Update to current Tiano Cryptlib

This commit is contained in:
Matthew Garrett 2013-10-04 11:51:09 -04:00 committed by Peter Jones
parent 4bf7fb2ef1
commit 36d13930ee
22 changed files with 947 additions and 928 deletions

View File

@ -38,7 +38,7 @@ AesGetContextSize (
Initializes user-supplied memory as AES context for subsequent use.
This function initializes user-supplied memory pointed by AesContext as AES context.
In addtion, it sets up all AES key materials for subsequent encryption and decryption
In addition, it sets up all AES key materials for subsequent encryption and decryption
operations.
There are 3 options for key length, 128 bits, 192 bits, and 256 bits.
@ -241,7 +241,11 @@ AesCbcEncrypt (
//
// Check input parameters.
//
if (AesContext == NULL || Input == NULL || (InputSize % AES_BLOCK_SIZE) != 0 || Ivec == NULL || Output == NULL) {
if (AesContext == NULL || Input == NULL || (InputSize % AES_BLOCK_SIZE) != 0) {
return FALSE;
}
if (Ivec == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}
@ -299,7 +303,11 @@ AesCbcDecrypt (
//
// Check input parameters.
//
if (AesContext == NULL || Input == NULL || (InputSize % AES_BLOCK_SIZE) != 0 || Ivec == NULL || Output == NULL) {
if (AesContext == NULL || Input == NULL || (InputSize % AES_BLOCK_SIZE) != 0) {
return FALSE;
}
if (Ivec == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}

View File

@ -32,14 +32,14 @@ Arc4GetContextSize (
// for backup copy. When Arc4Reset() is called, we can use the backup copy to restore
// the working copy to the initial state.
//
return (UINTN) (2 * sizeof(RC4_KEY));
return (UINTN) (2 * sizeof (RC4_KEY));
}
/**
Initializes user-supplied memory as ARC4 context for subsequent use.
This function initializes user-supplied memory pointed by Arc4Context as ARC4 context.
In addtion, it sets up all ARC4 key materials for subsequent encryption and decryption
In addition, it sets up all ARC4 key materials for subsequent encryption and decryption
operations.
If Arc4Context is NULL, then return FALSE.
@ -75,7 +75,7 @@ Arc4Init (
RC4_set_key (Rc4Key, (UINT32) KeySize, Key);
CopyMem (Rc4Key + 1, Rc4Key, sizeof(RC4_KEY));
CopyMem (Rc4Key + 1, Rc4Key, sizeof (RC4_KEY));
return TRUE;
}
@ -115,7 +115,7 @@ Arc4Encrypt (
//
// Check input parameters.
//
if (Arc4Context == NULL || Input == NULL || Output == NULL) {
if (Arc4Context == NULL || Input == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}
@ -161,7 +161,7 @@ Arc4Decrypt (
//
// Check input parameters.
//
if (Arc4Context == NULL || Input == NULL || Output == NULL) {
if (Arc4Context == NULL || Input == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}
@ -205,7 +205,7 @@ Arc4Reset (
Rc4Key = (RC4_KEY *) Arc4Context;
CopyMem (Rc4Key, Rc4Key + 1, sizeof(RC4_KEY));
CopyMem (Rc4Key, Rc4Key + 1, sizeof (RC4_KEY));
return TRUE;
}

View File

@ -37,7 +37,7 @@ TdesGetContextSize (
Initializes user-supplied memory as TDES context for subsequent use.
This function initializes user-supplied memory pointed by TdesContext as TDES context.
In addtion, it sets up all TDES key materials for subsequent encryption and decryption
In addition, it sets up all TDES key materials for subsequent encryption and decryption
operations.
There are 3 key options as follows:
KeyLength = 64, Keying option 1: K1 == K2 == K3 (Backward compatibility with DES)
@ -76,9 +76,9 @@ TdesInit (
KeySchedule = (DES_key_schedule *) TdesContext;
//
//
// If input Key is a weak key, return error.
//
if (DES_is_weak_key ((const_DES_cblock *) Key)) {
if (DES_is_weak_key ((const_DES_cblock *) Key) == 1) {
return FALSE;
}
@ -90,7 +90,7 @@ TdesInit (
return TRUE;
}
if (DES_is_weak_key ((const_DES_cblock *) Key + 8)) {
if (DES_is_weak_key ((const_DES_cblock *) Key + 8) == 1) {
return FALSE;
}
@ -101,7 +101,7 @@ TdesInit (
return TRUE;
}
if (DES_is_weak_key ((const_DES_cblock *) Key + 16)) {
if (DES_is_weak_key ((const_DES_cblock *) Key + 16) == 1) {
return FALSE;
}
@ -275,7 +275,11 @@ TdesCbcEncrypt (
//
// Check input parameters.
//
if (TdesContext == NULL || Input == NULL || (InputSize % TDES_BLOCK_SIZE) != 0 || Ivec == NULL || Output == NULL) {
if (TdesContext == NULL || Input == NULL || (InputSize % TDES_BLOCK_SIZE) != 0) {
return FALSE;
}
if (Ivec == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}
@ -339,7 +343,11 @@ TdesCbcDecrypt (
//
// Check input parameters.
//
if (TdesContext == NULL || Input == NULL || (InputSize % TDES_BLOCK_SIZE) != 0 || Ivec == NULL || Output == NULL) {
if (TdesContext == NULL || Input == NULL || (InputSize % TDES_BLOCK_SIZE) != 0) {
return FALSE;
}
if (Ivec == NULL || Output == NULL || InputSize > INT_MAX) {
return FALSE;
}

View File

@ -30,7 +30,7 @@ Md4GetContextSize (
//
// Retrieves the OpenSSL MD4 Context Size
//
return (UINTN)(sizeof (MD4_CTX));
return (UINTN) (sizeof (MD4_CTX));
}
/**
@ -61,7 +61,7 @@ Md4Init (
//
// OpenSSL MD4 Context Initialization
//
return (BOOLEAN) (MD4_Init ((MD4_CTX *)Md4Context));
return (BOOLEAN) (MD4_Init ((MD4_CTX *) Md4Context));
}
/**
@ -139,7 +139,7 @@ Md4Update (
//
// OpenSSL MD4 Hash Update
//
return (BOOLEAN) (MD4_Update ((MD4_CTX *)Md4Context, Data, DataSize));
return (BOOLEAN) (MD4_Update ((MD4_CTX *) Md4Context, Data, DataSize));
}
/**
@ -179,5 +179,5 @@ Md4Final (
//
// OpenSSL MD4 Hash Finalization
//
return (BOOLEAN) (MD4_Final (HashValue, (MD4_CTX *)Md4Context));
return (BOOLEAN) (MD4_Final (HashValue, (MD4_CTX *) Md4Context));
}

View File

@ -31,7 +31,7 @@ Md5GetContextSize (
//
// Retrieves the OpenSSL MD5 Context Size
//
return (UINTN)(sizeof (MD5_CTX));
return (UINTN) (sizeof (MD5_CTX));
}
@ -63,7 +63,7 @@ Md5Init (
//
// OpenSSL MD5 Context Initialization
//
return (BOOLEAN) (MD5_Init ((MD5_CTX *)Md5Context));
return (BOOLEAN) (MD5_Init ((MD5_CTX *) Md5Context));
}
/**
@ -141,7 +141,7 @@ Md5Update (
//
// OpenSSL MD5 Hash Update
//
return (BOOLEAN) (MD5_Update ((MD5_CTX *)Md5Context, Data, DataSize));
return (BOOLEAN) (MD5_Update ((MD5_CTX *) Md5Context, Data, DataSize));
}
/**
@ -181,5 +181,5 @@ Md5Final (
//
// OpenSSL MD5 Hash Finalization
//
return (BOOLEAN) (MD5_Final (HashValue, (MD5_CTX *)Md5Context));
return (BOOLEAN) (MD5_Final (HashValue, (MD5_CTX *) Md5Context));
}

