{
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINTN CertCount, Index;
|
|
BOOLEAN IsFound = FALSE;
|
|
EFI_GUID CertType = EfiCertX509Guid;
|
|
|
|
while ((dbsize > 0) && (dbsize >= CertList->SignatureListSize)) {
|
|
if (CompareGuid (&CertList->SignatureType, &CertType) == 0) {
|
|
CertCount = (CertList->SignatureListSize - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
IsFound = AuthenticodeVerify (data->CertData,
|
|
data->Hdr.dwLength - sizeof(data->Hdr),
|
|
Cert->SignatureData,
|
|
CertList->SignatureSize,
|
|
hash, SHA256_DIGEST_SIZE);
|
|
if (IsFound)
|
|
break;
|
|
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize);
|
|
}
|
|
|
|
}
|
|
|
|
if (IsFound)
|
|
break;
|
|
|
|
dbsize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
if (IsFound)
|
|
return DATA_FOUND;
|
|
|
|
return DATA_NOT_FOUND;
|
|
}
|
|
|
|
static CHECK_STATUS check_db_cert(CHAR16 *dbname, EFI_GUID guid,
|
|
WIN_CERTIFICATE_EFI_PKCS *data, UINT8 *hash)
|
|
{
|
|
CHECK_STATUS rc;
|
|
EFI_STATUS efi_status;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
UINTN dbsize = 0;
|
|
UINT32 attributes;
|
|
void *db;
|
|
|
|
efi_status = get_variable(dbname, guid, &attributes, &dbsize, &db);
|
|
|
|
if (efi_status != EFI_SUCCESS)
|
|
return VAR_NOT_FOUND;
|
|
|
|
CertList = db;
|
|
|
|
rc = check_db_cert_in_ram(CertList, dbsize, data, hash);
|
|
|
|
FreePool(db);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Check a hash against an EFI_SIGNATURE_LIST in a buffer
|
|
*/
|
|
static CHECK_STATUS check_db_hash_in_ram(EFI_SIGNATURE_LIST *CertList,
|
|
UINTN dbsize, UINT8 *data,
|
|
int SignatureSize, EFI_GUID CertType)
|
|
{
|
|
EFI_SIGNATURE_DATA *Cert;
|
|
UINTN CertCount, Index;
|
|
BOOLEAN IsFound = FALSE;
|
|
|
|
while ((dbsize > 0) && (dbsize >= CertList->SignatureListSize)) {
|
|
CertCount = (CertList->SignatureListSize - CertList->SignatureHeaderSize) / CertList->SignatureSize;
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize);
|
|
if (CompareGuid(&CertList->SignatureType, &CertType) == 0) {
|
|
for (Index = 0; Index < CertCount; Index++) {
|
|
if (CompareMem (Cert->SignatureData, data, SignatureSize) == 0) {
|
|
//
|
|
// Find the signature in database.
|
|
//
|
|
IsFound = TRUE;
|
|
break;
|
|
}
|
|
|
|
Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize);
|
|
}
|
|
if (IsFound) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
dbsize -= CertList->SignatureListSize;
|
|
CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize);
|
|
}
|
|
|
|
if (IsFound)
|
|
return DATA_FOUND;
|
|
|
|
return DATA_NOT_FOUND;
|
|
}
|
|
|
|
/*
|
|
* Check a hash against an EFI_SIGNATURE_LIST in a UEFI variable
|
|
*/
|
|
static CHECK_STATUS check_db_hash(CHAR16 *dbname, EFI_GUID guid, UINT8 *data,
|
|
int SignatureSize, EFI_GUID CertType)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
EFI_SIGNATURE_LIST *CertList;
|
|
UINT32 attributes;
|
|
UINTN dbsize = 0;
|
|
void *db;
|
|
|
|
efi_status = get_variable(dbname, guid, &attributes, &dbsize, &db);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
return VAR_NOT_FOUND;
|
|
}
|
|
|
|
CertList = db;
|
|
|
|
CHECK_STATUS rc = check_db_hash_in_ram(CertList, dbsize, data,
|
|
SignatureSize, CertType);
|
|
FreePool(db);
|
|
return rc;
|
|
|
|
}
|
|
|
|
/*
|
|
* Check whether the binary signature or hash are present in dbx or the
|
|
* built-in blacklist
|
|
*/
|
|
static EFI_STATUS check_blacklist (WIN_CERTIFICATE_EFI_PKCS *cert,
|
|
UINT8 *sha256hash, UINT8 *sha1hash)
|
|
{
|
|
EFI_GUID secure_var = EFI_IMAGE_SECURITY_DATABASE_GUID;
|
|
|
|
if (check_db_hash_in_ram(vendor_dbx, vendor_dbx_size, sha256hash,
|
|
SHA256_DIGEST_SIZE, EfiHashSha256Guid) ==
|
|
DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
if (check_db_hash_in_ram(vendor_dbx, vendor_dbx_size, sha1hash,
|
|
SHA1_DIGEST_SIZE, EfiHashSha1Guid) ==
|
|
DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
if (check_db_cert_in_ram(vendor_dbx, vendor_dbx_size, cert,
|
|
sha256hash) == DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
|
|
if (check_db_hash(L"dbx", secure_var, sha256hash, SHA256_DIGEST_SIZE,
|
|
EfiHashSha256Guid) == DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
if (check_db_hash(L"dbx", secure_var, sha1hash, SHA1_DIGEST_SIZE,
|
|
EfiHashSha1Guid) == DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
if (check_db_cert(L"dbx", secure_var, cert, sha256hash) == DATA_FOUND)
|
|
return EFI_ACCESS_DENIED;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Check whether the binary signature or hash are present in db or MokList
|
|
*/
|
|
static EFI_STATUS check_whitelist (WIN_CERTIFICATE_EFI_PKCS *cert,
|
|
UINT8 *sha256hash, UINT8 *sha1hash)
|
|
{
|
|
EFI_GUID secure_var = EFI_IMAGE_SECURITY_DATABASE_GUID;
|
|
EFI_GUID shim_var = SHIM_LOCK_GUID;
|
|
|
|
