node/deps/v8/test/unittests/execution/pointer-auth-arm64-unittest.cc
Michaël Zasso 17a74ddd3d
deps: update V8 to 11.8.172.13
PR-URL: https://github.com/nodejs/node/pull/49639
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
Reviewed-By: Antoine du Hamel <duhamelantoine1995@gmail.com>
2023-10-10 08:25:41 +02:00

233 lines
7.8 KiB
C++

// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/arm64/decoder-arm64-inl.h"
#include "src/execution/arm64/simulator-arm64.h"
#include "src/execution/pointer-authentication.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
#ifdef V8_OS_LINUX
#include <sys/prctl.h> // for prctl
#ifndef PR_PAC_APIBKEY
#define PR_PAC_APIBKEY (1UL << 1)
#endif
#ifndef PR_PAC_GET_ENABLED_KEYS
#define PR_PAC_GET_ENABLED_KEYS 61
#endif
#endif
namespace v8 {
namespace internal {
namespace {
Address SignPCForTesting(Isolate* isolate, Address pc, Address sp) {
if constexpr (!ENABLE_CONTROL_FLOW_INTEGRITY_BOOL) return pc;
#ifdef USE_SIMULATOR
pc = Simulator::AddPAC(pc, sp, Simulator::kPACKeyIB,
Simulator::kInstructionPointer);
#else
asm volatile(
" mov x17, %[pc]\n"
" mov x16, %[sp]\n"
" pacib1716\n"
" mov %[pc], x17\n"
: [pc] "+r"(pc)
: [sp] "r"(sp)
: "x16", "x17");
#endif
return pc;
}
void FunctionToUseForPointerAuthentication() { PrintF("hello, "); }
void AlternativeFunctionToUseForPointerAuthentication() { PrintF("world\n"); }
Address GetRawCodeAddress() {
return PointerAuthentication::StripPAC(
reinterpret_cast<Address>(&FunctionToUseForPointerAuthentication));
}
Address GetAlternativeRawCodeAddress() {
return PointerAuthentication::StripPAC(reinterpret_cast<Address>(
&AlternativeFunctionToUseForPointerAuthentication));
}
// If the platform supports it, corrupt the PAC of |address| so that
// authenticating it will cause a crash.
base::Optional<Address> CorruptPACIfSupported(Isolate* isolate,
Address address) {
if constexpr (!ENABLE_CONTROL_FLOW_INTEGRITY_BOOL) return base::nullopt;
// First, find where in an address the PAC is located.
// Produce a valid user address with all bits sets. This way, stripping the
// PAC from the address will reveal which bits are used for it. We need to
// clear the TTBR bit, as it differentiates between user and kernel addresses.
Address user_address_all_ones = 0xffff'ffff'ffff'ffff & ~kTTBRMask;
Address pac_mask = PointerAuthentication::StripPAC(user_address_all_ones) ^
user_address_all_ones;
// If the PAC bits are zero then StripPAC() was a no-op. This means pointer
// authentication isn't supported.
if (pac_mask == 0) {
return base::nullopt;
}
// At this point, pointer authentication is supported, but individual keys
// may still be disabled by the OS. We check that it's enabled, to ensure
// that corrupting the PAC will result in a crash.
#if defined(V8_OS_LINUX) && defined(V8_HOST_ARCH_ARM64)
// On Linux 5.13 and later, we can ask the OS what keys are enabled directly.
int enabled_keys = prctl(PR_PAC_GET_ENABLED_KEYS, 0, 0, 0, 0);
if ((enabled_keys != -1) &&
((enabled_keys & PR_PAC_APIBKEY) == PR_PAC_APIBKEY)) {
return address ^ pac_mask;
}
#endif
// Do a "best-effort" check to see if PAC is enabled, by signing values on the
// stack and check if bits are set in the PAC range. We do this check a few
// times because 0 is a valid PAC.
Address stack[] = {0xa, 0xb, 0xc, 0xd};
for (int slot = 0; slot < 4; slot++) {
stack[slot] = SignPCForTesting(isolate, stack[slot],
reinterpret_cast<Address>(&stack[slot]));
if ((stack[slot] & pac_mask) != 0) return address ^ pac_mask;
}
// None of the slots were signed with a non-zero PAC, assume this means PAC
// isn't enabled.
