node/deps/v8/test/unittests/compiler/x64/turboshaft-instruction-selector-x64-unittest.cc
Michaël Zasso 9d7cd9b864
deps: update V8 to 12.8.374.13
PR-URL: https://github.com/nodejs/node/pull/54077
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
2024-08-16 16:03:01 +02:00

2343 lines
87 KiB
C++

// Copyright 2024 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "src/codegen/assembler.h"
#include "src/common/globals.h"
#include "src/compiler/backend/instruction-codes.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/compiler/backend/turboshaft-instruction-selector-unittest.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/simd-shuffle.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8::internal::compiler::turboshaft {
// -----------------------------------------------------------------------------
// Conversions.
TEST_F(TurboshaftInstructionSelectorTest, ChangeFloat32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float32());
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat32ToFloat64, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(TurboshaftInstructionSelectorTest, ChangeInt32ToInt64WithParameter) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
m.Return(m.ChangeInt32ToInt64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxlq, s[0]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest, ChangeUint32ToFloat64WithParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEUint32ToFloat64, s[0]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest, ChangeUint32ToUint64WithParameter) {
StreamBuilder m(this, MachineType::Uint64(), MachineType::Uint32());
m.Return(m.ChangeUint32ToUint64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest,
TruncateFloat64ToFloat32WithParameter) {
StreamBuilder m(this, MachineType::Float32(), MachineType::Float64());
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSEFloat64ToFloat32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(TurboshaftInstructionSelectorTest, TruncateInt64ToInt32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
m.Return(m.TruncateWord64ToWord32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest, SelectWord32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex cond = m.Int32Constant(1);
m.Return(m.Word32Select(cond, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_select, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_TRUE(s.IsSameAsInput(s[0]->Output(), 2));
}
TEST_F(TurboshaftInstructionSelectorTest, SelectWord64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex cond = m.Int32Constant(1);
m.Return(m.Word64Select(cond, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_select, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_TRUE(s.IsSameAsInput(s[0]->Output(), 2));
}
namespace {
struct LoadWithToInt64Extension {
MachineType type;
ArchOpcode expected_opcode;
};
std::ostream& operator<<(std::ostream& os,
const LoadWithToInt64Extension& i32toi64) {
return os << i32toi64.type;
}
static const LoadWithToInt64Extension kLoadWithToInt64Extensions[] = {
{MachineType::Int8(), kX64Movsxbq},
{MachineType::Uint8(), kX64Movzxbq},
{MachineType::Int16(), kX64Movsxwq},
{MachineType::Uint16(), kX64Movzxwq},
{MachineType::Int32(), kX64Movsxlq}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using TurboshaftInstructionSelectorChangeInt32ToInt64Test =
TurboshaftInstructionSelectorTestWithParam<LoadWithToInt64Extension>;
TEST_P(TurboshaftInstructionSelectorChangeInt32ToInt64Test,
ChangeInt32ToInt64WithLoad) {
const LoadWithToInt64Extension extension = GetParam();
StreamBuilder m(this, MachineType::Int64(), MachineType::Pointer());
m.Return(m.ChangeInt32ToInt64(m.Load(extension.type, m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(extension.expected_opcode, s[0]->arch_opcode());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorChangeInt32ToInt64Test,
::testing::ValuesIn(kLoadWithToInt64Extensions));
// -----------------------------------------------------------------------------
// Loads and stores
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode load_opcode;
ArchOpcode store_opcode;
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
return os << memacc.type;
}
static const MemoryAccess kMemoryAccesses[] = {
{MachineType::Int8(), kX64Movsxbl, kX64Movb},
{MachineType::Uint8(), kX64Movzxbl, kX64Movb},
{MachineType::Int16(), kX64Movsxwl, kX64Movw},
{MachineType::Uint16(), kX64Movzxwl, kX64Movw},
{MachineType::Int32(), kX64Movl, kX64Movl},
{MachineType::Uint32(), kX64Movl, kX64Movl},
{MachineType::Int64(), kX64Movq, kX64Movq},
{MachineType::Uint64(), kX64Movq, kX64Movq},
{MachineType::Float32(), kX64Movss, kX64Movss},
{MachineType::Float64(), kX64Movsd, kX64Movsd}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using TurboshaftInstructionSelectorMemoryAccessTest =
TurboshaftInstructionSelectorTestWithParam<MemoryAccess>;
TEST_P(TurboshaftInstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, MachineType::Pointer(),
MachineType::Pointer());
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(TurboshaftInstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(),
MachineType::Pointer(), memacc.type);
m.Store(memacc.type.representation(), m.Parameter(0), m.Parameter(1),
m.Parameter(2), kNoWriteBarrier);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
// -----------------------------------------------------------------------------
// ChangeUint32ToUint64.
