node/deps/v8/test/unittests/heap/heap-utils.cc
Michaël Zasso 9d7cd9b864
deps: update V8 to 12.8.374.13
PR-URL: https://github.com/nodejs/node/pull/54077
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
2024-08-16 16:03:01 +02:00

346 lines
13 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/heap/heap-utils.h"
#include <algorithm>
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/gc-tracer-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/new-spaces.h"
#include "src/heap/page-metadata-inl.h"
#include "src/heap/safepoint.h"
#include "src/objects/free-space-inl.h"
namespace v8 {
namespace internal {
void HeapInternalsBase::SimulateIncrementalMarking(Heap* heap,
bool force_completion) {
static constexpr auto kStepSize = v8::base::TimeDelta::FromMilliseconds(100);
CHECK(v8_flags.incremental_marking);
i::IncrementalMarking* marking = heap->incremental_marking();
if (heap->sweeping_in_progress()) {
IsolateSafepointScope scope(heap);
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::GCFlag::kNoFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMajorMarking());
if (!force_completion) return;
while (!marking->IsMajorMarkingComplete()) {
marking->AdvanceForTesting(kStepSize);
}
}
namespace {
int FixedArrayLenFromSize(int size) {
return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize,
FixedArray::kMaxRegularLength});
}
void FillPageInPagedSpace(PageMetadata* page,
std::vector<Handle<FixedArray>>* out_handles) {
Heap* heap = page->heap();
ManualGCScope manual_gc_scope(heap->isolate());
DCHECK(page->SweepingDone());
PagedSpaceBase* paged_space = static_cast<PagedSpaceBase*>(page->owner());
heap->FreeLinearAllocationAreas();
PauseAllocationObserversScope no_observers_scope(heap);
CollectionEpoch full_epoch =
heap->tracer()->CurrentEpoch(GCTracer::Scope::ScopeId::MARK_COMPACTOR);
CollectionEpoch young_epoch = heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MINOR_MARK_SWEEPER);
for (PageMetadata* p : *paged_space) {
if (p != page) paged_space->UnlinkFreeListCategories(p);
}
// If min_block_size is larger than FixedArray::kHeaderSize, all blocks in the
// free list can be used to allocate a fixed array. This guarantees that we
// can fill the whole page.
DCHECK_LT(FixedArray::kHeaderSize,
paged_space->free_list()->min_block_size());
std::vector<int> available_sizes;
// Collect all free list block sizes
page->ForAllFreeListCategories(
[&available_sizes](FreeListCategory* category) {
category->IterateNodesForTesting(
[&available_sizes](Tagged<FreeSpace> node) {
int node_size = node->Size();
if (node_size >= kMaxRegularHeapObjectSize) {
available_sizes.push_back(node_size);
}
});
});
Isolate* isolate = heap->isolate();
// Allocate as many max size arrays as possible, while making sure not to
// leave behind a block too small to fit a FixedArray.
const int max_array_length = FixedArrayLenFromSize(kMaxRegularHeapObjectSize);
for (size_t i = 0; i < available_sizes.size(); ++i) {
int available_size = available_sizes[i];
while (available_size > kMaxRegularHeapObjectSize) {
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
max_array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
available_size -= kMaxRegularHeapObjectSize;
}
}
heap->FreeLinearAllocationAreas();
// Allocate FixedArrays in remaining free list blocks, from largest
// category to smallest.
std::vector<std::vector<int>> remaining_sizes;
page->ForAllFreeListCategories(
[&remaining_sizes](FreeListCategory* category) {
remaining_sizes.push_back({});
std::vector<int>& sizes_in_category =
remaining_sizes[remaining_sizes.size() - 1];
category->IterateNodesForTesting(
[&sizes_in_category](Tagged<FreeSpace> node) {
int node_size = node->Size();
DCHECK_LT(0, FixedArrayLenFromSize(node_size));
sizes_in_category.push_back(node_size);
});
});
for (auto it = remaining_sizes.rbegin(); it != remaining_sizes.rend(); ++it) {
std::vector<int> sizes_in_category = *it;
for (int size : sizes_in_category) {
DCHECK_LE(size, kMaxRegularHeapObjectSize);
int array_length = FixedArrayLenFromSize(size);
DCHECK_LT(0, array_length);
Handle<FixedArray> fixed_array = isolate->factory()->NewFixedArray(
array_length, AllocationType::kYoung);
if (out_handles) out_handles->push_back(fixed_array);
}
}
DCHECK_EQ(0, page->AvailableInFreeList());
DCHECK_EQ(0, page->AvailableInFreeListFromAllocatedBytes());
for (PageMetadata* p : *paged_space) {
if (p != page) paged_space->RelinkFreeListCategories(p);
}
// Allocations in this method should not require a GC.
