node/deps/v8/test/unittests/heap/cppgc/minor-gc-unittest.cc
Yagiz Nizipli 16e03e7968 deps: update V8 to 10.9.194.4
PR-URL: https://github.com/nodejs/node/pull/45579
Reviewed-By: Michaël Zasso <targos@protonmail.com>
Reviewed-By: James M Snell <jasnell@gmail.com>
2022-11-27 17:27:13 +00:00

883 lines
27 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if defined(CPPGC_YOUNG_GENERATION)
#include <initializer_list>
#include <vector>
#include "include/cppgc/allocation.h"
#include "include/cppgc/explicit-management.h"
#include "include/cppgc/heap-consistency.h"
#include "include/cppgc/internal/caged-heap-local-data.h"
#include "include/cppgc/persistent.h"
#include "src/heap/cppgc/heap-object-header.h"
#include "src/heap/cppgc/heap-visitor.h"
#include "src/heap/cppgc/heap.h"
#include "test/unittests/heap/cppgc/tests.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cppgc {
namespace internal {
namespace {
bool IsHeapObjectYoung(void* obj) {
return HeapObjectHeader::FromObject(obj).IsYoung();
}
bool IsHeapObjectOld(void* obj) { return !IsHeapObjectYoung(obj); }
class SimpleGCedBase : public GarbageCollected<SimpleGCedBase> {
public:
static size_t destructed_objects;
virtual ~SimpleGCedBase() { ++destructed_objects; }
virtual void Trace(Visitor* v) const { v->Trace(next); }
Member<SimpleGCedBase> next;
};
size_t SimpleGCedBase::destructed_objects;
template <size_t Size>
class SimpleGCed : public SimpleGCedBase {
char array[Size];
};
using Small = SimpleGCed<64>;
using Large = SimpleGCed<kLargeObjectSizeThreshold * 2>;
template <typename Type>
struct OtherType;
template <>
struct OtherType<Small> {
using Type = Large;
};
template <>
struct OtherType<Large> {
using Type = Small;
};
void ExpectPageYoung(BasePage& page) {
EXPECT_TRUE(page.contains_young_objects());
auto& age_table = CagedHeapLocalData::Get().age_table;
EXPECT_EQ(AgeTable::Age::kYoung,
age_table.GetAgeForRange(
CagedHeap::OffsetFromAddress(page.PayloadStart()),
CagedHeap::OffsetFromAddress(page.PayloadEnd())));
}
void ExpectPageMixed(BasePage& page) {
EXPECT_TRUE(page.contains_young_objects());
auto& age_table = CagedHeapLocalData::Get().age_table;
EXPECT_EQ(AgeTable::Age::kMixed,
age_table.GetAgeForRange(
CagedHeap::OffsetFromAddress(page.PayloadStart()),
CagedHeap::OffsetFromAddress(page.PayloadEnd())));
}
void ExpectPageOld(BasePage& page) {
EXPECT_FALSE(page.contains_young_objects());
auto& age_table = CagedHeapLocalData::Get().age_table;
EXPECT_EQ(AgeTable::Age::kOld,
age_table.GetAgeForRange(
CagedHeap::OffsetFromAddress(page.PayloadStart()),
CagedHeap::OffsetFromAddress(page.PayloadEnd())));
}
class RememberedSetExtractor : HeapVisitor<RememberedSetExtractor> {
friend class HeapVisitor<RememberedSetExtractor>;
public:
static std::set<void*> Extract(cppgc::Heap* heap) {
RememberedSetExtractor extractor;
extractor.Traverse(Heap::From(heap)->raw_heap());
return std::move(extractor.slots_);
}
private:
void VisitPage(BasePage& page) {
auto* slot_set = page.slot_set();
if (!slot_set) return;
const uintptr_t page_start = reinterpret_cast<uintptr_t>(&page);
const size_t buckets_size = SlotSet::BucketsForSize(page.AllocatedSize());
slot_set->Iterate(
page_start, 0, buckets_size,
[this](SlotSet::Address slot) {
slots_.insert(reinterpret_cast<void*>(slot));
return heap::base::KEEP_SLOT;
},
SlotSet::EmptyBucketMode::FREE_EMPTY_BUCKETS);
}
bool VisitNormalPage(NormalPage& page) {
VisitPage(page);
return true;
}
bool VisitLargePage(LargePage& page) {
VisitPage(page);
return true;
}
std::set<void*> slots_;
};
} // namespace
class MinorGCTest : public testing::TestWithHeap {
public:
MinorGCTest() : testing::TestWithHeap() {
// Enable young generation flag and run GC. After the first run the heap
// will enable minor GC.