namespace {
struct BinaryOperation {
TSBinop constructor;
const char* constructor_name;
};
std::ostream& operator<<(std::ostream& os, const BinaryOperation& bop) {
return os << bop.constructor_name;
}
const BinaryOperation kWord32BinaryOperations[] = {
{TSBinop::kWord32BitwiseAnd, "Word32BitwiseAnd"},
{TSBinop::kWord32BitwiseOr, "Word32BitwiseOr"},
{TSBinop::kWord32BitwiseXor, "Word32BitwiseXor"},
{TSBinop::kWord32ShiftLeft, "Word32ShiftLeft"},
{TSBinop::kWord32ShiftRightLogical, "Word32Shr"},
{TSBinop::kWord32ShiftRightArithmetic, "Word32Sar"},
{TSBinop::kWord32RotateRight, "Word32Ror"},
{TSBinop::kWord32Equal, "Word32Equal"},
{TSBinop::kWord32Add, "Int32Add"},
{TSBinop::kWord32Sub, "Int32Sub"},
{TSBinop::kWord32Mul, "Int32Mul"},
{TSBinop::kInt32MulOverflownBits, "Int32MulOverflownBits"},
{TSBinop::kInt32Div, "Int32Div"},
{TSBinop::kInt32LessThan, "Int32LessThan"},
{TSBinop::kInt32LessThanOrEqual, "Int32LessThanOrEqual"},
{TSBinop::kInt32Mod, "Int32Mod"},
{TSBinop::kUint32Div, "Uint32Div"},
{TSBinop::kUint32LessThan, "Uint32LessThan"},
{TSBinop::kUint32LessThanOrEqual, "Uint32LessThanOrEqual"},
{TSBinop::kUint32Mod, "Uint32Mod"}};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using TurboshaftInstructionSelectorChangeUint32ToUint64Test =
TurboshaftInstructionSelectorTestWithParam<BinaryOperation>;
TEST_P(TurboshaftInstructionSelectorChangeUint32ToUint64Test,
ChangeUint32ToUint64) {
const BinaryOperation& bop = GetParam();
StreamBuilder m(this, MachineType::Uint64(), MachineType::Int32(),
MachineType::Int32());
OpIndex p0 = m.Parameter(0);
OpIndex p1 = m.Parameter(1);
m.Return(m.ChangeUint32ToUint64(m.Emit(bop.constructor, p0, p1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorChangeUint32ToUint64Test,
::testing::ValuesIn(kWord32BinaryOperations));
// -----------------------------------------------------------------------------
// CanElideChangeUint32ToUint64
namespace {
template <typename Op>
struct MachInst {
Op op;
const char* constructor_name;
ArchOpcode arch_opcode;
MachineType machine_type;
};
using MachInst2 = MachInst<TSBinop>;
// X64 instructions that clear the top 32 bits of the destination.