View File

@ -31,7 +31,7 @@ Sha1GetContextSize (
//
// Retrieves OpenSSL SHA Context Size
//
return (UINTN)(sizeof (SHA_CTX));
return (UINTN) (sizeof (SHA_CTX));
}
/**
@ -62,7 +62,7 @@ Sha1Init (
//
// OpenSSL SHA-1 Context Initialization
//
return (BOOLEAN) (SHA1_Init ((SHA_CTX *)Sha1Context));
return (BOOLEAN) (SHA1_Init ((SHA_CTX *) Sha1Context));
}
/**
@ -140,7 +140,7 @@ Sha1Update (
//
// OpenSSL SHA-1 Hash Update
//
return (BOOLEAN) (SHA1_Update ((SHA_CTX *)Sha1Context, Data, DataSize));
return (BOOLEAN) (SHA1_Update ((SHA_CTX *) Sha1Context, Data, DataSize));
}
/**
@ -180,5 +180,5 @@ Sha1Final (
//
// OpenSSL SHA-1 Hash Finalization
//
return (BOOLEAN) (SHA1_Final (HashValue, (SHA_CTX *)Sha1Context));
return (BOOLEAN) (SHA1_Final (HashValue, (SHA_CTX *) Sha1Context));
}

View File

@ -30,7 +30,7 @@ Sha256GetContextSize (
//
// Retrieves OpenSSL SHA-256 Context Size
//
return (UINTN)(sizeof (SHA256_CTX));
return (UINTN) (sizeof (SHA256_CTX));
}
/**
@ -61,7 +61,7 @@ Sha256Init (
//
// OpenSSL SHA-256 Context Initialization
//
return (BOOLEAN) (SHA256_Init ((SHA256_CTX *)Sha256Context));
return (BOOLEAN) (SHA256_Init ((SHA256_CTX *) Sha256Context));
}
/**
@ -139,7 +139,7 @@ Sha256Update (
//
// OpenSSL SHA-256 Hash Update
//
return (BOOLEAN) (SHA256_Update ((SHA256_CTX *)Sha256Context, Data, DataSize));
return (BOOLEAN) (SHA256_Update ((SHA256_CTX *) Sha256Context, Data, DataSize));
}
/**
@ -179,5 +179,5 @@ Sha256Final (
//
// OpenSSL SHA-256 Hash Finalization
//
return (BOOLEAN) (SHA256_Final (HashValue, (SHA256_CTX *)Sha256Context));
return (BOOLEAN) (SHA256_Final (HashValue, (SHA256_CTX *) Sha256Context));
}

View File

@ -30,7 +30,7 @@ HmacMd5GetContextSize (
//
// Retrieves the OpenSSL HMAC-MD5 Context Size
//
return (UINTN)(sizeof (HMAC_CTX));
return (UINTN) (sizeof (HMAC_CTX));
}
/**
@ -58,7 +58,7 @@ HmacMd5Init (
//
// Check input parameters.
//
if (HmacMd5Context == NULL) {
if (HmacMd5Context == NULL || KeySize > INT_MAX) {
return FALSE;
}

View File

@ -30,7 +30,7 @@ HmacSha1GetContextSize (
//
// Retrieves the OpenSSL HMAC-SHA1 Context Size
//
return (UINTN)(sizeof (HMAC_CTX));
return (UINTN) (sizeof (HMAC_CTX));
}
/**
@ -58,7 +58,7 @@ HmacSha1Init (
//
// Check input parameters.
//
if (HmacSha1Context == NULL) {
if (HmacSha1Context == NULL || KeySize > INT_MAX) {
return FALSE;
}

View File

@ -21,6 +21,8 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <Library/DebugLib.h>
#include <Library/BaseCryptLib.h>
#include "OpenSslSupport.h"
//
// Environment Setting for OpenSSL-based UEFI Crypto Library.
//
@ -28,25 +30,5 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#define OPENSSL_SYSNAME_UWIN
#endif
/**
Pop single certificate from STACK_OF(X509).
If X509Stack, Cert, or CertSize is NULL, then return FALSE.
@param[in] X509Stack Pointer to a X509 stack object.
@param[out] Cert Pointer to a X509 certificate.
@param[out] CertSize Length of output X509 certificate in bytes.
@retval TRUE The X509 stack pop succeeded.
@retval FALSE The pop operation failed.
**/
BOOLEAN
X509PopCertificate (
IN VOID *X509Stack,
OUT UINT8 **Cert,
OUT UINTN *CertSize
);
#endif

View File

@ -1400,7 +1400,7 @@ RsaPkcs1Verify (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
IN UINT8 *Signature,
IN CONST UINT8 *Signature,
IN UINTN SigSize
);

View File

@ -27,7 +27,8 @@ OBJS = Hash/CryptMd4.o \
Cipher/CryptTdes.o \
Cipher/CryptArc4.o \
Rand/CryptRand.o \
Pk/CryptRsa.o \
Pk/CryptRsaBasic.o \
Pk/CryptRsaExt.o \
Pk/CryptPkcs7.o \
Pk/CryptDh.o \
Pk/CryptX509.o \

View File

@ -1,7 +1,7 @@
/** @file
PEM (Privacy Enhanced Mail) Format Handler Wrapper Implementation over OpenSSL.
Copyright (c) 2010 - 2012, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2010 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -36,7 +36,7 @@ PasswordCallback (
{
INTN KeyLength;
ZeroMem ((VOID *)Buf, (UINTN)Size);
ZeroMem ((VOID *) Buf, (UINTN) Size);
if (Key != NULL) {
//
// Duplicate key phrase directly.
@ -86,31 +86,41 @@ RsaGetPrivateKeyFromPem (
return FALSE;
}
Status = FALSE;
PemBio = NULL;
//
// Add possible block-cipher descriptor for PEM data decryption.
// NOTE: Only support most popular ciphers (3DES, AES) for the encrypted PEM.
//
EVP_add_cipher (EVP_des_ede3_cbc());
EVP_add_cipher (EVP_aes_128_cbc());
EVP_add_cipher (EVP_aes_192_cbc());
EVP_add_cipher (EVP_aes_256_cbc());
if (EVP_add_cipher (EVP_des_ede3_cbc ()) == 0) {
return FALSE;
}
if (EVP_add_cipher (EVP_aes_128_cbc ()) == 0) {
return FALSE;
}
if (EVP_add_cipher (EVP_aes_192_cbc ()) == 0) {
return FALSE;
}
if (EVP_add_cipher (EVP_aes_256_cbc ()) == 0) {
return FALSE;
}
Status = FALSE;
//
// Read encrypted PEM Data.
//
PemBio = BIO_new (BIO_s_mem ());
BIO_write (PemBio, PemData, (int)PemSize);
if (PemBio == NULL) {
goto _Exit;
}
if (BIO_write (PemBio, PemData, (int) PemSize) <= 0) {
goto _Exit;
}
//
// Retrieve RSA Private Key from encrypted PEM data.
//
*RsaContext = PEM_read_bio_RSAPrivateKey (PemBio, NULL, (pem_password_cb *)&PasswordCallback, (void *)Password);
*RsaContext = PEM_read_bio_RSAPrivateKey (PemBio, NULL, (pem_password_cb *) &PasswordCallback, (void *) Password);
if (*RsaContext != NULL) {
Status = TRUE;
}