Heap::From(GetHeap())->EnableGenerationalGC();
CollectMajor();
SimpleGCedBase::destructed_objects = 0;
}
~MinorGCTest() override { Heap::From(GetHeap())->Terminate(); }
static size_t DestructedObjects() {
return SimpleGCedBase::destructed_objects;
}
void CollectMinor() {
Heap::From(GetHeap())->CollectGarbage(GCConfig::MinorPreciseAtomicConfig());
}
void CollectMinorWithStack() {
Heap::From(GetHeap())->CollectGarbage(
GCConfig::MinorConservativeAtomicConfig());
}
void CollectMajor() {
Heap::From(GetHeap())->CollectGarbage(GCConfig::PreciseAtomicConfig());
}
void CollectMajorWithStack() {
Heap::From(GetHeap())->CollectGarbage(GCConfig::ConservativeAtomicConfig());
}
const auto& RememberedSourceObjects() const {
return Heap::From(GetHeap())->remembered_set().remembered_source_objects_;
}
const auto& RememberedInConstructionObjects() const {
return Heap::From(GetHeap())
->remembered_set()
.remembered_in_construction_objects_.previous;
}
};
template <typename SmallOrLarge>
class MinorGCTestForType : public MinorGCTest {
public:
using Type = SmallOrLarge;
};
using ObjectTypes = ::testing::Types<Small, Large>;
TYPED_TEST_SUITE(MinorGCTestForType, ObjectTypes);
namespace {
enum class GCType {
kMinor,
kMajor,
};
enum class StackType {
kWithout,
kWith,
};
template <GCType gc_type, StackType stack_type, typename... Args>
void RunGCAndExpectObjectsPromoted(MinorGCTest& test, Args*... args) {
EXPECT_TRUE((IsHeapObjectYoung(args) && ...));
if constexpr (gc_type == GCType::kMajor) {
if constexpr (stack_type == StackType::kWithout) {
test.CollectMajor();
} else {
test.CollectMajorWithStack();
}
} else {
if constexpr (stack_type == StackType::kWithout) {
test.CollectMinor();
} else {
test.CollectMinorWithStack();
}
}
EXPECT_TRUE((IsHeapObjectOld(args) && ...));
}
struct ExpectRememberedSlotsAdded final {
ExpectRememberedSlotsAdded(
const MinorGCTest& test,
std::initializer_list<void*> slots_expected_to_be_remembered)
: test_(test),
slots_expected_to_be_remembered_(slots_expected_to_be_remembered),
initial_slots_(RememberedSetExtractor::Extract(test.GetHeap())) {
// Check that the remembered set doesn't contain specified slots.
EXPECT_FALSE(std::includes(initial_slots_.begin(), initial_slots_.end(),
slots_expected_to_be_remembered_.begin(),
slots_expected_to_be_remembered_.end()));
}
~ExpectRememberedSlotsAdded() {
const auto current_slots = RememberedSetExtractor::Extract(test_.GetHeap());
EXPECT_EQ(initial_slots_.size() + slots_expected_to_be_remembered_.size(),
current_slots.size());
EXPECT_TRUE(std::includes(current_slots.begin(), current_slots.end(),
slots_expected_to_be_remembered_.begin(),
slots_expected_to_be_remembered_.end()));
}
private:
const MinorGCTest& test_;
std::set<void*> slots_expected_to_be_remembered_;
std::set<void*> initial_slots_;
};
struct ExpectRememberedSlotsRemoved final {
ExpectRememberedSlotsRemoved(
const MinorGCTest& test,
std::initializer_list<void*> slots_expected_to_be_removed)
: test_(test),
slots_expected_to_be_removed_(slots_expected_to_be_removed),
initial_slots_(RememberedSetExtractor::Extract(test.GetHeap())) {
DCHECK_GE(initial_slots_.size(), slots_expected_to_be_removed_.size());
// Check that the remembered set does contain specified slots to be removed.