return base::nullopt;
}
} // namespace
using PointerAuthArm64Test = TestWithIsolate;
TEST_F(PointerAuthArm64Test, AuthenticatePC) {
Address pc = GetRawCodeAddress();
Address stack = 0;
stack = SignPCForTesting(i_isolate(), pc, reinterpret_cast<Address>(&stack));
pc = PointerAuthentication::AuthenticatePC(&stack, 0);
EXPECT_EQ(pc, GetRawCodeAddress());
if (auto corrupted_stack = CorruptPACIfSupported(i_isolate(), stack)) {
stack = *corrupted_stack;
EXPECT_DEATH_IF_SUPPORTED(PointerAuthentication::AuthenticatePC(&stack, 0),
"");
}
}
TEST_F(PointerAuthArm64Test, ReplacePC) {
Address pc = GetRawCodeAddress();
Address stack = 0;
stack = SignPCForTesting(i_isolate(), pc, reinterpret_cast<Address>(&stack));
PointerAuthentication::ReplacePC(&stack, GetAlternativeRawCodeAddress(), 0);
if (auto corrupted_stack = CorruptPACIfSupported(i_isolate(), stack)) {
stack = *corrupted_stack;
EXPECT_DEATH_IF_SUPPORTED(PointerAuthentication::ReplacePC(
&stack, GetAlternativeRawCodeAddress(), 0),
"");
}
}
TEST_F(PointerAuthArm64Test, ReplacePCAfterGC) {
v8::PageAllocator* page_allocator = v8::internal::GetPlatformPageAllocator();
size_t page_size = v8::internal::AllocatePageSize();
// Allocate a page and mark it inaccessible, to simulate a code address to a
// page that was reclaimed after a GC.
Address pc = reinterpret_cast<Address>(v8::internal::AllocatePages(
page_allocator, page_allocator->GetRandomMmapAddr(), page_size, page_size,
PageAllocator::Permission::kReadWrite));
CHECK(SetPermissions(page_allocator, pc, page_size,
PageAllocator::Permission::kNoAccess));
// Replacing the signed PC on the stack should work even when the previous PC
// points to an inaccessible page.
Address stack = 0;
stack = SignPCForTesting(i_isolate(), pc, reinterpret_cast<Address>(&stack));
PointerAuthentication::ReplacePC(&stack, GetRawCodeAddress(), 0);
}
#ifdef USE_SIMULATOR
TEST_F(PointerAuthArm64Test, SimulatorComputePAC) {
Decoder<DispatchingDecoderVisitor>* decoder =
new Decoder<DispatchingDecoderVisitor>();
Simulator simulator(decoder);
uint64_t data1 = 0xfb623599da6e8127;
uint64_t data2 = 0x27979fadf7d53cb7;
uint64_t context = 0x477d469dec0b8762;
Simulator::PACKey key = {0x84be85ce9804e94b, 0xec2802d4e0a488e9, -1};
uint64_t pac1 = simulator.ComputePAC(data1, context, key);
uint64_t pac2 = simulator.ComputePAC(data2, context, key);
// NOTE: If the PAC implementation is changed, this may fail due to a hash
// collision.
CHECK_NE(pac1, pac2);
}
TEST_F(PointerAuthArm64Test, SimulatorAddAndAuthPAC) {
i::v8_flags.sim_abort_on_bad_auth = false;
Decoder<DispatchingDecoderVisitor>* decoder =
new Decoder<DispatchingDecoderVisitor>();
Simulator simulator(decoder);
uint64_t ptr = 0x0000000012345678;
uint64_t context = 0x477d469dec0b8762;
Simulator::PACKey key_a = {0x84be85ce9804e94b, 0xec2802d4e0a488e9, 0};
Simulator::PACKey key_b = {0xec1119e288704d13, 0xd7f6b76e1cea585e, 1};
uint64_t ptr_a =
simulator.AddPAC(ptr, context, key_a, Simulator::kInstructionPointer);
// Attempt to authenticate the pointer with PAC using different keys.
uint64_t success =
simulator.AuthPAC(ptr_a, context, key_a, Simulator::kInstructionPointer);
uint64_t fail =
simulator.AuthPAC(ptr_a, context, key_b, Simulator::kInstructionPointer);
uint64_t pac_mask =
simulator.CalculatePACMask(ptr, Simulator::kInstructionPointer, 0);
// NOTE: If the PAC implementation is changed, this may fail due to a hash
// collision.
CHECK_NE((ptr_a & pac_mask), 0);
CHECK_EQ(success, ptr);
CHECK_NE(fail, ptr);
}
TEST_F(PointerAuthArm64Test, SimulatorAddAndStripPAC) {
Decoder<DispatchingDecoderVisitor>* decoder =
new Decoder<DispatchingDecoderVisitor>();
Simulator simulator(decoder);
uint64_t ptr = 0xff00000012345678;
uint64_t pac_mask =
simulator.CalculatePACMask(ptr, Simulator::kInstructionPointer, 0);
uint64_t ptr_a = ptr | pac_mask;
CHECK_EQ(simulator.StripPAC(ptr_a, Simulator::kInstructionPointer), ptr);
}
#endif // USE_SIMULATOR
} // namespace internal
} // namespace v8