View File

@ -26,6 +26,12 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#include <openssl/x509.h>
#include <openssl/pkcs7.h>
//
// OID ASN.1 Value for SPC_INDIRECT_DATA_OBJID
//
UINT8 mSpcIndirectOidValue[] = {
0x2B, 0x06, 0x01, 0x04, 0x01, 0x82, 0x37, 0x02, 0x01, 0x04
};
/**
Verifies the validility of a PE/COFF Authenticode Signature as described in "Windows
@ -70,6 +76,7 @@ AuthenticodeVerify (
UINT8 *SpcIndirectDataContent;
UINT8 Asn1Byte;
UINTN ContentSize;
UINT8 *SpcIndirectDataOid;
//
// Check input parameters.
@ -106,6 +113,19 @@ AuthenticodeVerify (
// some authenticode-specific structure. Use opaque ASN.1 string to retrieve
// PKCS#7 ContentInfo here.
//
SpcIndirectDataOid = (UINT8 *)(Pkcs7->d.sign->contents->type->data);
if (CompareMem (
SpcIndirectDataOid,
mSpcIndirectOidValue,
sizeof (mSpcIndirectOidValue)
) != 0) {
//
// Un-matched SPC_INDIRECT_DATA_OBJID.
//
goto _Exit;
}
SpcIndirectDataContent = (UINT8 *)(Pkcs7->d.sign->contents->d.other->value.asn1_string->data);
//

View File

@ -32,7 +32,7 @@ DhNew (
//
// Allocates & Initializes DH Context by OpenSSL DH_new()
//
return (VOID *)DH_new ();
return (VOID *) DH_new ();
}
/**
@ -52,7 +52,7 @@ DhFree (
//
// Free OpenSSL DH Context
//
DH_free ((DH *)DhContext);
DH_free ((DH *) DhContext);
}
/**
@ -91,7 +91,7 @@ DhGenerateParameter (
//
// Check input parameters.
//
if (DhContext == NULL || Prime == NULL) {
if (DhContext == NULL || Prime == NULL || PrimeLength > INT_MAX) {
return FALSE;
}
@ -139,12 +139,13 @@ DhSetParameter (
IN CONST UINT8 *Prime
)
{
DH *Dh;
DH *Dh;
BIGNUM *Bn;
//
// Check input parameters.
//
if (DhContext == NULL || Prime == NULL) {
if (DhContext == NULL || Prime == NULL || PrimeLength > INT_MAX) {
return FALSE;
}
@ -152,14 +153,46 @@ DhSetParameter (
return FALSE;
}
Dh = (DH *) DhContext;
Dh->p = BN_new();
Dh->g = BN_new();
Bn = NULL;
BN_bin2bn (Prime, (UINT32) (PrimeLength / 8), Dh->p);
BN_set_word (Dh->g, (UINT32) Generator);
Dh = (DH *) DhContext;
Dh->g = NULL;
Dh->p = BN_new ();
if (Dh->p == NULL) {
goto Error;
}
Dh->g = BN_new ();
if (Dh->g == NULL) {
goto Error;
}
Bn = BN_bin2bn (Prime, (UINT32) (PrimeLength / 8), Dh->p);
if (Bn == NULL) {
goto Error;
}
if (BN_set_word (Dh->g, (UINT32) Generator) == 0) {
goto Error;
}
return TRUE;
Error:
if (Dh->p != NULL) {
BN_free (Dh->p);
}
if (Dh->g != NULL) {
BN_free (Dh->g);
}
if (Bn != NULL) {
BN_free (Bn);
}
return FALSE;
}
/**
@ -194,6 +227,7 @@ DhGenerateKey (
{
BOOLEAN RetVal;
DH *Dh;
INTN Size;
//
// Check input parameters.
@ -207,12 +241,17 @@ DhGenerateKey (
}
Dh = (DH *) DhContext;
*PublicKeySize = 0;
RetVal = (BOOLEAN) DH_generate_key (DhContext);
if (RetVal) {
Size = BN_num_bytes (Dh->pub_key);
if ((Size > 0) && (*PublicKeySize < (UINTN) Size)) {
*PublicKeySize = Size;
return FALSE;
}
BN_bn2bin (Dh->pub_key, PublicKey);
*PublicKeySize = BN_num_bytes (Dh->pub_key);
*PublicKeySize = Size;
}
return RetVal;
@ -227,7 +266,8 @@ DhGenerateKey (
If DhContext is NULL, then return FALSE.
If PeerPublicKey is NULL, then return FALSE.
If KeySize is NULL, then return FALSE.
If KeySize is large enough but Key is NULL, then return FALSE.
If Key is NULL, then return FALSE.
If KeySize is not large enough, then return FALSE.
@param[in, out] DhContext Pointer to the DH context.
@param[in] PeerPublicKey Pointer to the peer's public key.
@ -252,23 +292,37 @@ DhComputeKey (
)
{
BIGNUM *Bn;
INTN Size;
//
// Check input parameters.
//
if (DhContext == NULL || PeerPublicKey == NULL || KeySize == NULL) {
if (DhContext == NULL || PeerPublicKey == NULL || KeySize == NULL || Key == NULL) {
return FALSE;
}
if (Key == NULL && *KeySize != 0) {
if (PeerPublicKeySize > INT_MAX) {
return FALSE;
}
Bn = BN_bin2bn (PeerPublicKey, (UINT32) PeerPublicKeySize, NULL);
if (Bn == NULL) {
return FALSE;
}
*KeySize = (BOOLEAN) DH_compute_key (Key, Bn, DhContext);
Size = DH_compute_key (Key, Bn, DhContext);
if (Size < 0) {
BN_free (Bn);
return FALSE;
}
if (*KeySize < (UINTN) Size) {
*KeySize = Size;
BN_free (Bn);
return FALSE;
}
*KeySize = Size;
BN_free (Bn);
return TRUE;
}