CHECK_EQ(full_epoch, heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MARK_COMPACTOR));
CHECK_EQ(young_epoch, heap->tracer()->CurrentEpoch(
GCTracer::Scope::ScopeId::MINOR_MARK_SWEEPER));
heap->FreeLinearAllocationAreas();
}
} // namespace
void HeapInternalsBase::SimulateFullSpace(
v8::internal::NewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
Heap* heap = space->heap();
IsolateSafepointScope safepoint_scope(heap);
heap->FreeLinearAllocationAreas();
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
space->heap()->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
if (v8_flags.minor_ms) {
auto* space = heap->paged_new_space()->paged_space();
space->AllocatePageUpToCapacityForTesting();
for (PageMetadata* page : *space) {
FillPageInPagedSpace(page, out_handles);
}
DCHECK_IMPLIES(space->free_list(), space->free_list()->Available() == 0);
} else {
SemiSpaceNewSpace* space = SemiSpaceNewSpace::From(heap->new_space());
do {
FillCurrentPage(space, out_handles);
} while (space->AddFreshPage());
}
}
void HeapInternalsBase::SimulateFullSpace(v8::internal::PagedSpace* space) {
Heap* heap = space->heap();
IsolateSafepointScope safepoint_scope(heap);
heap->FreeLinearAllocationAreas();
// If you see this check failing, disable the flag at the start of your test:
// v8_flags.stress_concurrent_allocation = false;
// Background thread allocating concurrently interferes with this function.
CHECK(!v8_flags.stress_concurrent_allocation);
if (heap->sweeping_in_progress()) {
heap->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
}
space->ResetFreeList();
}
namespace {
std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
AllocationType allocation) {
std::vector<Handle<FixedArray>> handles;
Isolate* isolate = heap->isolate();
int allocate_memory;
int length;
int free_memory = padding_size;
heap->FreeMainThreadLinearAllocationAreas();
if (allocation == i::AllocationType::kOld) {
int overall_free_memory = static_cast<int>(heap->old_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
} else {
int overall_free_memory = static_cast<int>(heap->new_space()->Available());
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
}
while (free_memory > 0) {
if (free_memory > kMaxRegularHeapObjectSize) {
allocate_memory = kMaxRegularHeapObjectSize;
length = FixedArrayLenFromSize(allocate_memory);
} else {
allocate_memory = free_memory;
length = FixedArrayLenFromSize(allocate_memory);
if (length <= 0) {
// Not enough room to create another FixedArray, so create a filler.
if (allocation == i::AllocationType::kOld) {
heap->CreateFillerObjectAt(*heap->OldSpaceAllocationTopAddress(),
free_memory);
} else {
heap->CreateFillerObjectAt(*heap->NewSpaceAllocationTopAddress(),
free_memory);
}
break;
}
}
handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
CHECK((allocation == AllocationType::kYoung &&
heap->new_space()->Contains(*handles.back())) ||
(allocation == AllocationType::kOld &&
heap->InOldSpace(*handles.back())) ||
v8_flags.single_generation);
free_memory -= handles.back()->Size();
}
return handles;
}
void FillCurrentSemiSpacePage(v8::internal::SemiSpaceNewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
// We cannot rely on `space->limit()` to point to the end of the current page
// in the case where inline allocations are disabled, it actually points to
// the current allocation pointer.