if (check_db_hash(L"db", secure_var, sha256hash, SHA256_DIGEST_SIZE,
|
|
EfiHashSha256Guid) == DATA_FOUND)
|
|
return EFI_SUCCESS;
|
|
if (check_db_hash(L"db", secure_var, sha1hash, SHA1_DIGEST_SIZE,
|
|
EfiHashSha1Guid) == DATA_FOUND)
|
|
return EFI_SUCCESS;
|
|
if (check_db_hash(L"MokList", shim_var, sha256hash, SHA256_DIGEST_SIZE,
|
|
EfiHashSha256Guid) == DATA_FOUND)
|
|
return EFI_SUCCESS;
|
|
if (check_db_cert(L"db", secure_var, cert, sha256hash) == DATA_FOUND)
|
|
return EFI_SUCCESS;
|
|
if (check_db_cert(L"MokList", shim_var, cert, sha256hash) == DATA_FOUND)
|
|
return EFI_SUCCESS;
|
|
|
|
return EFI_ACCESS_DENIED;
|
|
}
|
|
|
|
/*
|
|
* Check whether we're in Secure Boot and user mode
|
|
*/
|
|
|
|
static BOOLEAN secure_mode (void)
|
|
{
|
|
EFI_STATUS status;
|
|
EFI_GUID global_var = EFI_GLOBAL_VARIABLE;
|
|
UINTN charsize = sizeof(char);
|
|
UINT8 sb, setupmode;
|
|
UINT32 attributes;
|
|
|
|
if (insecure_mode)
|
|
return FALSE;
|
|
|
|
status = get_variable(L"SecureBoot", global_var, &attributes, &charsize,
|
|
(void *)&sb);
|
|
|
|
/* FIXME - more paranoia here? */
|
|
if (status != EFI_SUCCESS || sb != 1) {
|
|
Print(L"Secure boot not enabled\n");
|
|
return FALSE;
|
|
}
|
|
|
|
status = get_variable(L"SetupMode", global_var, &attributes, &charsize,
|
|
(void *)&setupmode);
|
|
|
|
if (status == EFI_SUCCESS && setupmode == 1) {
|
|
Print(L"Platform is in setup mode\n");
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Calculate the SHA1 and SHA256 hashes of a binary
|
|
*/
|
|
|
|
static EFI_STATUS generate_hash (char *data, int datasize,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context,
|
|
UINT8 *sha256hash, UINT8 *sha1hash)
|
|
|
|
{
|
|
unsigned int sha256ctxsize, sha1ctxsize;
|
|
unsigned int size = datasize;
|
|
void *sha256ctx = NULL, *sha1ctx = NULL;
|
|
char *hashbase;
|
|
unsigned int hashsize;
|
|
unsigned int SumOfBytesHashed, SumOfSectionBytes;
|
|
unsigned int index, pos;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
EFI_IMAGE_SECTION_HEADER *SectionHeader = NULL;
|
|
EFI_IMAGE_SECTION_HEADER *SectionCache;
|
|
EFI_STATUS status = EFI_SUCCESS;
|
|
|
|
sha256ctxsize = Sha256GetContextSize();
|
|
sha256ctx = AllocatePool(sha256ctxsize);
|
|
|
|
sha1ctxsize = Sha1GetContextSize();
|
|
sha1ctx = AllocatePool(sha1ctxsize);
|
|
|
|
if (!sha256ctx || !sha1ctx) {
|
|
Print(L"Unable to allocate memory for hash context\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (!Sha256Init(sha256ctx) || !Sha1Init(sha1ctx)) {
|
|
Print(L"Unable to initialise hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash start to checksum */
|
|
hashbase = data;
|
|
hashsize = (char *)&context->PEHdr->Pe32.OptionalHeader.CheckSum -
|
|
hashbase;
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
Print(L"Unable to generate hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash post-checksum to start of certificate table */
|
|
hashbase = (char *)&context->PEHdr->Pe32.OptionalHeader.CheckSum +
|
|
sizeof (int);
|
|
hashsize = (char *)context->SecDir - hashbase;
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
Print(L"Unable to generate hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Hash end of certificate table to end of image header */
|
|
hashbase = (char *) &context->PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1];
|
|
hashsize = context->PEHdr->Pe32Plus.OptionalHeader.SizeOfHeaders -
|
|
(int) ((char *) (&context->PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY + 1]) - data);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
Print(L"Unable to generate hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Sort sections */
|
|
SumOfBytesHashed = context->PEHdr->Pe32Plus.OptionalHeader.SizeOfHeaders;
|
|
|
|
Section = (EFI_IMAGE_SECTION_HEADER *) (
|
|
(char *)context->PEHdr + sizeof (UINT32) +
|
|
sizeof (EFI_IMAGE_FILE_HEADER) +
|
|
context->PEHdr->Pe32.FileHeader.SizeOfOptionalHeader
|
|
);
|
|
|
|
SectionCache = Section;
|
|
|
|
for (index = 0, SumOfSectionBytes = 0; index < context->PEHdr->Pe32.FileHeader.NumberOfSections; index++, SectionCache++) {
|
|
SumOfSectionBytes += SectionCache->SizeOfRawData;
|
|
}
|
|
|
|
if (SumOfSectionBytes >= datasize) {
|
|
Print(L"Malformed binary: %x %x\n", SumOfSectionBytes, size);
|
|
status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
|
|
SectionHeader = (EFI_IMAGE_SECTION_HEADER *) AllocateZeroPool (sizeof (EFI_IMAGE_SECTION_HEADER) * context->PEHdr->Pe32.FileHeader.NumberOfSections);
|
|
if (SectionHeader == NULL) {
|
|
Print(L"Unable to allocate section header\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
/* Sort the section headers */
|
|
for (index = 0; index < context->PEHdr->Pe32.FileHeader.NumberOfSections; index++) {
|
|
pos = index;
|
|
while ((pos > 0) && (Section->PointerToRawData < SectionHeader[pos - 1].PointerToRawData)) {
|