View File

@ -1,722 +0,0 @@
/** @file
RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/rsa.h>
#include <openssl/err.h>
//
// ASN.1 value for Hash Algorithm ID with the Distringuished Encoding Rules (DER)
// Refer to Section 9.2 of PKCS#1 v2.1
//
CONST UINT8 Asn1IdMd5[] = {
0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86,
0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10
};
CONST UINT8 Asn1IdSha1[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e,
0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14
};
CONST UINT8 Asn1IdSha256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20
};
/**
Allocates and initializes one RSA context for subsequent use.
@return Pointer to the RSA context that has been initialized.
If the allocations fails, RsaNew() returns NULL.
**/
VOID *
EFIAPI
RsaNew (
VOID
)
{
//
// Allocates & Initializes RSA Context by OpenSSL RSA_new()
//
return (VOID *)RSA_new ();
}
/**
Release the specified RSA context.
If RsaContext is NULL, then return FALSE.
@param[in] RsaContext Pointer to the RSA context to be released.
**/
VOID
EFIAPI
RsaFree (
IN VOID *RsaContext
)
{
//
// Free OpenSSL RSA Context
//
RSA_free ((RSA *)RsaContext);
}
/**
Sets the tag-designated key component into the established RSA context.
This function sets the tag-designated RSA key component into the established
RSA context from the user-specified non-negative integer (octet string format
represented in RSA PKCS#1).
If BigNumber is NULL, then the specified key componenet in RSA context is cleared.
If RsaContext is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[in] BigNumber Pointer to octet integer buffer.
If NULL, then the specified key componenet in RSA
context is cleared.
@param[in] BnSize Size of big number buffer in bytes.
If BigNumber is NULL, then it is ignored.
@retval TRUE RSA key component was set successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaSetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
IN CONST UINT8 *BigNumber,
IN UINTN BnSize
)
{
RSA *RsaKey;
//
// Check input parameters.
//
if (RsaContext == NULL) {
return FALSE;
}
RsaKey = (RSA *)RsaContext;
//
// Set RSA Key Components by converting octet string to OpenSSL BN representation.
// NOTE: For RSA public key (used in signature verification), only public components
// (N, e) are needed.
//
switch (KeyTag) {
//
// RSA Public Modulus (N)
//
case RsaKeyN:
if (RsaKey->n != NULL) {
BN_free (RsaKey->n);
}
RsaKey->n = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->n = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->n);
break;
//
// RSA Public Exponent (e)
//
case RsaKeyE:
if (RsaKey->e != NULL) {
BN_free (RsaKey->e);
}
RsaKey->e = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->e = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->e);
break;
//
// RSA Private Exponent (d)
//
case RsaKeyD:
if (RsaKey->d != NULL) {
BN_free (RsaKey->d);
}
RsaKey->d = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->d = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->d);
break;
//
// RSA Secret Prime Factor of Modulus (p)
//
case RsaKeyP:
if (RsaKey->p != NULL) {
BN_free (RsaKey->p);
}
RsaKey->p = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->p = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->p);
break;
//
// RSA Secret Prime Factor of Modules (q)
//
case RsaKeyQ:
if (RsaKey->q != NULL) {
BN_free (RsaKey->q);
}
RsaKey->q = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->q = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->q);
break;
//
// p's CRT Exponent (== d mod (p - 1))
//
case RsaKeyDp:
if (RsaKey->dmp1 != NULL) {
BN_free (RsaKey->dmp1);
}
RsaKey->dmp1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmp1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmp1);
break;
//
// q's CRT Exponent (== d mod (q - 1))
//
case RsaKeyDq:
if (RsaKey->dmq1 != NULL) {
BN_free (RsaKey->dmq1);
}
RsaKey->dmq1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmq1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmq1);
break;
//
// The CRT Coefficient (== 1/q mod p)
//
case RsaKeyQInv:
if (RsaKey->iqmp != NULL) {
BN_free (RsaKey->iqmp);
}
RsaKey->iqmp = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->iqmp = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->iqmp);
break;
default:
return FALSE;
}
return TRUE;
}
/**
Gets the tag-designated RSA key component from the established RSA context.
This function retrieves the tag-designated RSA key component from the
established RSA context as a non-negative integer (octet string format
represented in RSA PKCS#1).
If specified key component has not been set or has been cleared, then returned
BnSize is set to 0.
If the BigNumber buffer is too small to hold the contents of the key, FALSE
is returned and BnSize is set to the required buffer size to obtain the key.
If RsaContext is NULL, then return FALSE.
If BnSize is NULL, then return FALSE.
If BnSize is large enough but BigNumber is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[out] BigNumber Pointer to octet integer buffer.
@param[in, out] BnSize On input, the size of big number buffer in bytes.
On output, the size of data returned in big number buffer in bytes.
@retval TRUE RSA key component was retrieved successfully.
@retval FALSE Invalid RSA key component tag.
@retval FALSE BnSize is too small.
**/
BOOLEAN
EFIAPI
RsaGetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
OUT UINT8 *BigNumber,
IN OUT UINTN *BnSize
)
{
RSA *RsaKey;
BIGNUM *BnKey;
UINTN Size;
//
// Check input parameters.
//
if (RsaContext == NULL || BnSize == NULL) {
return FALSE;
}
RsaKey = (RSA *) RsaContext;
Size = *BnSize;
*BnSize = 0;
switch (KeyTag) {
//
// RSA Public Modulus (N)
//
case RsaKeyN:
if (RsaKey->n == NULL) {
return TRUE;
}
BnKey = RsaKey->n;
break;
//
// RSA Public Exponent (e)
//
case RsaKeyE:
if (RsaKey->e == NULL) {
return TRUE;
}
BnKey = RsaKey->e;
break;
//
// RSA Private Exponent (d)
//
case RsaKeyD:
if (RsaKey->d == NULL) {
return TRUE;
}
BnKey = RsaKey->d;
break;
//
// RSA Secret Prime Factor of Modulus (p)
//
case RsaKeyP:
if (RsaKey->p == NULL) {
return TRUE;
}
BnKey = RsaKey->p;
break;
//
// RSA Secret Prime Factor of Modules (q)
//
case RsaKeyQ:
if (RsaKey->q == NULL) {
return TRUE;
}
BnKey = RsaKey->q;
break;
//
// p's CRT Exponent (== d mod (p - 1))
//
case RsaKeyDp:
if (RsaKey->dmp1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmp1;
break;
//
// q's CRT Exponent (== d mod (q - 1))
//
case RsaKeyDq:
if (RsaKey->dmq1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmq1;
break;
//
// The CRT Coefficient (== 1/q mod p)
//
case RsaKeyQInv:
if (RsaKey->iqmp == NULL) {
return TRUE;
}
BnKey = RsaKey->iqmp;
break;
default:
return FALSE;
}
*BnSize = Size;
Size = BN_num_bytes (BnKey);
if (*BnSize < Size) {
*BnSize = Size;
return FALSE;
}
if (BigNumber == NULL) {
return FALSE;
}
*BnSize = BN_bn2bin (BnKey, BigNumber) ;
return TRUE;
}
/**
Generates RSA key components.
This function generates RSA key components. It takes RSA public exponent E and