const MachInst2 kCanElideChangeUint32ToUint64[] = {
{TSBinop::kWord32BitwiseAnd, "Word32BitwiseAnd", kX64And32,
MachineType::Uint32()},
{TSBinop::kWord32BitwiseOr, "Word32BitwiseOr", kX64Or32,
MachineType::Uint32()},
{TSBinop::kWord32BitwiseXor, "Word32BitwiseXor", kX64Xor32,
MachineType::Uint32()},
{TSBinop::kWord32ShiftLeft, "Word32ShiftLeft", kX64Shl32,
MachineType::Uint32()},
{TSBinop::kWord32ShiftRightLogical, "Word32Shr", kX64Shr32,
MachineType::Uint32()},
{TSBinop::kWord32ShiftRightArithmetic, "Word32Sar", kX64Sar32,
MachineType::Uint32()},
{TSBinop::kWord32RotateRight, "Word32Ror", kX64Ror32,
MachineType::Uint32()},
{TSBinop::kWord32Equal, "Word32Equal", kX64Cmp32, MachineType::Uint32()},
{TSBinop::kWord32Add, "Int32Add", kX64Lea32, MachineType::Int32()},
{TSBinop::kWord32Sub, "Int32Sub", kX64Sub32, MachineType::Int32()},
{TSBinop::kWord32Mul, "Int32Mul", kX64Imul32, MachineType::Int32()},
{TSBinop::kInt32MulOverflownBits, "Int32MulOverflownBits", kX64ImulHigh32,
MachineType::Int32()},
{TSBinop::kInt32Div, "Int32Div", kX64Idiv32, MachineType::Int32()},
{TSBinop::kInt32LessThan, "Int32LessThan", kX64Cmp32, MachineType::Int32()},
{TSBinop::kInt32LessThanOrEqual, "Int32LessThanOrEqual", kX64Cmp32,
MachineType::Int32()},
{TSBinop::kInt32Mod, "Int32Mod", kX64Idiv32, MachineType::Int32()},
{TSBinop::kUint32Div, "Uint32Div", kX64Udiv32, MachineType::Uint32()},
{TSBinop::kUint32LessThan, "Uint32LessThan", kX64Cmp32,
MachineType::Uint32()},
{TSBinop::kUint32LessThanOrEqual, "Uint32LessThanOrEqual", kX64Cmp32,
MachineType::Uint32()},
{TSBinop::kUint32Mod, "Uint32Mod", kX64Udiv32, MachineType::Uint32()},
};
// The parameterized test that use the following type are intentionally part
// of the anonymous namespace. The issue here is that the type parameter is
// using a type that is in the anonymous namespace, but the class generated by
// TEST_P is not. This will cause GCC to generate a -Wsubobject-linkage warning.
//
// In this case there will only be single translation unit and the warning
// about subobject-linkage can be avoided by placing the class generated
// by TEST_P in the anoynmous namespace as well.
using TurboshaftInstructionSelectorElidedChangeUint32ToUint64Test =
TurboshaftInstructionSelectorTestWithParam<MachInst2>;
TEST_P(TurboshaftInstructionSelectorElidedChangeUint32ToUint64Test, Parameter) {
const MachInst2 binop = GetParam();
StreamBuilder m(this, MachineType::Uint64(), binop.machine_type,
binop.machine_type);
m.Return(
m.ChangeUint32ToUint64(m.Emit(binop.op, m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
// Make sure the `ChangeUint32ToUint64` node turned into a no-op.
ASSERT_EQ(1U, s.size());
EXPECT_EQ(binop.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
} // namespace
INSTANTIATE_TEST_SUITE_P(
TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorElidedChangeUint32ToUint64Test,
::testing::ValuesIn(kCanElideChangeUint32ToUint64));
// ChangeUint32ToUint64AfterLoad
TEST_F(TurboshaftInstructionSelectorTest, ChangeUint32ToUint64AfterLoad) {
// For each case, make sure the `ChangeUint32ToUint64` node turned into a
// no-op.
// movzxbl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Pointer());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Uint8(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movsxbl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Pointer());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Int8(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxbl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movzxwl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Pointer());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Uint16(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// movsxwl
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Pointer(),
MachineType::Pointer());
m.Return(m.ChangeUint32ToUint64(
m.Load(MachineType::Int16(), m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxwl, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
// -----------------------------------------------------------------------------
// TruncateInt64ToInt32.