|
CopyMem (&SectionHeader[pos], &SectionHeader[pos - 1], sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
pos--;
|
|
}
|
|
CopyMem (&SectionHeader[pos], Section, sizeof (EFI_IMAGE_SECTION_HEADER));
|
|
Section += 1;
|
|
}
|
|
|
|
/* Hash the sections */
|
|
for (index = 0; index < context->PEHdr->Pe32.FileHeader.NumberOfSections; index++) {
|
|
Section = &SectionHeader[index];
|
|
if (Section->SizeOfRawData == 0) {
|
|
continue;
|
|
}
|
|
hashbase = ImageAddress(data, size, Section->PointerToRawData);
|
|
hashsize = (unsigned int) Section->SizeOfRawData;
|
|
|
|
if (!hashbase) {
|
|
Print(L"Malformed section header\n");
|
|
status = EFI_INVALID_PARAMETER;
|
|
goto done;
|
|
}
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
Print(L"Unable to generate hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
SumOfBytesHashed += Section->SizeOfRawData;
|
|
}
|
|
|
|
/* Hash all remaining data */
|
|
if (size > SumOfBytesHashed) {
|
|
hashbase = data + SumOfBytesHashed;
|
|
hashsize = (unsigned int)(
|
|
size -
|
|
context->PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY].Size -
|
|
SumOfBytesHashed);
|
|
|
|
if (!(Sha256Update(sha256ctx, hashbase, hashsize)) ||
|
|
!(Sha1Update(sha1ctx, hashbase, hashsize))) {
|
|
Print(L"Unable to generate hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (!(Sha256Final(sha256ctx, sha256hash)) ||
|
|
!(Sha1Final(sha1ctx, sha1hash))) {
|
|
Print(L"Unable to finalise hash\n");
|
|
status = EFI_OUT_OF_RESOURCES;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (SectionHeader)
|
|
FreePool(SectionHeader);
|
|
if (sha1ctx)
|
|
FreePool(sha1ctx);
|
|
if (sha256ctx)
|
|
FreePool(sha256ctx);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the MOK database hasn't been set or modified from an OS
|
|
*/
|
|
static EFI_STATUS verify_mok (void) {
|
|
EFI_GUID shim_lock_guid = SHIM_LOCK_GUID;
|
|
EFI_STATUS status = EFI_SUCCESS;
|
|
void *MokListData = NULL;
|
|
UINTN MokListDataSize = 0;
|
|
UINT32 attributes;
|
|
|
|
status = get_variable(L"MokList", shim_lock_guid, &attributes,
|
|
&MokListDataSize, &MokListData);
|
|
|
|
if (attributes & EFI_VARIABLE_RUNTIME_ACCESS) {
|
|
Print(L"MokList is compromised!\nErase all keys in MokList!\n");
|
|
if (LibDeleteVariable(L"MokList", &shim_lock_guid) != EFI_SUCCESS) {
|
|
Print(L"Failed to erase MokList\n");
|
|
}
|
|
status = EFI_ACCESS_DENIED;
|
|
return status;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Check that the signature is valid and matches the binary
|
|
*/
|
|
static EFI_STATUS verify_buffer (char *data, int datasize,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context)
|
|
{
|
|
UINT8 sha256hash[SHA256_DIGEST_SIZE];
|
|
UINT8 sha1hash[SHA1_DIGEST_SIZE];
|
|
EFI_STATUS status = EFI_ACCESS_DENIED;
|
|
WIN_CERTIFICATE_EFI_PKCS *cert;
|
|
unsigned int size = datasize;
|
|
|
|
if (context->SecDir->Size == 0) {
|
|
Print(L"Empty security header\n");
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
cert = ImageAddress (data, size, context->SecDir->VirtualAddress);
|
|
|
|
if (!cert) {
|
|
Print(L"Certificate located outside the image\n");
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
if (cert->Hdr.wCertificateType != WIN_CERT_TYPE_PKCS_SIGNED_DATA) {
|
|
Print(L"Unsupported certificate type %x\n",
|
|
cert->Hdr.wCertificateType);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
status = generate_hash(data, datasize, context, sha256hash, sha1hash);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
/*
|
|
* Check that the MOK database hasn't been modified
|
|
*/
|
|
verify_mok();
|
|
|
|
/*
|
|
* Ensure that the binary isn't blacklisted
|
|
*/
|
|
status = check_blacklist(cert, sha256hash, sha1hash);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
Print(L"Binary is blacklisted\n");
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Check whether the binary is whitelisted in any of the firmware
|
|
* databases
|
|
*/
|
|
status = check_whitelist(cert, sha256hash, sha1hash);
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
Print(L"Binary is whitelisted\n");
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Check against the shim build key
|
|
*/
|
|
if (AuthenticodeVerify(cert->CertData,
|
|
context->SecDir->Size - sizeof(cert->Hdr),
|
|
shim_cert, sizeof(shim_cert), sha256hash,
|
|
SHA256_DIGEST_SIZE)) {
|
|
status = EFI_SUCCESS;
|
|
Print(L"Binary is verified by the vendor certificate\n");
|
|
return status;
|
|
}
|
|
|
|
|
|
/*
|
|
* And finally, check against shim's built-in key
|
|
*/
|
|
if (AuthenticodeVerify(cert->CertData,
|
|
context->SecDir->Size - sizeof(cert->Hdr),
|
|
vendor_cert, vendor_cert_size, sha256hash,
|
|
SHA256_DIGEST_SIZE)) {
|
|
status = EFI_SUCCESS;
|
|
Print(L"Binary is verified by the vendor certificate\n");
|
|
return status;
|
|
}
|
|
|
|
Print(L"Invalid signature\n");