length in bits of RSA modulus N as input, and generates all key components.
If PublicExponent is NULL, the default RSA public exponent (0x10001) will be used.
Before this function can be invoked, pseudorandom number generator must be correctly
initialized by RandomSeed().
If RsaContext is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] ModulusLength Length of RSA modulus N in bits.
@param[in] PublicExponent Pointer to RSA public exponent.
@param[in] PublicExponentSize Size of RSA public exponent buffer in bytes.
@retval TRUE RSA key component was generated successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaGenerateKey (
IN OUT VOID *RsaContext,
IN UINTN ModulusLength,
IN CONST UINT8 *PublicExponent,
IN UINTN PublicExponentSize
)
{
BIGNUM *KeyE;
BOOLEAN RetVal;
//
// Check input parameters.
//
if (RsaContext == NULL) {
return FALSE;
}
KeyE = BN_new ();
if (PublicExponent == NULL) {
BN_set_word (KeyE, 0x10001);
} else {
BN_bin2bn (PublicExponent, (UINT32) PublicExponentSize, KeyE);
}
RetVal = FALSE;
if (RSA_generate_key_ex ((RSA *) RsaContext, (UINT32) ModulusLength, KeyE, NULL) == 1) {
RetVal = TRUE;
}
BN_free (KeyE);
return RetVal;
}
/**
Validates key components of RSA context.
This function validates key compoents of RSA context in following aspects:
- Whether p is a prime
- Whether q is a prime
- Whether n = p * q
- Whether d*e = 1 mod lcm(p-1,q-1)
If RsaContext is NULL, then return FALSE.
@param[in] RsaContext Pointer to RSA context to check.
@retval TRUE RSA key components are valid.
@retval FALSE RSA key components are not valid.
**/
BOOLEAN
EFIAPI
RsaCheckKey (
IN VOID *RsaContext
)
{
UINTN Reason;
//
// Check input parameters.
//
if (RsaContext == NULL) {
return FALSE;
}
if (RSA_check_key ((RSA *) RsaContext) != 1) {
Reason = ERR_GET_REASON (ERR_peek_last_error ());
if (Reason == RSA_R_P_NOT_PRIME ||
Reason == RSA_R_Q_NOT_PRIME ||
Reason == RSA_R_N_DOES_NOT_EQUAL_P_Q ||
Reason == RSA_R_D_E_NOT_CONGRUENT_TO_1) {
return FALSE;
}
}
return TRUE;
}
/**
Performs the PKCS1-v1_5 encoding methods defined in RSA PKCS #1.
@param Message Message buffer to be encoded.
@param MessageSize Size of message buffer in bytes.
@param DigestInfo Pointer to buffer of digest info for output.
@return Size of DigestInfo in bytes.
**/
UINTN
DigestInfoEncoding (
IN CONST UINT8 *Message,
IN UINTN MessageSize,
OUT UINT8 *DigestInfo
)
{
CONST UINT8 *HashDer;
UINTN DerSize;
//
// Check input parameters.
//
if (Message == NULL || DigestInfo == NULL) {
return FALSE;
}
//
// The original message length is used to determine the hash algorithm since
// message is digest value hashed by the specified algorithm.
//
switch (MessageSize) {
case MD5_DIGEST_SIZE:
HashDer = Asn1IdMd5;
DerSize = sizeof (Asn1IdMd5);
break;
case SHA1_DIGEST_SIZE:
HashDer = Asn1IdSha1;
DerSize = sizeof (Asn1IdSha1);
break;
case SHA256_DIGEST_SIZE:
HashDer = Asn1IdSha256;
DerSize = sizeof (Asn1IdSha256);
break;
default:
return FALSE;
}
CopyMem (DigestInfo, HashDer, DerSize);
CopyMem (DigestInfo + DerSize, Message, MessageSize);
return (DerSize + MessageSize);
}
/**
Carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme.
This function carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If the Signature buffer is too small to hold the contents of signature, FALSE
is returned and SigSize is set to the required buffer size to obtain the signature.
If RsaContext is NULL, then return FALSE.
If MessageHash is NULL, then return FALSE.
If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
If SigSize is large enough but Signature is NULL, then return FALSE.
@param[in] RsaContext Pointer to RSA context for signature generation.
@param[in] MessageHash Pointer to octet message hash to be signed.
@param[in] HashSize Size of the message hash in bytes.
@param[out] Signature Pointer to buffer to receive RSA PKCS1-v1_5 signature.
@param[in, out] SigSize On input, the size of Signature buffer in bytes.
On output, the size of data returned in Signature buffer in bytes.
@retval TRUE Signature successfully generated in PKCS1-v1_5.
@retval FALSE Signature generation failed.
@retval FALSE SigSize is too small.
**/
BOOLEAN
EFIAPI
RsaPkcs1Sign (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
OUT UINT8 *Signature,
IN OUT UINTN *SigSize
)
{
RSA *Rsa;
UINTN Size;
INTN ReturnVal;
//
// Check input parameters.
//
if (RsaContext == NULL || MessageHash == NULL ||
(HashSize != MD5_DIGEST_SIZE && HashSize != SHA1_DIGEST_SIZE && HashSize != SHA256_DIGEST_SIZE)) {
return FALSE;
}
Rsa = (RSA *) RsaContext;
Size = BN_num_bytes (Rsa->n);
if (*SigSize < Size) {
*SigSize = Size;
return FALSE;
}
if (Signature == NULL) {
return FALSE;
}
Size = DigestInfoEncoding (MessageHash, HashSize, Signature);
ReturnVal = RSA_private_encrypt (
(UINT32) Size,
Signature,
Signature,
Rsa,
RSA_PKCS1_PADDING
);
if (ReturnVal < (INTN) Size) {
return FALSE;
}
*SigSize = (UINTN)ReturnVal;
return TRUE;
}
/**
Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If RsaContext is NULL, then return FALSE.
If MessageHash is NULL, then return FALSE.
If Signature is NULL, then return FALSE.
If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
@param[in] RsaContext Pointer to RSA context for signature verification.
@param[in] MessageHash Pointer to octet message hash to be checked.
@param[in] HashSize Size of the message hash in bytes.
@param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
@param[in] SigSize Size of signature in bytes.
@retval TRUE Valid signature encoded in PKCS1-v1_5.
@retval FALSE Invalid signature or invalid RSA context.
**/
BOOLEAN
EFIAPI
RsaPkcs1Verify (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
IN UINT8 *Signature,
IN UINTN SigSize
)
{
INTN Length;
//
// Check input parameters.
//
if (RsaContext == NULL || MessageHash == NULL || Signature == NULL) {
return FALSE;
}
//
// Check for unsupported hash size:
// Only MD5, SHA-1 or SHA-256 digest size is supported
//
if (HashSize != MD5_DIGEST_SIZE && HashSize != SHA1_DIGEST_SIZE && HashSize != SHA256_DIGEST_SIZE) {
return FALSE;
}
//
// RSA PKCS#1 Signature Decoding using OpenSSL RSA Decryption with Public Key
//
Length = RSA_public_decrypt (
(UINT32) SigSize,
Signature,
Signature,
RsaContext,
RSA_PKCS1_PADDING
);
//
// Invalid RSA Key or PKCS#1 Padding Checking Failed (if Length < 0)
// NOTE: Length should be the addition of HashSize and some DER value.
// Ignore more strict length checking here.
//
if (Length < (INTN) HashSize) {
return FALSE;
}
//
// Validate the MessageHash and Decoded Signature
// NOTE: The decoded Signature should be the DER encoding of the DigestInfo value
// DigestInfo ::= SEQUENCE {
// digestAlgorithm AlgorithmIdentifier
// digest OCTET STRING
// }
// Then Memory Comparing should skip the DER value of the underlying SEQUENCE
// type and AlgorithmIdentifier.
//
if (CompareMem (MessageHash, Signature + Length - HashSize, HashSize) == 0) {
//
// Valid RSA PKCS#1 Signature
//
return TRUE;
} else {
//
// Failed to verification
//
return FALSE;
}
}