EXPECT_TRUE(std::includes(initial_slots_.begin(), initial_slots_.end(),
slots_expected_to_be_removed_.begin(),
slots_expected_to_be_removed_.end()));
}
~ExpectRememberedSlotsRemoved() {
const auto current_slots = RememberedSetExtractor::Extract(test_.GetHeap());
EXPECT_EQ(initial_slots_.size() - slots_expected_to_be_removed_.size(),
current_slots.size());
EXPECT_FALSE(std::includes(current_slots.begin(), current_slots.end(),
slots_expected_to_be_removed_.begin(),
slots_expected_to_be_removed_.end()));
}
private:
const MinorGCTest& test_;
std::set<void*> slots_expected_to_be_removed_;
std::set<void*> initial_slots_;
};
struct ExpectNoRememberedSlotsAdded final {
explicit ExpectNoRememberedSlotsAdded(const MinorGCTest& test)
: test_(test),
initial_remembered_slots_(
RememberedSetExtractor::Extract(test.GetHeap())) {}
~ExpectNoRememberedSlotsAdded() {
EXPECT_EQ(initial_remembered_slots_,
RememberedSetExtractor::Extract(test_.GetHeap()));
}
private:
const MinorGCTest& test_;
std::set<void*> initial_remembered_slots_;
};
} // namespace
TYPED_TEST(MinorGCTestForType, MinorCollection) {
using Type = typename TestFixture::Type;
MakeGarbageCollected<Type>(this->GetAllocationHandle());
EXPECT_EQ(0u, TestFixture::DestructedObjects());
MinorGCTest::CollectMinor();
EXPECT_EQ(1u, TestFixture::DestructedObjects());
{
subtle::NoGarbageCollectionScope no_gc_scope(*Heap::From(this->GetHeap()));
Type* prev = nullptr;
for (size_t i = 0; i < 64; ++i) {
auto* ptr = MakeGarbageCollected<Type>(this->GetAllocationHandle());
ptr->next = prev;
prev = ptr;
}
}
MinorGCTest::CollectMinor();
EXPECT_EQ(65u, TestFixture::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, StickyBits) {
using Type = typename TestFixture::Type;
Persistent<Type> p1 = MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(p1.Get()).IsYoung());
TestFixture::CollectMajor();
EXPECT_FALSE(HeapObjectHeader::FromObject(p1.Get()).IsYoung());
EXPECT_EQ(0u, TestFixture::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, OldObjectIsNotVisited) {
using Type = typename TestFixture::Type;
Persistent<Type> p = MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_EQ(0u, TestFixture::DestructedObjects());
EXPECT_FALSE(HeapObjectHeader::FromObject(p.Get()).IsYoung());
// Check that the old deleted object won't be visited during minor GC.
Type* raw = p.Release();
TestFixture::CollectMinor();
EXPECT_EQ(0u, TestFixture::DestructedObjects());
EXPECT_FALSE(HeapObjectHeader::FromObject(raw).IsYoung());
EXPECT_FALSE(HeapObjectHeader::FromObject(raw).IsFree());
// Check that the old deleted object will be revisited in major GC.
TestFixture::CollectMajor();
EXPECT_EQ(1u, TestFixture::DestructedObjects());
}
template <typename Type1, typename Type2>
void InterGenerationalPointerTest(MinorGCTest* test, cppgc::Heap* heap) {
Persistent<Type1> old =
MakeGarbageCollected<Type1>(heap->GetAllocationHandle());
test->CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(old.Get()).IsYoung());
Type2* young = nullptr;
{
subtle::NoGarbageCollectionScope no_gc_scope(*Heap::From(heap));
// Allocate young objects.
for (size_t i = 0; i < 64; ++i) {
auto* ptr = MakeGarbageCollected<Type2>(heap->GetAllocationHandle());
ptr->next = young;
young = ptr;
EXPECT_TRUE(HeapObjectHeader::FromObject(young).IsYoung());
const uintptr_t offset = CagedHeap::OffsetFromAddress(young);
// Age may be young or unknown.