|
|
status = EFI_ACCESS_DENIED;
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Read the binary header and grab appropriate information from it
|
|
*/
|
|
static EFI_STATUS read_header(void *data, unsigned int datasize,
|
|
PE_COFF_LOADER_IMAGE_CONTEXT *context)
|
|
{
|
|
EFI_IMAGE_DOS_HEADER *DosHdr = data;
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *PEHdr = data;
|
|
|
|
if (datasize < sizeof(EFI_IMAGE_DOS_HEADER)) {
|
|
Print(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE)
|
|
PEHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((char *)data + DosHdr->e_lfanew);
|
|
|
|
if ((((UINT8 *)PEHdr - (UINT8 *)data) + sizeof(EFI_IMAGE_OPTIONAL_HEADER_UNION)) > datasize) {
|
|
Print(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (PEHdr->Te.Signature != EFI_IMAGE_NT_SIGNATURE) {
|
|
Print(L"Unsupported image type\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (PEHdr->Pe32.FileHeader.Characteristics & EFI_IMAGE_FILE_RELOCS_STRIPPED) {
|
|
Print(L"Unsupported image - Relocations have been stripped\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (PEHdr->Pe32.OptionalHeader.Magic != EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
Print(L"Only 64-bit images supported\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
context->PEHdr = PEHdr;
|
|
context->ImageAddress = PEHdr->Pe32Plus.OptionalHeader.ImageBase;
|
|
context->ImageSize = (UINT64)PEHdr->Pe32Plus.OptionalHeader.SizeOfImage;
|
|
context->SizeOfHeaders = PEHdr->Pe32Plus.OptionalHeader.SizeOfHeaders;
|
|
context->EntryPoint = PEHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint;
|
|
context->RelocDir = &PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
|
context->NumberOfRvaAndSizes = PEHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes;
|
|
context->NumberOfSections = PEHdr->Pe32.FileHeader.NumberOfSections;
|
|
context->FirstSection = (EFI_IMAGE_SECTION_HEADER *)((char *)PEHdr + PEHdr->Pe32.FileHeader.SizeOfOptionalHeader + sizeof(UINT32) + sizeof(EFI_IMAGE_FILE_HEADER));
|
|
context->SecDir = (EFI_IMAGE_DATA_DIRECTORY *) &PEHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_SECURITY];
|
|
|
|
if (context->ImageSize < context->SizeOfHeaders) {
|
|
Print(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (((UINT8 *)context->SecDir - (UINT8 *)data) > (datasize - sizeof(EFI_IMAGE_DATA_DIRECTORY))) {
|
|
Print(L"Invalid image\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (context->SecDir->VirtualAddress >= datasize) {
|
|
Print(L"Malformed security header\n");
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Once the image has been loaded it needs to be validated and relocated
|
|
*/
|
|
static EFI_STATUS handle_image (void *data, unsigned int datasize,
|
|
EFI_LOADED_IMAGE *li)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
char *buffer;
|
|
int i, size;
|
|
EFI_IMAGE_SECTION_HEADER *Section;
|
|
char *base, *end;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT context;
|
|
|
|
/*
|
|
* The binary header contains relevant context and section pointers
|
|
*/
|
|
efi_status = read_header(data, datasize, &context);
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to read header\n");
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* We only need to verify the binary if we're in secure mode
|
|
*/
|
|
if (secure_mode ()) {
|
|
efi_status = verify_buffer(data, datasize, &context);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Verification failed\n");
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
buffer = AllocatePool(context.ImageSize);
|
|
|
|
if (!buffer) {
|
|
Print(L"Failed to allocate image buffer\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
CopyMem(buffer, data, context.SizeOfHeaders);
|
|
|
|
/*
|
|
* Copy the executable's sections to their desired offsets
|
|
*/
|
|
Section = context.FirstSection;
|
|
for (i = 0; i < context.NumberOfSections; i++) {
|
|
size = Section->Misc.VirtualSize;
|
|
|
|
if (size > Section->SizeOfRawData)
|
|
size = Section->SizeOfRawData;
|
|
|
|
base = ImageAddress (buffer, context.ImageSize, Section->VirtualAddress);
|
|
end = ImageAddress (buffer, context.ImageSize, Section->VirtualAddress + size - 1);
|
|
|
|
if (!base || !end) {
|
|
Print(L"Invalid section size\n");
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (Section->SizeOfRawData > 0)
|
|
CopyMem(base, data + Section->PointerToRawData, size);
|
|
|
|
if (size < Section->Misc.VirtualSize)
|
|
ZeroMem (base + size, Section->Misc.VirtualSize - size);
|
|
|
|
Section += 1;
|
|
}
|
|
|
|
/*
|
|
* Run the relocation fixups
|
|
*/
|
|
efi_status = relocate_coff(&context, buffer);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Relocation failed\n");
|
|
FreePool(buffer);
|
|
return efi_status;
|
|
}
|
|
|
|
entry_point = ImageAddress(buffer, context.ImageSize, context.EntryPoint);