335
Cryptlib/Pk/CryptRsaBasic.c Normal file
View File

@ -0,0 +1,335 @@
/** @file
RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
This file implements following APIs which provide basic capabilities for RSA:
1) RsaNew
2) RsaFree
3) RsaSetKey
4) RsaPkcs1Verify
Copyright (c) 2009 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/rsa.h>
#include <openssl/objects.h>
/**
Allocates and initializes one RSA context for subsequent use.
@return Pointer to the RSA context that has been initialized.
If the allocations fails, RsaNew() returns NULL.
**/
VOID *
EFIAPI
RsaNew (
VOID
)
{
//
// Allocates & Initializes RSA Context by OpenSSL RSA_new()
//
return (VOID *) RSA_new ();
}
/**
Release the specified RSA context.
@param[in] RsaContext Pointer to the RSA context to be released.
**/
VOID
EFIAPI
RsaFree (
IN VOID *RsaContext
)
{
//
// Free OpenSSL RSA Context
//
RSA_free ((RSA *) RsaContext);
}
/**
Sets the tag-designated key component into the established RSA context.
This function sets the tag-designated RSA key component into the established
RSA context from the user-specified non-negative integer (octet string format
represented in RSA PKCS#1).
If BigNumber is NULL, then the specified key componenet in RSA context is cleared.
If RsaContext is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[in] BigNumber Pointer to octet integer buffer.
If NULL, then the specified key componenet in RSA
context is cleared.
@param[in] BnSize Size of big number buffer in bytes.
If BigNumber is NULL, then it is ignored.
@retval TRUE RSA key component was set successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaSetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
IN CONST UINT8 *BigNumber,
IN UINTN BnSize
)
{
RSA *RsaKey;
//
// Check input parameters.
//
if (RsaContext == NULL || BnSize > INT_MAX) {
return FALSE;
}
RsaKey = (RSA *) RsaContext;
//
// Set RSA Key Components by converting octet string to OpenSSL BN representation.
// NOTE: For RSA public key (used in signature verification), only public components
// (N, e) are needed.
//
switch (KeyTag) {
//
// RSA Public Modulus (N)
//
case RsaKeyN:
if (RsaKey->n != NULL) {
BN_free (RsaKey->n);
}
RsaKey->n = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->n = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->n);
if (RsaKey->n == NULL) {
return FALSE;
}
break;
//
// RSA Public Exponent (e)
//
case RsaKeyE:
if (RsaKey->e != NULL) {
BN_free (RsaKey->e);
}
RsaKey->e = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->e = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->e);
if (RsaKey->e == NULL) {
return FALSE;
}
break;
//
// RSA Private Exponent (d)
//
case RsaKeyD:
if (RsaKey->d != NULL) {
BN_free (RsaKey->d);
}
RsaKey->d = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->d = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->d);
if (RsaKey->d == NULL) {
return FALSE;
}
break;
//
// RSA Secret Prime Factor of Modulus (p)
//
case RsaKeyP:
if (RsaKey->p != NULL) {
BN_free (RsaKey->p);
}
RsaKey->p = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->p = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->p);
if (RsaKey->p == NULL) {
return FALSE;
}
break;
//
// RSA Secret Prime Factor of Modules (q)
//
case RsaKeyQ:
if (RsaKey->q != NULL) {
BN_free (RsaKey->q);
}
RsaKey->q = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->q = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->q);
if (RsaKey->q == NULL) {
return FALSE;
}
break;
//
// p's CRT Exponent (== d mod (p - 1))
//
case RsaKeyDp:
if (RsaKey->dmp1 != NULL) {
BN_free (RsaKey->dmp1);
}
RsaKey->dmp1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmp1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmp1);
if (RsaKey->dmp1 == NULL) {
return FALSE;
}
break;
//
// q's CRT Exponent (== d mod (q - 1))
//
case RsaKeyDq:
if (RsaKey->dmq1 != NULL) {
BN_free (RsaKey->dmq1);
}
RsaKey->dmq1 = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->dmq1 = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->dmq1);
if (RsaKey->dmq1 == NULL) {
return FALSE;
}
break;
//
// The CRT Coefficient (== 1/q mod p)
//
case RsaKeyQInv:
if (RsaKey->iqmp != NULL) {
BN_free (RsaKey->iqmp);
}
RsaKey->iqmp = NULL;
if (BigNumber == NULL) {
break;
}
RsaKey->iqmp = BN_bin2bn (BigNumber, (UINT32) BnSize, RsaKey->iqmp);
if (RsaKey->iqmp == NULL) {
return FALSE;
}
break;
default:
return FALSE;
}
return TRUE;
}
/**
Verifies the RSA-SSA signature with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If RsaContext is NULL, then return FALSE.
If MessageHash is NULL, then return FALSE.
If Signature is NULL, then return FALSE.
If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
@param[in] RsaContext Pointer to RSA context for signature verification.
@param[in] MessageHash Pointer to octet message hash to be checked.
@param[in] HashSize Size of the message hash in bytes.
@param[in] Signature Pointer to RSA PKCS1-v1_5 signature to be verified.
@param[in] SigSize Size of signature in bytes.
@retval TRUE Valid signature encoded in PKCS1-v1_5.
@retval FALSE Invalid signature or invalid RSA context.
**/
BOOLEAN
EFIAPI
RsaPkcs1Verify (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
IN CONST UINT8 *Signature,
IN UINTN SigSize
)
{
INT32 DigestType;
UINT8 *SigBuf;
//
// Check input parameters.
//
if (RsaContext == NULL || MessageHash == NULL || Signature == NULL) {
return FALSE;
}
if (SigSize > INT_MAX || SigSize == 0) {
return FALSE;
}
//
// Determine the message digest algorithm according to digest size.
// Only MD5, SHA-1 or SHA-256 algorithm is supported.
//
switch (HashSize) {
case MD5_DIGEST_SIZE:
DigestType = NID_md5;
break;
case SHA1_DIGEST_SIZE:
DigestType = NID_sha1;
break;
case SHA256_DIGEST_SIZE:
DigestType = NID_sha256;
break;
default:
return FALSE;
}
SigBuf = (UINT8 *) Signature;
return (BOOLEAN) RSA_verify (
DigestType,
MessageHash,
(UINT32) HashSize,
SigBuf,
(UINT32) SigSize,
(RSA *) RsaContext
);
}