EXPECT_NE(AgeTable::Age::kOld,
CagedHeapLocalData::Get().age_table.GetAge(offset));
}
}
auto remembered_set_size_before_barrier =
RememberedSetExtractor::Extract(test->GetHeap()).size();
// Issue generational barrier.
old->next = young;
auto remembered_set_size_after_barrier =
RememberedSetExtractor::Extract(test->GetHeap()).size();
EXPECT_EQ(remembered_set_size_before_barrier + 1u,
remembered_set_size_after_barrier);
// Check that the remembered set is visited.
test->CollectMinor();
EXPECT_EQ(0u, MinorGCTest::DestructedObjects());
EXPECT_TRUE(RememberedSetExtractor::Extract(test->GetHeap()).empty());
for (size_t i = 0; i < 64; ++i) {
EXPECT_FALSE(HeapObjectHeader::FromObject(young).IsFree());
EXPECT_FALSE(HeapObjectHeader::FromObject(young).IsYoung());
young = static_cast<Type2*>(young->next.Get());
}
old.Release();
test->CollectMajor();
EXPECT_EQ(65u, MinorGCTest::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, InterGenerationalPointerForSamePageTypes) {
using Type = typename TestFixture::Type;
InterGenerationalPointerTest<Type, Type>(this, this->GetHeap());
}
TYPED_TEST(MinorGCTestForType, InterGenerationalPointerForDifferentPageTypes) {
using Type = typename TestFixture::Type;
InterGenerationalPointerTest<Type, typename OtherType<Type>::Type>(
this, this->GetHeap());
}
TYPED_TEST(MinorGCTestForType, OmitGenerationalBarrierForOnStackObject) {
using Type = typename TestFixture::Type;
class StackAllocated : GarbageCollected<StackAllocated> {
CPPGC_STACK_ALLOCATED();
public:
Type* ptr = nullptr;
} stack_object;
// Try issuing generational barrier for on-stack object.
stack_object.ptr = MakeGarbageCollected<Type>(this->GetAllocationHandle());
subtle::HeapConsistency::WriteBarrierParams params;
EXPECT_EQ(subtle::HeapConsistency::WriteBarrierType::kNone,
subtle::HeapConsistency::GetWriteBarrierType(
reinterpret_cast<void*>(&stack_object.ptr), stack_object.ptr,
params));
}
TYPED_TEST(MinorGCTestForType, OmitGenerationalBarrierForSentinels) {
using Type = typename TestFixture::Type;
Persistent<Type> old =
MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(old.Get()).IsYoung());
{
ExpectNoRememberedSlotsAdded _(*this);
// Try issuing generational barrier for nullptr.
old->next = static_cast<Type*>(nullptr);
}
{
ExpectNoRememberedSlotsAdded _(*this);
// Try issuing generational barrier for sentinel.
old->next = kSentinelPointer;
}
}
template <typename From, typename To>
void TestRememberedSetInvalidation(MinorGCTest& test) {
Persistent<From> old = MakeGarbageCollected<From>(test.GetAllocationHandle());
test.CollectMinor();
auto* young = MakeGarbageCollected<To>(test.GetAllocationHandle());
{
ExpectRememberedSlotsAdded _(test, {old->next.GetSlotForTesting()});
// Issue the generational barrier.
old->next = young;
}
{
ExpectRememberedSlotsRemoved _(test, {old->next.GetSlotForTesting()});
// Release the persistent and free the old object.
auto* old_raw = old.Release();
subtle::FreeUnreferencedObject(test.GetHeapHandle(), *old_raw);
}
// Visiting remembered slots must not fail.
test.CollectMinor();
}
TYPED_TEST(MinorGCTestForType, RememberedSetInvalidationOnPromptlyFree) {
using Type1 = typename TestFixture::Type;
using Type2 = typename OtherType<Type1>::Type;
TestRememberedSetInvalidation<Type1, Type1>(*this);
TestRememberedSetInvalidation<Type1, Type2>(*this);
}
TEST_F(MinorGCTest, RememberedSetInvalidationOnShrink) {
using Member = Member<Small>;
static constexpr size_t kTrailingMembers = 64;
static constexpr size_t kBytesToAllocate = kTrailingMembers * sizeof(Member);
static constexpr size_t kFirstMemberToInvalidate = kTrailingMembers / 2;
static constexpr size_t kLastMemberToInvalidate = kTrailingMembers;
// Create an object with additional kBytesToAllocate bytes.