TEST_F(TurboshaftInstructionSelectorTest, TruncateInt64ToInt32WithWord64Sar) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
OpIndex const p = m.Parameter(0);
OpIndex const t = m.TruncateWord64ToWord32(
m.Word64ShiftRightArithmetic(p, m.Int32Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, TruncateInt64ToInt32WithWord64Shr) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64());
OpIndex const p = m.Parameter(0);
OpIndex const t = m.TruncateWord64ToWord32(
m.Word64ShiftRightLogical(p, m.Int32Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->OutputAt(0)));
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Addition.
TEST_F(TurboshaftInstructionSelectorTest, Int32AddWithInt32ParametersLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const a0 = m.Word32Add(p0, p1);
// Additional uses of input to add chooses lea
OpIndex const a1 = m.Int32Div(p0, p1);
m.Return(m.Int32Div(a0, a1));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddConstantAsLeaSingle) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c0 = m.Int32Constant(15);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
OpIndex const v0 = m.Word32Add(p0, c0);
m.Return(v0);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddConstantAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c0 = m.Int32Constant(1);
// If there is only a single use of an add's input and the immediate constant
// for the add is 1, don't use an inc. It is much slower on modern Intel
// architectures.
m.Return(m.Word32Add(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddConstantAsLeaDouble) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c0 = m.Int32Constant(15);
// A second use of an add's input uses lea
OpIndex const a0 = m.Word32Add(p0, c0);
m.Return(m.Int32Div(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddSimpleAsAdd) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
// If one of the add's operands is only used once, use an "leal", even though
// an "addl" could be used. The "leal" has proven faster--out best guess is
// that it gives the register allocation more freedom and it doesn't set
// flags, reducing pressure in the CPU's pipeline. If we're lucky with
// register allocation, then code generation will select an "addl" later for
// the cases that have been measured to be faster.
m.Return(m.Word32Add(p0, p1));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddSimpleAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
// If all of of the add's operands are used multiple times, use an "leal".
OpIndex const v1 = m.Word32Add(p0, p1);
m.Return(m.Word32Add(m.Word32Add(v1, p1), p0));
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddCommutedScaled2Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
m.Return(m.Word32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddCommutedScaled2Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
m.Return(m.Word32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled4Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 2);
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled4Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, m.Int32Constant(2));
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled8Mul) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 3);
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled8Shl) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 3);
m.Return(m.Word32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled2MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest,
Int32AddScaled2MulWithConstantShuffle1) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(p0, m.Word32Add(s0, c0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest,
Int32AddScaled2MulWithConstantShuffle2) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(s0, m.Word32Add(c0, p0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest,
Int32AddScaled2MulWithConstantShuffle3) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(s0, c0), p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest,
Int32AddScaled2MulWithConstantShuffle4) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(c0, p0), s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest,
Int32AddScaled2MulWithConstantShuffle5) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled2ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, m.Int32Constant(1));
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled4MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 2);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled4ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, m.Int32Constant(2));
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled8MulWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 3);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled8ShlWithConstant) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const s0 = m.Word32ShiftLeft(p1, 3);
OpIndex const c0 = m.Int32Constant(15);
m.Return(m.Word32Add(m.Word32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32SubConstantAsSub) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c0 = m.Int32Constant(-1);
// If there is only a single use of on of the sub's non-constant input, use a
// "subl" instruction.
m.Return(m.Word32Sub(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32SubConstantAsLea) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c0 = m.Int32Constant(-1);
// If there are multiple uses of on of the sub's non-constant input, use a
// "leal" instruction.