377
Cryptlib/Pk/CryptRsaExt.c Normal file
View File

@ -0,0 +1,377 @@
/** @file
RSA Asymmetric Cipher Wrapper Implementation over OpenSSL.
This file implements following APIs which provide more capabilities for RSA:
1) RsaGetKey
2) RsaGenerateKey
3) RsaCheckKey
4) RsaPkcs1Sign
Copyright (c) 2009 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "InternalCryptLib.h"
#include <openssl/rsa.h>
#include <openssl/err.h>
#include <openssl/objects.h>
/**
Gets the tag-designated RSA key component from the established RSA context.
This function retrieves the tag-designated RSA key component from the
established RSA context as a non-negative integer (octet string format
represented in RSA PKCS#1).
If specified key component has not been set or has been cleared, then returned
BnSize is set to 0.
If the BigNumber buffer is too small to hold the contents of the key, FALSE
is returned and BnSize is set to the required buffer size to obtain the key.
If RsaContext is NULL, then return FALSE.
If BnSize is NULL, then return FALSE.
If BnSize is large enough but BigNumber is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] KeyTag Tag of RSA key component being set.
@param[out] BigNumber Pointer to octet integer buffer.
@param[in, out] BnSize On input, the size of big number buffer in bytes.
On output, the size of data returned in big number buffer in bytes.
@retval TRUE RSA key component was retrieved successfully.
@retval FALSE Invalid RSA key component tag.
@retval FALSE BnSize is too small.
**/
BOOLEAN
EFIAPI
RsaGetKey (
IN OUT VOID *RsaContext,
IN RSA_KEY_TAG KeyTag,
OUT UINT8 *BigNumber,
IN OUT UINTN *BnSize
)
{
RSA *RsaKey;
BIGNUM *BnKey;
UINTN Size;
//
// Check input parameters.
//
if (RsaContext == NULL || BnSize == NULL) {
return FALSE;
}
RsaKey = (RSA *) RsaContext;
Size = *BnSize;
*BnSize = 0;
switch (KeyTag) {
//
// RSA Public Modulus (N)
//
case RsaKeyN:
if (RsaKey->n == NULL) {
return TRUE;
}
BnKey = RsaKey->n;
break;
//
// RSA Public Exponent (e)
//
case RsaKeyE:
if (RsaKey->e == NULL) {
return TRUE;
}
BnKey = RsaKey->e;
break;
//
// RSA Private Exponent (d)
//
case RsaKeyD:
if (RsaKey->d == NULL) {
return TRUE;
}
BnKey = RsaKey->d;
break;
//
// RSA Secret Prime Factor of Modulus (p)
//
case RsaKeyP:
if (RsaKey->p == NULL) {
return TRUE;
}
BnKey = RsaKey->p;
break;
//
// RSA Secret Prime Factor of Modules (q)
//
case RsaKeyQ:
if (RsaKey->q == NULL) {
return TRUE;
}
BnKey = RsaKey->q;
break;
//
// p's CRT Exponent (== d mod (p - 1))
//
case RsaKeyDp:
if (RsaKey->dmp1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmp1;
break;
//
// q's CRT Exponent (== d mod (q - 1))
//
case RsaKeyDq:
if (RsaKey->dmq1 == NULL) {
return TRUE;
}
BnKey = RsaKey->dmq1;
break;
//
// The CRT Coefficient (== 1/q mod p)
//
case RsaKeyQInv:
if (RsaKey->iqmp == NULL) {
return TRUE;
}
BnKey = RsaKey->iqmp;
break;
default:
return FALSE;
}
*BnSize = Size;
Size = BN_num_bytes (BnKey);
if (*BnSize < Size) {
*BnSize = Size;
return FALSE;
}
if (BigNumber == NULL) {
return FALSE;
}
*BnSize = BN_bn2bin (BnKey, BigNumber) ;
return TRUE;
}
/**
Generates RSA key components.
This function generates RSA key components. It takes RSA public exponent E and
length in bits of RSA modulus N as input, and generates all key components.
If PublicExponent is NULL, the default RSA public exponent (0x10001) will be used.
Before this function can be invoked, pseudorandom number generator must be correctly
initialized by RandomSeed().
If RsaContext is NULL, then return FALSE.
@param[in, out] RsaContext Pointer to RSA context being set.
@param[in] ModulusLength Length of RSA modulus N in bits.
@param[in] PublicExponent Pointer to RSA public exponent.
@param[in] PublicExponentSize Size of RSA public exponent buffer in bytes.
@retval TRUE RSA key component was generated successfully.
@retval FALSE Invalid RSA key component tag.
**/
BOOLEAN
EFIAPI
RsaGenerateKey (
IN OUT VOID *RsaContext,
IN UINTN ModulusLength,
IN CONST UINT8 *PublicExponent,
IN UINTN PublicExponentSize
)
{
BIGNUM *KeyE;
BOOLEAN RetVal;
//
// Check input parameters.
//
if (RsaContext == NULL || ModulusLength > INT_MAX || PublicExponentSize > INT_MAX) {
return FALSE;
}
KeyE = BN_new ();
if (KeyE == NULL) {
return FALSE;
}
RetVal = FALSE;
if (PublicExponent == NULL) {
if (BN_set_word (KeyE, 0x10001) == 0) {
goto _Exit;
}
} else {
if (BN_bin2bn (PublicExponent, (UINT32) PublicExponentSize, KeyE) == NULL) {
goto _Exit;
}
}
if (RSA_generate_key_ex ((RSA *) RsaContext, (UINT32) ModulusLength, KeyE, NULL) == 1) {
RetVal = TRUE;
}
_Exit:
BN_free (KeyE);
return RetVal;
}
/**
Validates key components of RSA context.
This function validates key compoents of RSA context in following aspects:
- Whether p is a prime
- Whether q is a prime
- Whether n = p * q
- Whether d*e = 1 mod lcm(p-1,q-1)
If RsaContext is NULL, then return FALSE.
@param[in] RsaContext Pointer to RSA context to check.
@retval TRUE RSA key components are valid.
@retval FALSE RSA key components are not valid.
**/
BOOLEAN
EFIAPI
RsaCheckKey (
IN VOID *RsaContext
)
{
UINTN Reason;
//
// Check input parameters.
//
if (RsaContext == NULL) {
return FALSE;
}
if (RSA_check_key ((RSA *) RsaContext) != 1) {
Reason = ERR_GET_REASON (ERR_peek_last_error ());
if (Reason == RSA_R_P_NOT_PRIME ||
Reason == RSA_R_Q_NOT_PRIME ||
Reason == RSA_R_N_DOES_NOT_EQUAL_P_Q ||
Reason == RSA_R_D_E_NOT_CONGRUENT_TO_1) {
return FALSE;
}
}
return TRUE;
}
/**
Carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme.
This function carries out the RSA-SSA signature generation with EMSA-PKCS1-v1_5 encoding scheme defined in
RSA PKCS#1.
If the Signature buffer is too small to hold the contents of signature, FALSE
is returned and SigSize is set to the required buffer size to obtain the signature.
If RsaContext is NULL, then return FALSE.
If MessageHash is NULL, then return FALSE.
If HashSize is not equal to the size of MD5, SHA-1 or SHA-256 digest, then return FALSE.
If SigSize is large enough but Signature is NULL, then return FALSE.
@param[in] RsaContext Pointer to RSA context for signature generation.
@param[in] MessageHash Pointer to octet message hash to be signed.
@param[in] HashSize Size of the message hash in bytes.
@param[out] Signature Pointer to buffer to receive RSA PKCS1-v1_5 signature.
@param[in, out] SigSize On input, the size of Signature buffer in bytes.
On output, the size of data returned in Signature buffer in bytes.
@retval TRUE Signature successfully generated in PKCS1-v1_5.
@retval FALSE Signature generation failed.
@retval FALSE SigSize is too small.
**/
BOOLEAN
EFIAPI
RsaPkcs1Sign (
IN VOID *RsaContext,
IN CONST UINT8 *MessageHash,
IN UINTN HashSize,
OUT UINT8 *Signature,
IN OUT UINTN *SigSize
)
{
RSA *Rsa;
UINTN Size;
INT32 DigestType;
//
// Check input parameters.
//
if (RsaContext == NULL || MessageHash == NULL) {
return FALSE;
}
Rsa = (RSA *) RsaContext;
Size = BN_num_bytes (Rsa->n);
if (*SigSize < Size) {
*SigSize = Size;
return FALSE;
}
if (Signature == NULL) {
return FALSE;
}
//
// Determine the message digest algorithm according to digest size.
// Only MD5, SHA-1 or SHA-256 algorithm is supported.
//
switch (HashSize) {
case MD5_DIGEST_SIZE:
DigestType = NID_md5;
break;
case SHA1_DIGEST_SIZE:
DigestType = NID_sha1;
break;
case SHA256_DIGEST_SIZE:
DigestType = NID_sha256;
break;
default:
return FALSE;
}
return (BOOLEAN) RSA_sign (
DigestType,
MessageHash,
(UINT32) HashSize,
Signature,
(UINT32 *) SigSize,
(RSA *) RsaContext
);
}