Persistent<Small> old = MakeGarbageCollected<Small>(
this->GetAllocationHandle(), AdditionalBytes(kBytesToAllocate));
auto get_member = [&old](size_t i) -> Member& {
return *reinterpret_cast<Member*>(reinterpret_cast<uint8_t*>(old.Get()) +
sizeof(Small) + i * sizeof(Member));
};
CollectMinor();
auto* young = MakeGarbageCollected<Small>(GetAllocationHandle());
const size_t remembered_set_size_before_barrier =
RememberedSetExtractor::Extract(GetHeap()).size();
// Issue the generational barriers.
for (size_t i = kFirstMemberToInvalidate; i < kLastMemberToInvalidate; ++i) {
// Construct the member.
new (&get_member(i)) Member;
// Issue the barrier.
get_member(i) = young;
}
const auto remembered_set_size_after_barrier =
RememberedSetExtractor::Extract(GetHeap()).size();
// Check that barriers hit (kLastMemberToInvalidate -
// kFirstMemberToInvalidate) times.
EXPECT_EQ(remembered_set_size_before_barrier +
(kLastMemberToInvalidate - kFirstMemberToInvalidate),
remembered_set_size_after_barrier);
// Shrink the buffer for old object.
subtle::Resize(*old, AdditionalBytes(kBytesToAllocate / 2));
const auto remembered_set_after_shrink =
RememberedSetExtractor::Extract(GetHeap()).size();
// Check that the reference was invalidated.
EXPECT_EQ(remembered_set_size_before_barrier, remembered_set_after_shrink);
// Visiting remembered slots must not fail.
CollectMinor();
}
namespace {
template <typename Value>
struct InlinedObject {
struct Inner {
Inner() = default;
explicit Inner(AllocationHandle& handle)
: ref(MakeGarbageCollected<Value>(handle)) {}
void Trace(Visitor* v) const { v->Trace(ref); }
double d = -1.;
Member<Value> ref;
};
InlinedObject() = default;
explicit InlinedObject(AllocationHandle& handle)
: ref(MakeGarbageCollected<Value>(handle)), inner(handle) {}
void Trace(cppgc::Visitor* v) const {
v->Trace(ref);
v->Trace(inner);
}
int a_ = -1;
Member<Value> ref;
Inner inner;
};
template <typename Value>
class GCedWithInlinedArray
: public GarbageCollected<GCedWithInlinedArray<Value>> {
public:
static constexpr size_t kNumObjects = 16;
GCedWithInlinedArray(HeapHandle& heap_handle, AllocationHandle& alloc_handle)
: heap_handle_(heap_handle), alloc_handle_(alloc_handle) {}
using WriteBarrierParams = subtle::HeapConsistency::WriteBarrierParams;
using HeapConsistency = subtle::HeapConsistency;
void SetInPlaceRange(size_t from, size_t to) {
DCHECK_GT(to, from);
DCHECK_GT(kNumObjects, from);
for (; from != to; ++from)
new (&objects[from]) InlinedObject<Value>(alloc_handle_);
GenerationalBarrierForSourceObject(&objects[from]);
}
void Trace(cppgc::Visitor* v) const {
for (const auto& object : objects) v->Trace(object);
}
InlinedObject<Value> objects[kNumObjects];
private:
void GenerationalBarrierForSourceObject(void* object) {
DCHECK(object);
WriteBarrierParams params;
const auto barrier_type = HeapConsistency::GetWriteBarrierType(
object, params, [this]() -> HeapHandle& { return heap_handle_; });
EXPECT_EQ(HeapConsistency::WriteBarrierType::kGenerational, barrier_type);
HeapConsistency::GenerationalBarrierForSourceObject(params, object);
}
HeapHandle& heap_handle_;
AllocationHandle& alloc_handle_;
};
} // namespace
TYPED_TEST(MinorGCTestForType, GenerationalBarrierDeferredTracing) {
using Type = typename TestFixture::Type;
Persistent<GCedWithInlinedArray<Type>> array =
MakeGarbageCollected<GCedWithInlinedArray<Type>>(
this->GetAllocationHandle(), this->GetHeapHandle(),
this->GetAllocationHandle());
this->CollectMinor();
EXPECT_TRUE(IsHeapObjectOld(array.Get()));
const auto& remembered_objects = this->RememberedSourceObjects();
{
ExpectNoRememberedSlotsAdded _(*this);
EXPECT_EQ(0u, remembered_objects.count(
&HeapObjectHeader::FromObject(array->objects)));
array->SetInPlaceRange(2, 4);
EXPECT_EQ(1u, remembered_objects.count(
&HeapObjectHeader::FromObject(array->objects)));
}
RunGCAndExpectObjectsPromoted<GCType::kMinor, StackType::kWithout>(
*this, array->objects[2].ref.Get(), array->objects[2].inner.ref.Get(),
array->objects[3].ref.Get(), array->objects[3].inner.ref.Get());
EXPECT_EQ(0u, remembered_objects.size());
}
namespace {
class GCedWithCustomWeakCallback final
: public GarbageCollected<GCedWithCustomWeakCallback> {
public:
static size_t custom_callback_called;
void CustomWeakCallbackMethod(const LivenessBroker& broker) {
custom_callback_called++;
}
void Trace(cppgc::Visitor* visitor) const {
visitor->RegisterWeakCallbackMethod<
GCedWithCustomWeakCallback,
&GCedWithCustomWeakCallback::CustomWeakCallbackMethod>(this);
}
};
size_t GCedWithCustomWeakCallback::custom_callback_called = 0;
} // namespace
TEST_F(MinorGCTest, ReexecuteCustomCallback) {
// Create an object with additional kBytesToAllocate bytes.