OpIndex const v0 = m.Word32Sub(p0, c0);
m.Return(m.Int32Div(p0, v0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddScaled2Other) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const p2 = m.Parameter(2);
OpIndex const s0 = m.Word32ShiftLeft(p1, 1);
OpIndex const a0 = m.Word32Add(s0, p2);
OpIndex const a1 = m.Word32Add(p0, a0);
m.Return(a1);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[0]->OutputAt(0)));
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a1), s.ToVreg(s[1]->OutputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32AddMinNegativeDisplacement) {
// This test case is simplified from a Wasm fuzz test in
// https://crbug.com/1091892. The key here is that we match on a
// sequence like: Word32Add(Word32Sub(-524288, -2147483648), -26048), which
// matches on an EmitLea, with -2147483648 as the displacement. Since we
// have a Int32Sub node, it sets kNegativeDisplacement, and later we try to
// negate -2147483648, which overflows.
StreamBuilder m(this, MachineType::Int32());
OpIndex const c0 = m.Int32Constant(-524288);
OpIndex const c1 = m.Int32Constant(std::numeric_limits<int32_t>::min());
OpIndex const c2 = m.Int32Constant(-26048);
OpIndex const a0 = m.Word32Sub(c0, c1);
OpIndex const a1 = m.Word32Add(a0, c2);
m.Return(a1);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Sub32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kMode_None, s[0]->addressing_mode());
EXPECT_EQ(s.ToVreg(c0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(c1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(kMode_MRI, s[1]->addressing_mode());
EXPECT_EQ(s.ToVreg(a0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_TRUE(s[1]->InputAt(1)->IsImmediate());
EXPECT_EQ(s.ToVreg(a1), s.ToVreg(s[1]->OutputAt(0)));
}
// -----------------------------------------------------------------------------
// Multiplication.
TEST_F(TurboshaftInstructionSelectorTest, Int32MulWithInt32MulWithParameters) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const m0 = m.Word32Mul(p0, p1);
m.Return(m.Word32Mul(m0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Imul32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kX64Imul32, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(m0), s.ToVreg(s[1]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32MulOverflownBits) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const n = m.Int32MulOverflownBits(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64ImulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(TurboshaftInstructionSelectorTest, Uint32MulOverflownBits) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const n = m.Uint32MulOverflownBits(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64UmulHigh32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s.IsFixed(s[0]->InputAt(0), rax));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(!s.IsUsedAtStart(s[0]->InputAt(1)));
ASSERT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_TRUE(s.IsFixed(s[0]->OutputAt(0), rdx));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(2);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul3BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(3);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(4);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul5BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(5);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul8BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(8);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Mul9BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(9);
OpIndex const n = m.Word32Mul(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
// -----------------------------------------------------------------------------
// Word32ShiftLeft.
TEST_F(TurboshaftInstructionSelectorTest, Int32Shl1BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(1);
OpIndex const n = m.Word32ShiftLeft(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Shl2BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(2);
OpIndex const n = m.Word32ShiftLeft(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M4, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(TurboshaftInstructionSelectorTest, Int32Shl4BecomesLea) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32(),
MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const c1 = m.Int32Constant(3);
OpIndex const n = m.Word32ShiftLeft(p0, c1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_M8, s[0]->addressing_mode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
// -----------------------------------------------------------------------------
// Binops with a memory operand.
TEST_F(TurboshaftInstructionSelectorTest, LoadCmp32) {
{
// Word32Equal(Load[Int8](p0, p1), Int32Constant(0)) -> cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(
m.Word32Equal(m.Load(MachineType::Int8(), p0, p1), m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(LoadImmutable[Int8](p0, p1), Int32Constant(0)) ->
// cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.LoadImmutable(MachineType::Int8(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint8](p0, p1), Int32Constant(0)) -> cmpb [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint8(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp8, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Int16](p0, p1), Int32Constant(0)) -> cmpw [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Int16(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp16, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint16](p0, p1), Int32Constant(0)) -> cmpw [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint16(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp16, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Int32](p0, p1), Int32Constant(0)) -> cmpl [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Int32(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
{
// Word32Equal(Load[Uint32](p0, p1), Int32Constant(0)) -> cmpl [p0,p1], 0
StreamBuilder m(this, MachineType::Int32(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32Equal(m.Load(MachineType::Uint32(), p0, p1),
m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR1, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
}
TEST_F(TurboshaftInstructionSelectorTest, LoadAnd32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32BitwiseAnd(
p0, m.Load(MachineType::Int32(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadOr32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32BitwiseOr(
p0, m.Load(MachineType::Int32(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Or32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadXor32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word32BitwiseXor(
p0, m.Load(MachineType::Int32(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Xor32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadAdd32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(
m.Word32Add(p0, m.Load(MachineType::Int32(), p1, m.Int64Constant(127))));
Stream s = m.Build();
// Use lea instead of add, so memory operand is invalid.