View File

@ -38,9 +38,7 @@ X509ConstructCertificate (
OUT UINT8 **SingleX509Cert
)
{
BIO *CertBio;
X509 *X509Cert;
BOOLEAN Status;
//
// Check input parameters.
@ -49,31 +47,17 @@ X509ConstructCertificate (
return FALSE;
}
Status = FALSE;
//
// Read DER-encoded X509 Certificate and Construct X509 object.
//
CertBio = BIO_new (BIO_s_mem ());
BIO_write (CertBio, Cert, (int) CertSize);
if (CertBio == NULL) {
goto _Exit;
}
X509Cert = d2i_X509_bio (CertBio, NULL);
X509Cert = d2i_X509 (NULL, &Cert, (long) CertSize);
if (X509Cert == NULL) {
goto _Exit;
return FALSE;
}
*SingleX509Cert = (UINT8 *) X509Cert;
Status = TRUE;
_Exit:
//
// Release Resources.
//
BIO_free (CertBio);
return Status;
return TRUE;
}
/**
@ -224,91 +208,6 @@ X509StackFree (
sk_X509_pop_free ((STACK_OF(X509) *) X509Stack, X509_free);
}
/**
Pop single certificate from STACK_OF(X509).
If X509Stack, Cert, or CertSize is NULL, then return FALSE.
@param[in] X509Stack Pointer to a X509 stack object.
@param[out] Cert Pointer to a X509 certificate.
@param[out] CertSize Length of output X509 certificate in bytes.
@retval TRUE The X509 stack pop succeeded.
@retval FALSE The pop operation failed.
**/
BOOLEAN
X509PopCertificate (
IN VOID *X509Stack,
OUT UINT8 **Cert,
OUT UINTN *CertSize
)
{
BIO *CertBio;
X509 *X509Cert;
STACK_OF(X509) *CertStack;
BOOLEAN Status;
int Result;
int Length;
VOID *Buffer;
Status = FALSE;
if ((X509Stack == NULL) || (Cert == NULL) || (CertSize == NULL)) {
return Status;
}
CertStack = (STACK_OF(X509) *) X509Stack;
X509Cert = sk_X509_pop (CertStack);
if (X509Cert == NULL) {
return Status;
}
Buffer = NULL;
CertBio = BIO_new (BIO_s_mem ());
if (CertBio == NULL) {
return Status;
}
Result = i2d_X509_bio (CertBio, X509Cert);
if (Result == 0) {
goto _Exit;
}
Length = ((BUF_MEM *) CertBio->ptr)->length;
if (Length <= 0) {
goto _Exit;
}
Buffer = malloc (Length);
if (Buffer == NULL) {
goto _Exit;
}
Result = BIO_read (CertBio, Buffer, Length);
if (Result != Length) {
goto _Exit;
}
*Cert = Buffer;
*CertSize = Length;
Status = TRUE;
_Exit:
BIO_free (CertBio);
if (!Status && (Buffer != NULL)) {
free (Buffer);
}
return Status;
}
/**
Retrieve the subject bytes from one X.509 certificate.
@ -346,7 +245,6 @@ X509GetSubjectName (
return FALSE;
}
Status = FALSE;
X509Cert = NULL;
//
@ -354,20 +252,27 @@ X509GetSubjectName (
//
Status = X509ConstructCertificate (Cert, CertSize, (UINT8 **) &X509Cert);
if ((X509Cert == NULL) || (!Status)) {
Status = FALSE;
goto _Exit;
}
Status = FALSE;
//
// Retrieve subject name from certificate object.
//
X509Name = X509_get_subject_name (X509Cert);
if (X509Name == NULL) {
goto _Exit;
}
if (*SubjectSize < (UINTN) X509Name->bytes->length) {
*SubjectSize = (UINTN) X509Name->bytes->length;
goto _Exit;
}
*SubjectSize = (UINTN) X509Name->bytes->length;
if (CertSubject != NULL) {
CopyMem (CertSubject, (UINT8 *)X509Name->bytes->data, *SubjectSize);
CopyMem (CertSubject, (UINT8 *) X509Name->bytes->data, *SubjectSize);
Status = TRUE;
}
@ -375,7 +280,9 @@ _Exit:
//
// Release Resources.
//
X509_free (X509Cert);
if (X509Cert != NULL) {
X509_free (X509Cert);
}
return Status;
}
@ -415,7 +322,6 @@ RsaGetPublicKeyFromX509 (
return FALSE;
}
Status = FALSE;
Pkey = NULL;
X509Cert = NULL;
@ -424,9 +330,12 @@ RsaGetPublicKeyFromX509 (
//
Status = X509ConstructCertificate (Cert, CertSize, (UINT8 **) &X509Cert);
if ((X509Cert == NULL) || (!Status)) {
Status = FALSE;
goto _Exit;
}
Status = FALSE;
//
// Retrieve and check EVP_PKEY data from X509 Certificate.
//
@ -446,8 +355,13 @@ _Exit:
//
// Release Resources.
//
X509_free (X509Cert);
EVP_PKEY_free (Pkey);
if (X509Cert != NULL) {
X509_free (X509Cert);
}
if (Pkey != NULL) {
EVP_PKEY_free (Pkey);
}
return Status;
}
@ -498,15 +412,22 @@ X509VerifyCert (
//
// Register & Initialize necessary digest algorithms for certificate verification.
//
EVP_add_digest (EVP_md5());
EVP_add_digest (EVP_sha1());
EVP_add_digest (EVP_sha256());
if (EVP_add_digest (EVP_md5 ()) == 0) {
goto _Exit;
}
if (EVP_add_digest (EVP_sha1 ()) == 0) {
goto _Exit;
}
if (EVP_add_digest (EVP_sha256 ()) == 0) {
goto _Exit;
}
//
// Read DER-encoded certificate to be verified and Construct X509 object.
//
Status = X509ConstructCertificate (Cert, CertSize, (UINT8 **) &X509Cert);
if ((X509Cert == NULL) || (!Status)) {
Status = FALSE;
goto _Exit;
}
@ -515,9 +436,12 @@ X509VerifyCert (
//
Status = X509ConstructCertificate (CACert, CACertSize, (UINT8 **) &X509CACert);
if ((X509CACert == NULL) || (!Status)) {
Status = FALSE;
goto _Exit;
}
Status = FALSE;
//
// Set up X509 Store for trusted certificate.
//
@ -546,9 +470,17 @@ _Exit:
//
// Release Resources.
//
X509_free (X509Cert);
X509_free (X509CACert);
X509_STORE_free (CertStore);
if (X509Cert != NULL) {
X509_free (X509Cert);
}
if (X509CACert != NULL) {
X509_free (X509CACert);
}
if (CertStore != NULL) {
X509_STORE_free (CertStore);
}
return Status;
}

View File

@ -43,6 +43,10 @@ RandomSeed (
IN UINTN SeedSize
)
{
if (SeedSize > INT_MAX) {
return FALSE;
}
//
// Seed the pseudorandom number generator with user-supplied value.
// NOTE: A cryptographic PRNG must be seeded with unpredictable data.
@ -82,7 +86,7 @@ RandomBytes (
//
// Check input parameters.
//
if (Output == NULL) {
if (Output == NULL || Size > INT_MAX) {
return FALSE;
}

View File

@ -2,7 +2,7 @@
Base Memory Allocation Routines Wrapper for Crypto library over OpenSSL
during PEI & DXE phases.
Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@ -22,7 +22,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
/* Allocates memory blocks */
void *malloc (size_t size)
{
return AllocatePool ((UINTN)size);
return AllocatePool ((UINTN) size);
}
/* Reallocate memory blocks */
@ -32,7 +32,7 @@ void *realloc (void *ptr, size_t size)
// BUG: hardcode OldSize == size! We have no any knowledge about
// memory size of original pointer ptr.
//
return ReallocatePool (ptr, (UINTN)size, (UINTN)size);
return ReallocatePool (ptr, (UINTN) size, (UINTN) size);
}
/* De-allocates or frees a memory block */

View File

@ -293,6 +293,16 @@ size_t fwrite (const void *buffer, size_t size, size_t count, FILE *stream)
// -- Dummy OpenSSL Support Routines --
//
int BIO_printf (void *bio, const char *format, ...)
{
return 0;
}
int BIO_snprintf(char *buf, size_t n, const char *format, ...)
{
return 0;
}
void *UI_OpenSSL(void)
{
return NULL;