|
|
/*
|
|
* grub needs to know its location and size in memory, so fix up
|
|
* the loaded image protocol values
|
|
*/
|
|
li->ImageBase = buffer;
|
|
li->ImageSize = context.ImageSize;
|
|
|
|
/* Pass the load options to the second stage loader */
|
|
li->LoadOptions = load_options;
|
|
li->LoadOptionsSize = load_options_size;
|
|
|
|
if (!entry_point) {
|
|
Print(L"Invalid entry point\n");
|
|
FreePool(buffer);
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static int
|
|
should_use_fallback(EFI_HANDLE image_handle)
|
|
{
|
|
EFI_GUID loaded_image_protocol = LOADED_IMAGE_PROTOCOL;
|
|
EFI_LOADED_IMAGE *li;
|
|
EFI_DEVICE_PATH *devpath;
|
|
int i;
|
|
unsigned int pathlen = 0;
|
|
CHAR16 *bootpath;
|
|
EFI_FILE_IO_INTERFACE *fio = NULL;
|
|
EFI_FILE_HANDLE vh;
|
|
EFI_FILE_HANDLE fh;
|
|
EFI_STATUS rc;
|
|
|
|
rc = uefi_call_wrapper(BS->HandleProtocol, 3, image_handle,
|
|
&loaded_image_protocol, (void **)&li);
|
|
if (EFI_ERROR(rc))
|
|
return 0;
|
|
|
|
devpath = li->FilePath;
|
|
|
|
bootpath = DevicePathToStr(devpath);
|
|
|
|
/* Check the beginning of the string and the end, to avoid
|
|
* caring about which arch this is. */
|
|
/* I really don't know why, but sometimes bootpath gives us
|
|
* L"\\EFI\\BOOT\\/BOOTX64.EFI". So just handle that here...
|
|
*/
|
|
if (StrnCaseCmp(bootpath, L"\\EFI\\BOOT\\BOOT", 14) &&
|
|
StrnCaseCmp(bootpath, L"\\EFI\\BOOT\\/BOOT", 15))
|
|
return 0;
|
|
pathlen = StrLen(bootpath);
|
|
if (pathlen < 5 || StrCaseCmp(bootpath + pathlen - 4, L".EFI"))
|
|
return 0;
|
|
|
|
for (i=pathlen; i>0; i--) {
|
|
if (bootpath[i] == '\\')
|
|
break;
|
|
}
|
|
|
|
bootpath[i+1] = '\0';
|
|
|
|
rc = uefi_call_wrapper(BS->HandleProtocol, 3, li->DeviceHandle,
|
|
&FileSystemProtocol, &fio);
|
|
if (EFI_ERROR(rc))
|
|
return 0;
|
|
|
|
rc = uefi_call_wrapper(fio->OpenVolume, 2, fio, &vh);
|
|
if (EFI_ERROR(rc))
|
|
return 0;
|
|
|
|
rc = uefi_call_wrapper(vh->Open, 5, vh, &fh, L"\\EFI\\BOOT" FALLBACK,
|
|
EFI_FILE_READ_ONLY, 0);
|
|
if (EFI_ERROR(rc)) {
|
|
uefi_call_wrapper(vh->Close, 1, vh);
|
|
return 0;
|
|
}
|
|
uefi_call_wrapper(fh->Close, 1, fh);
|
|
uefi_call_wrapper(vh->Close, 1, vh);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Generate the path of an executable given shim's path and the name
|
|
* of the executable
|
|
*/
|
|
static EFI_STATUS generate_path(EFI_LOADED_IMAGE *li, CHAR16 *ImagePath,
|
|
EFI_DEVICE_PATH **grubpath, CHAR16 **PathName)
|
|
{
|
|
EFI_DEVICE_PATH *devpath;
|
|
EFI_HANDLE device;
|
|
int i;
|
|
unsigned int pathlen = 0;
|
|
EFI_STATUS efi_status = EFI_SUCCESS;
|
|
CHAR16 *bootpath;
|
|
|
|
device = li->DeviceHandle;
|
|
devpath = li->FilePath;
|
|
|
|
bootpath = DevicePathToStr(devpath);
|
|
|
|
pathlen = StrLen(bootpath);
|
|
|
|
for (i=pathlen; i>0; i--) {
|
|
if (bootpath[i] == '\\')
|
|
break;
|
|
}
|
|
|
|
bootpath[i+1] = '\0';
|
|
|
|
if (i == 0 || bootpath[i-i] == '\\')
|
|
bootpath[i] = '\0';
|
|
|
|
*PathName = AllocatePool(StrSize(bootpath) + StrSize(ImagePath));
|
|
|
|
if (!*PathName) {
|
|
Print(L"Failed to allocate path buffer\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto error;
|
|
}
|
|
|
|
*PathName[0] = '\0';
|
|
if (StrnCaseCmp(bootpath, ImagePath, StrLen(bootpath)))
|
|
StrCat(*PathName, bootpath);
|
|
StrCat(*PathName, ImagePath);
|
|
|
|
*grubpath = FileDevicePath(device, *PathName);
|
|
|
|
error:
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Open the second stage bootloader and read it into a buffer
|
|
*/
|
|
static EFI_STATUS load_image (EFI_LOADED_IMAGE *li, void **data,
|
|
int *datasize, CHAR16 *PathName)
|
|
{
|
|
EFI_GUID simple_file_system_protocol = SIMPLE_FILE_SYSTEM_PROTOCOL;
|
|
EFI_GUID file_info_id = EFI_FILE_INFO_ID;
|
|
EFI_STATUS efi_status;
|
|
EFI_HANDLE device;
|
|
EFI_FILE_INFO *fileinfo = NULL;
|
|
EFI_FILE_IO_INTERFACE *drive;
|
|
EFI_FILE *root, *grub;
|
|
UINTN buffersize = sizeof(EFI_FILE_INFO);
|
|
|
|
device = li->DeviceHandle;
|
|
|
|
/*
|
|
* Open the device
|
|
*/
|
|
efi_status = uefi_call_wrapper(BS->HandleProtocol, 3, device,
|
|
&simple_file_system_protocol,
|
|
(void **)&drive);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to find fs\n");
|
|
goto error;
|
|
}
|
|
|
|
efi_status = uefi_call_wrapper(drive->OpenVolume, 2, drive, &root);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to open fs\n");
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* And then open the file
|
|
*/
|
|
efi_status = uefi_call_wrapper(root->Open, 5, root, &grub, PathName,
|
|
EFI_FILE_MODE_READ, 0);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to open %s - %lx\n", PathName, efi_status);
|
|
goto error;
|
|
}
|
|
|
|
fileinfo = AllocatePool(buffersize);
|
|
|
|
if (!fileinfo) {
|
|