DCHECK_IMPLIES(
!space->heap()->IsInlineAllocationEnabled(),
space->heap()->NewSpaceTop() == space->heap()->NewSpaceLimit());
int space_remaining = space->GetSpaceRemainingOnCurrentPageForTesting();
if (space_remaining == 0) return;
std::vector<Handle<FixedArray>> handles =
CreatePadding(space->heap(), space_remaining, i::AllocationType::kYoung);
if (out_handles != nullptr) {
out_handles->insert(out_handles->end(), handles.begin(), handles.end());
}
}
void FillCurrentPagedSpacePage(v8::internal::NewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
const Address top = space->heap()->NewSpaceTop();
if (top == kNullAddress) return;
PageMetadata* page = PageMetadata::FromAllocationAreaAddress(top);
space->heap()->EnsureSweepingCompleted(
Heap::SweepingForcedFinalizationMode::kV8Only);
FillPageInPagedSpace(page, out_handles);
}
} // namespace
void HeapInternalsBase::FillCurrentPage(
v8::internal::NewSpace* space,
std::vector<Handle<FixedArray>>* out_handles) {
PauseAllocationObserversScope pause_observers(space->heap());
MainAllocator* allocator = space->heap()->allocator()->new_space_allocator();
allocator->FreeLinearAllocationArea();
if (v8_flags.minor_ms) {
FillCurrentPagedSpacePage(space, out_handles);
} else {
FillCurrentSemiSpacePage(SemiSpaceNewSpace::From(space), out_handles);
}
allocator->FreeLinearAllocationArea();
}
bool IsNewObjectInCorrectGeneration(Tagged<HeapObject> object) {
return v8_flags.single_generation ? !i::Heap::InYoungGeneration(object)
: i::Heap::InYoungGeneration(object);
}
ManualGCScope::ManualGCScope(Isolate* isolate)
: isolate_(isolate),
flag_concurrent_marking_(v8_flags.concurrent_marking),
flag_concurrent_sweeping_(v8_flags.concurrent_sweeping),
flag_concurrent_minor_ms_marking_(v8_flags.concurrent_minor_ms_marking),
flag_stress_concurrent_allocation_(v8_flags.stress_concurrent_allocation),
flag_stress_incremental_marking_(v8_flags.stress_incremental_marking),
flag_parallel_marking_(v8_flags.parallel_marking),
flag_detect_ineffective_gcs_near_heap_limit_(
v8_flags.detect_ineffective_gcs_near_heap_limit),
flag_cppheap_concurrent_marking_(v8_flags.cppheap_concurrent_marking) {
// Some tests run threaded (back-to-back) and thus the GC may already be
// running by the time a ManualGCScope is created. Finalizing existing marking
// prevents any undefined/unexpected behavior.
if (isolate) {
auto* heap = isolate->heap();
if (heap->incremental_marking()->IsMarking()) {
InvokeAtomicMajorGC(isolate);
}
}
v8_flags.concurrent_marking = false;
v8_flags.concurrent_sweeping = false;
v8_flags.concurrent_minor_ms_marking = false;
v8_flags.stress_incremental_marking = false;
v8_flags.stress_concurrent_allocation = false;
// Parallel marking has a dependency on concurrent marking.
v8_flags.parallel_marking = false;
v8_flags.detect_ineffective_gcs_near_heap_limit = false;
// CppHeap concurrent marking has a dependency on concurrent marking.
v8_flags.cppheap_concurrent_marking = false;
if (isolate_ && isolate_->heap()->cpp_heap()) {
CppHeap::From(isolate_->heap()->cpp_heap())
->UpdateGCCapabilitiesFromFlagsForTesting();
}
}
ManualGCScope::~ManualGCScope() {
v8_flags.concurrent_marking = flag_concurrent_marking_;
v8_flags.concurrent_sweeping = flag_concurrent_sweeping_;
v8_flags.concurrent_minor_ms_marking = flag_concurrent_minor_ms_marking_;
v8_flags.stress_concurrent_allocation = flag_stress_concurrent_allocation_;
v8_flags.stress_incremental_marking = flag_stress_incremental_marking_;
v8_flags.parallel_marking = flag_parallel_marking_;
v8_flags.detect_ineffective_gcs_near_heap_limit =
flag_detect_ineffective_gcs_near_heap_limit_;
v8_flags.cppheap_concurrent_marking = flag_cppheap_concurrent_marking_;
if (isolate_ && isolate_->heap()->cpp_heap()) {
CppHeap::From(isolate_->heap()->cpp_heap())
->UpdateGCCapabilitiesFromFlagsForTesting();
}
}
} // namespace internal
} // namespace v8