Persistent<GCedWithCustomWeakCallback> old =
MakeGarbageCollected<GCedWithCustomWeakCallback>(GetAllocationHandle());
CollectMinor();
EXPECT_EQ(1u, GCedWithCustomWeakCallback::custom_callback_called);
CollectMinor();
EXPECT_EQ(2u, GCedWithCustomWeakCallback::custom_callback_called);
CollectMinor();
EXPECT_EQ(3u, GCedWithCustomWeakCallback::custom_callback_called);
CollectMajor();
// The callback must be called only once.
EXPECT_EQ(4u, GCedWithCustomWeakCallback::custom_callback_called);
}
TEST_F(MinorGCTest, AgeTableIsReset) {
using Type1 = SimpleGCed<16>;
using Type2 = SimpleGCed<64>;
using Type3 = SimpleGCed<kLargeObjectSizeThreshold * 2>;
Persistent<Type1> p1 = MakeGarbageCollected<Type1>(GetAllocationHandle());
Persistent<Type2> p2 = MakeGarbageCollected<Type2>(GetAllocationHandle());
Persistent<Type3> p3 = MakeGarbageCollected<Type3>(GetAllocationHandle());
auto* page1 = BasePage::FromPayload(p1.Get());
auto* page2 = BasePage::FromPayload(p2.Get());
auto* page3 = BasePage::FromPayload(p3.Get());
ASSERT_FALSE(page1->is_large());
ASSERT_FALSE(page2->is_large());
ASSERT_TRUE(page3->is_large());
ASSERT_NE(page1, page2);
ASSERT_NE(page1, page3);
ASSERT_NE(page2, page3);
// First, expect all the pages to be young.
ExpectPageYoung(*page1);
ExpectPageYoung(*page2);
ExpectPageYoung(*page3);
CollectMinor();
// Expect pages to be promoted after the minor GC.
ExpectPageOld(*page1);
ExpectPageOld(*page2);
ExpectPageOld(*page3);
// Allocate another objects on the normal pages and a new large page.
p1 = MakeGarbageCollected<Type1>(GetAllocationHandle());
p2 = MakeGarbageCollected<Type2>(GetAllocationHandle());
p3 = MakeGarbageCollected<Type3>(GetAllocationHandle());
// Expect now the normal pages to be mixed.
ExpectPageMixed(*page1);
ExpectPageMixed(*page2);
// The large page must remain old.
ExpectPageOld(*page3);
CollectMajor();
// After major GC all the pages must also become old.