Print(L"Unable to allocate file info buffer\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Find out how big the file is in order to allocate the storage
|
|
* buffer
|
|
*/
|
|
efi_status = uefi_call_wrapper(grub->GetInfo, 4, grub, &file_info_id,
|
|
&buffersize, fileinfo);
|
|
|
|
if (efi_status == EFI_BUFFER_TOO_SMALL) {
|
|
FreePool(fileinfo);
|
|
fileinfo = AllocatePool(buffersize);
|
|
if (!fileinfo) {
|
|
Print(L"Unable to allocate file info buffer\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto error;
|
|
}
|
|
efi_status = uefi_call_wrapper(grub->GetInfo, 4, grub,
|
|
&file_info_id, &buffersize,
|
|
fileinfo);
|
|
}
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Unable to get file info\n");
|
|
goto error;
|
|
}
|
|
|
|
buffersize = fileinfo->FileSize;
|
|
|
|
*data = AllocatePool(buffersize);
|
|
|
|
if (!*data) {
|
|
Print(L"Unable to allocate file buffer\n");
|
|
efi_status = EFI_OUT_OF_RESOURCES;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Perform the actual read
|
|
*/
|
|
efi_status = uefi_call_wrapper(grub->Read, 3, grub, &buffersize,
|
|
*data);
|
|
|
|
if (efi_status == EFI_BUFFER_TOO_SMALL) {
|
|
FreePool(*data);
|
|
*data = AllocatePool(buffersize);
|
|
efi_status = uefi_call_wrapper(grub->Read, 3, grub,
|
|
&buffersize, *data);
|
|
}
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Unexpected return from initial read: %x, buffersize %x\n", efi_status, buffersize);
|
|
goto error;
|
|
}
|
|
|
|
*datasize = buffersize;
|
|
|
|
FreePool(fileinfo);
|
|
|
|
return EFI_SUCCESS;
|
|
error:
|
|
if (*data) {
|
|
FreePool(*data);
|
|
*data = NULL;
|
|
}
|
|
|
|
if (fileinfo)
|
|
FreePool(fileinfo);
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Protocol entry point. If secure boot is enabled, verify that the provided
|
|
* buffer is signed with a trusted key.
|
|
*/
|
|
EFI_STATUS shim_verify (void *buffer, UINT32 size)
|
|
{
|
|
EFI_STATUS status;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT context;
|
|
|
|
if (!secure_mode())
|
|
return EFI_SUCCESS;
|
|
|
|
status = read_header(buffer, size, &context);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = verify_buffer(buffer, size, &context);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Load and run an EFI executable
|
|
*/
|
|
EFI_STATUS start_image(EFI_HANDLE image_handle, CHAR16 *ImagePath)
|
|
{
|
|
EFI_GUID loaded_image_protocol = LOADED_IMAGE_PROTOCOL;
|
|
EFI_STATUS efi_status;
|
|
EFI_LOADED_IMAGE *li, li_bak;
|
|
EFI_DEVICE_PATH *path;
|
|
CHAR16 *PathName = NULL;
|
|
void *sourcebuffer = NULL;
|
|
UINTN sourcesize = 0;
|
|
void *data = NULL;
|
|
int datasize;
|
|
|
|
/*
|
|
* We need to refer to the loaded image protocol on the running
|
|
* binary in order to find our path
|
|
*/
|
|
efi_status = uefi_call_wrapper(BS->HandleProtocol, 3, image_handle,
|
|
&loaded_image_protocol, (void **)&li);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Unable to init protocol\n");
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Build a new path from the existing one plus the executable name
|
|
*/
|
|
efi_status = generate_path(li, ImagePath, &path, &PathName);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Unable to generate path: %s\n", ImagePath);
|
|
goto done;
|
|
}
|
|
|
|
if (findNetboot(image_handle)) {
|
|
efi_status = parseNetbootinfo(image_handle);
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Netboot parsing failed: %d\n", efi_status);
|
|
return EFI_PROTOCOL_ERROR;
|
|
}
|
|
efi_status = FetchNetbootimage(image_handle, &sourcebuffer,
|
|
&sourcesize);
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Unable to fetch TFTP image\n");
|
|
return efi_status;
|
|
}
|
|
data = sourcebuffer;
|
|
datasize = sourcesize;
|
|
} else {
|
|
/*
|
|
* Read the new executable off disk
|
|
*/
|
|
efi_status = load_image(li, &data, &datasize, PathName);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to load image\n");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to modify the loaded image protocol entry before running
|
|
* the new binary, so back it up
|
|
*/
|
|
CopyMem(&li_bak, li, sizeof(li_bak));
|
|
|
|
/*
|
|
* Verify and, if appropriate, relocate and execute the executable
|
|
*/
|
|
efi_status = handle_image(data, datasize, li);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to load image\n");
|
|
CopyMem(li, &li_bak, sizeof(li_bak));
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The binary is trusted and relocated. Run it
|
|
*/
|
|
efi_status = uefi_call_wrapper(entry_point, 2, image_handle, systab);
|
|
|
|
/*
|
|
* Restore our original loaded image values
|
|
*/
|
|
CopyMem(li, &li_bak, sizeof(li_bak));
|
|
done:
|
|
if (PathName)
|
|
FreePool(PathName);
|
|
|
|
if (data)
|
|
FreePool(data);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Load and run grub. If that fails because grub isn't trusted, load and
|
|
* run MokManager.
|
|
*/
|
|
EFI_STATUS init_grub(EFI_HANDLE image_handle)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
|
|
if (should_use_fallback(image_handle))
|
|
efi_status = start_image(image_handle, FALLBACK);
|
|
else
|
|
efi_status = start_image(image_handle, second_stage);
|
|
|
|
if (efi_status != EFI_SUCCESS)
|
|
efi_status = start_image(image_handle, MOK_MANAGER);
|
|
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Copy the boot-services only MokList variable to the runtime-accessible
|
|
* MokListRT variable. It's not marked NV, so the OS can't modify it.
|
|
*/
|
|
EFI_STATUS mirror_mok_list()
|
|
{
|
|
EFI_GUID shim_lock_guid = SHIM_LOCK_GUID;
|
|
EFI_STATUS efi_status;
|
|
UINT32 attributes;
|
|
void *Data = NULL;
|
|
UINTN DataSize = 0;
|
|
|
|
efi_status = get_variable(L"MokList", shim_lock_guid, &attributes,
|
|
&DataSize, &Data);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
goto done;
|
|
}
|
|
|
|
efi_status = uefi_call_wrapper(RT->SetVariable, 5, L"MokListRT",
|
|
&shim_lock_guid,
|
|
EFI_VARIABLE_BOOTSERVICE_ACCESS
|
|
| EFI_VARIABLE_RUNTIME_ACCESS,
|
|
DataSize, Data);
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to set MokListRT %d\n", efi_status);
|
|
}
|
|
|
|
done:
|
|
return efi_status;
|
|
}
|
|
|
|
/*
|
|
* Check if a variable exists
|
|
*/
|
|
static BOOLEAN check_var(CHAR16 *varname)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
EFI_GUID shim_lock_guid = SHIM_LOCK_GUID;
|
|
UINTN size = sizeof(UINT32);
|
|
UINT32 MokVar;
|
|
UINT32 attributes;
|
|
|
|
efi_status = uefi_call_wrapper(RT->GetVariable, 5, varname,
|
|
&shim_lock_guid, &attributes,
|
|
&size, (void *)&MokVar);
|
|
|
|
if (efi_status == EFI_SUCCESS || efi_status == EFI_BUFFER_TOO_SMALL)
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* If the OS has set any of these variables we need to drop into MOK and
|
|
* handle them appropriately
|
|
*/
|
|
EFI_STATUS check_mok_request(EFI_HANDLE image_handle)
|
|
{
|
|
EFI_STATUS efi_status;
|
|
|
|
if (check_var(L"MokNew") || check_var(L"MokSB") ||
|
|
check_var(L"MokPW") || check_var(L"MokAuth") ||
|
|
check_var(L"MokDel")) {
|
|
efi_status = start_image(image_handle, MOK_MANAGER);
|
|
|
|
if (efi_status != EFI_SUCCESS) {
|
|
Print(L"Failed to start MokManager\n");
|
|
return efi_status;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Verify that MokSBState is valid, and if appropriate set insecure mode
|
|
*/
|
|
|
|
static EFI_STATUS check_mok_sb (void)
|
|
{
|
|
EFI_GUID shim_lock_guid = SHIM_LOCK_GUID;
|
|
EFI_STATUS status = EFI_SUCCESS;
|
|
void *MokSBState = NULL;
|
|
UINTN MokSBStateSize = 0;
|
|
UINT32 attributes;
|
|
|
|
status = get_variable(L"MokSBState", shim_lock_guid, &attributes,
|
|
&MokSBStateSize, &MokSBState);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return EFI_ACCESS_DENIED;
|
|
|
|
/*
|
|
* Delete and ignore the variable if it's been set from or could be
|
|
* modified by the OS
|
|
*/
|
|
if (attributes & EFI_VARIABLE_RUNTIME_ACCESS) {
|
|
Print(L"MokSBState is compromised! Clearing it\n");
|
|
if (LibDeleteVariable(L"MokSBState", &shim_lock_guid) != EFI_SUCCESS) {
|
|
Print(L"Failed to erase MokSBState\n");
|
|
}
|
|
status = EFI_ACCESS_DENIED;
|
|
} else {
|
|
if (*(UINT8 *)MokSBState == 1) {
|
|
insecure_mode = 1;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Check the load options to specify the second stage loader
|
|
*/
|
|
EFI_STATUS set_second_stage (EFI_HANDLE image_handle)
|
|
{
|
|
EFI_STATUS status;
|
|
EFI_LOADED_IMAGE *li;
|
|
CHAR16 *start = NULL, *c;
|
|
int i, remaining_size = 0;
|
|
CHAR16 *loader_str = NULL;
|
|
int loader_len = 0;
|
|
|
|
second_stage = DEFAULT_LOADER;
|
|
load_options = NULL;
|
|
load_options_size = 0;
|
|
|
|
status = uefi_call_wrapper(BS->HandleProtocol, 3, image_handle,
|
|
&LoadedImageProtocol, (void **) &li);
|
|
if (status != EFI_SUCCESS) {
|
|
Print (L"Failed to get load options\n");
|
|
return status;
|
|
}
|
|
|
|
/* Expect a CHAR16 string with at least one CHAR16 */
|
|
if (li->LoadOptionsSize < 4 || li->LoadOptionsSize % 2 != 0) {
|
|
return EFI_BAD_BUFFER_SIZE;
|
|
}
|
|
c = (CHAR16 *)(li->LoadOptions + (li->LoadOptionsSize - 2));
|
|
if (*c != L'\0') {
|
|
return EFI_BAD_BUFFER_SIZE;
|
|
}
|
|
|
|
/*
|
|
* UEFI shell copies the whole line of the command into LoadOptions.