ExpectPageOld(*page1);
ExpectPageOld(*page2);
ExpectPageOld(*BasePage::FromPayload(p3.Get()));
}
namespace {
template <GCType type>
struct GCOnConstruction {
explicit GCOnConstruction(MinorGCTest& test, size_t depth) {
if constexpr (type == GCType::kMajor) {
test.CollectMajorWithStack();
} else {
test.CollectMinorWithStack();
}
EXPECT_EQ(depth, test.RememberedInConstructionObjects().size());
}
};
template <GCType type>
struct InConstructionWithYoungRef
: GarbageCollected<InConstructionWithYoungRef<type>> {
using ValueType = SimpleGCed<64>;
explicit InConstructionWithYoungRef(MinorGCTest& test)
: call_gc(test, 1u),
m(MakeGarbageCollected<ValueType>(test.GetAllocationHandle())) {}
void Trace(Visitor* v) const { v->Trace(m); }
GCOnConstruction<type> call_gc;
Member<ValueType> m;
};
} // namespace
TEST_F(MinorGCTest, RevisitInConstructionObjectsMinorMinorWithStack) {
static constexpr auto kFirstGCType = GCType::kMinor;
auto* gced = MakeGarbageCollected<InConstructionWithYoungRef<kFirstGCType>>(
GetAllocationHandle(), *this);
RunGCAndExpectObjectsPromoted<GCType::kMinor, StackType::kWith>(
*this, gced->m.Get());
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
TEST_F(MinorGCTest, RevisitInConstructionObjectsMinorMinorWithoutStack) {
static constexpr auto kFirstGCType = GCType::kMinor;
Persistent<InConstructionWithYoungRef<kFirstGCType>> gced =
MakeGarbageCollected<InConstructionWithYoungRef<kFirstGCType>>(
GetAllocationHandle(), *this);
RunGCAndExpectObjectsPromoted<GCType::kMinor, StackType::kWithout>(
*this, gced->m.Get());
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
TEST_F(MinorGCTest, RevisitInConstructionObjectsMajorMinorWithStack) {
static constexpr auto kFirstGCType = GCType::kMajor;
auto* gced = MakeGarbageCollected<InConstructionWithYoungRef<kFirstGCType>>(
GetAllocationHandle(), *this);
RunGCAndExpectObjectsPromoted<GCType::kMinor, StackType::kWith>(
*this, gced->m.Get());
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
TEST_F(MinorGCTest, RevisitInConstructionObjectsMajorMinorWithoutStack) {
static constexpr auto kFirstGCType = GCType::kMajor;
Persistent<InConstructionWithYoungRef<kFirstGCType>> gced =
MakeGarbageCollected<InConstructionWithYoungRef<kFirstGCType>>(
GetAllocationHandle(), *this);
RunGCAndExpectObjectsPromoted<GCType::kMinor, StackType::kWithout>(
*this, gced->m.Get());
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
TEST_F(MinorGCTest, PreviousInConstructionObjectsAreDroppedAfterFullGC) {
MakeGarbageCollected<InConstructionWithYoungRef<GCType::kMinor>>(
GetAllocationHandle(), *this);
EXPECT_EQ(1u, RememberedInConstructionObjects().size());
CollectMajor();
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
namespace {
template <GCType type>
struct NestedInConstructionWithYoungRef
: GarbageCollected<NestedInConstructionWithYoungRef<type>> {
using ValueType = SimpleGCed<64>;
NestedInConstructionWithYoungRef(MinorGCTest& test, size_t depth)
: NestedInConstructionWithYoungRef(test, 1, depth) {}
NestedInConstructionWithYoungRef(MinorGCTest& test, size_t current_depth,
size_t max_depth)
: current_depth(current_depth),
max_depth(max_depth),
next(current_depth != max_depth
? MakeGarbageCollected<NestedInConstructionWithYoungRef<type>>(
test.GetAllocationHandle(), test, current_depth + 1,
max_depth)
: nullptr),
call_gc(test, current_depth),
m(MakeGarbageCollected<ValueType>(test.GetAllocationHandle())) {}
void Trace(Visitor* v) const {
v->Trace(next);
v->Trace(m);
}
size_t current_depth = 0;
size_t max_depth = 0;
Member<NestedInConstructionWithYoungRef<type>> next;
GCOnConstruction<type> call_gc;
Member<ValueType> m;
};
} // namespace
TEST_F(MinorGCTest, RevisitNestedInConstructionObjects) {
static constexpr auto kFirstGCType = GCType::kMinor;
Persistent<NestedInConstructionWithYoungRef<kFirstGCType>> gced =
MakeGarbageCollected<NestedInConstructionWithYoungRef<kFirstGCType>>(
GetAllocationHandle(), *this, 10);
CollectMinor();
for (auto* p = gced.Get(); p; p = p->next.Get()) {
EXPECT_TRUE(IsHeapObjectOld(p));
EXPECT_TRUE(IsHeapObjectOld(p->m));
}
EXPECT_EQ(0u, RememberedInConstructionObjects().size());
}
} // namespace internal
} // namespace cppgc
#endif