|
|
* We ignore the string before the first L' ', i.e. the name of this
|
|
* program.
|
|
*/
|
|
for (i = 0; i < li->LoadOptionsSize; i += 2) {
|
|
c = (CHAR16 *)(li->LoadOptions + i);
|
|
if (*c == L' ') {
|
|
*c = L'\0';
|
|
start = c + 1;
|
|
remaining_size = li->LoadOptionsSize - i - 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!start || remaining_size <= 0)
|
|
return EFI_SUCCESS;
|
|
|
|
for (i = 0; start[i] != '\0'; i++) {
|
|
if (start[i] == L' ' || start[i] == L'\0')
|
|
break;
|
|
loader_len++;
|
|
}
|
|
|
|
/*
|
|
* Setup the name of the alternative loader and the LoadOptions for
|
|
* the loader
|
|
*/
|
|
if (loader_len > 0) {
|
|
loader_str = AllocatePool((loader_len + 1) * sizeof(CHAR16));
|
|
if (!loader_str) {
|
|
Print(L"Failed to allocate loader string\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
for (i = 0; i < loader_len; i++)
|
|
loader_str[i] = start[i];
|
|
loader_str[loader_len] = L'\0';
|
|
|
|
second_stage = loader_str;
|
|
load_options = start;
|
|
load_options_size = remaining_size;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS efi_main (EFI_HANDLE image_handle, EFI_SYSTEM_TABLE *passed_systab)
|
|
{
|
|
EFI_GUID shim_lock_guid = SHIM_LOCK_GUID;
|
|
static SHIM_LOCK shim_lock_interface;
|
|
EFI_HANDLE handle = NULL;
|
|
EFI_STATUS efi_status;
|
|
|
|
/*
|
|
* Set up the shim lock protocol so that grub and MokManager can
|
|
* call back in and use shim functions
|
|
*/
|
|
shim_lock_interface.Verify = shim_verify;
|
|
shim_lock_interface.Hash = generate_hash;
|
|
shim_lock_interface.Context = read_header;
|
|
|
|
systab = passed_systab;
|
|
|
|
/*
|
|
* Ensure that gnu-efi functions are available
|
|
*/
|
|
InitializeLib(image_handle, systab);
|
|
|
|
/* Set the second stage loader */
|
|
set_second_stage (image_handle);
|
|
|
|
/*
|
|
* Check whether the user has configured the system to run in
|
|
* insecure mode
|
|
*/
|
|
check_mok_sb();
|
|
|
|
/*
|
|
* Tell the user that we're in insecure mode if necessary
|
|
*/
|
|
if (insecure_mode) {
|
|
Print(L"Booting in insecure mode\n");
|
|
uefi_call_wrapper(BS->Stall, 1, 2000000);
|
|
}
|
|
|
|
/*
|
|
* Install the protocol
|
|
*/
|
|
uefi_call_wrapper(BS->InstallProtocolInterface, 4, &handle,
|
|
&shim_lock_guid, EFI_NATIVE_INTERFACE,
|
|
&shim_lock_interface);
|
|
|
|
/*
|
|
* Enter MokManager if necessary
|
|
*/
|
|
efi_status = check_mok_request(image_handle);
|
|
|
|
/*
|
|
* Copy the MOK list to a runtime variable so the kernel can make
|
|
* use of it
|
|
*/
|
|
efi_status = mirror_mok_list();
|
|
|
|
/*
|
|
* Hand over control to the second stage bootloader
|
|
*/
|
|
|
|
efi_status = init_grub(image_handle);
|
|
|
|
/*
|
|
* If we're back here then clean everything up before exiting
|
|
*/
|
|
uefi_call_wrapper(BS->UninstallProtocolInterface, 3, handle,
|
|
&shim_lock_guid, &shim_lock_interface);
|
|
|
|
/*
|
|
* Free the space allocated for the alternative 2nd stage loader
|
|
*/
|
|
if (load_options_size > 0)
|
|
FreePool(second_stage);
|
|
|
|
return efi_status;
|
|
}
|