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
EXPECT_EQ(kX64Lea32, s[1]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest, LoadSub32) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(
m.Word32Sub(p0, m.Load(MachineType::Int32(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Sub32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadAnd64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word64BitwiseAnd(
p0, m.Load(MachineType::Int64(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadOr64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word64BitwiseOr(
p0, m.Load(MachineType::Int64(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Or, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadXor64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(m.Word64BitwiseXor(
p0, m.Load(MachineType::Int64(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Xor, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadAdd64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(
m.Word64Add(p0, m.Load(MachineType::Int64(), p1, m.Int64Constant(127))));
Stream s = m.Build();
// Use lea instead of add, so memory operand is invalid.
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Movq, s[0]->arch_opcode());
EXPECT_EQ(kX64Lea, s[1]->arch_opcode());
}
TEST_F(TurboshaftInstructionSelectorTest, LoadSub64) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
m.Return(
m.Word64Sub(p0, m.Load(MachineType::Int64(), p1, m.Int64Constant(127))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Sub, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
// -----------------------------------------------------------------------------
// Floating point operations.
TEST_F(TurboshaftInstructionSelectorTest, Float32Abs) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Float32Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float32Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(TurboshaftInstructionSelectorTest, Float64Abs) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Float64Abs(p0);
m.Return(n);
Stream s = m.Build(AVX);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Float64Abs, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(TurboshaftInstructionSelectorTest, Float64BinopArithmetic) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
OpIndex add = m.Float64Add(m.Parameter(0), m.Parameter(1));
OpIndex mul = m.Float64Mul(add, m.Parameter(1));
OpIndex sub = m.Float64Sub(mul, add);
OpIndex ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kAVXFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kAVXFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kAVXFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kAVXFloat64Div, s[3]->arch_opcode());
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Float64());
OpIndex add = m.Float64Add(m.Parameter(0), m.Parameter(1));
OpIndex mul = m.Float64Mul(add, m.Parameter(1));
OpIndex sub = m.Float64Sub(mul, add);
OpIndex ret = m.Float64Div(mul, sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kSSEFloat64Add, s[0]->arch_opcode());
EXPECT_EQ(kSSEFloat64Mul, s[1]->arch_opcode());
EXPECT_EQ(kSSEFloat64Sub, s[2]->arch_opcode());
EXPECT_EQ(kSSEFloat64Div, s[3]->arch_opcode());
}
}
TEST_F(TurboshaftInstructionSelectorTest, Float32BinopArithmeticWithLoad) {
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(),
MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const p2 = m.Parameter(2);
OpIndex add = m.Float32Add(
p0, m.Load(MachineType::Float32(), p1, m.Int64Constant(127)));
OpIndex sub = m.Float32Sub(
add, m.Load(MachineType::Float32(), p1, m.Int64Constant(127)));
OpIndex ret = m.Float32Mul(
m.Load(MachineType::Float32(), p2, m.Int64Constant(127)), sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kAVXFloat32Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kAVXFloat32Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kAVXFloat32Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
{
StreamBuilder m(this, MachineType::Float32(), MachineType::Float32(),
MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const p2 = m.Parameter(2);
OpIndex add = m.Float32Add(
p0, m.Load(MachineType::Float32(), p1, m.Int64Constant(127)));
OpIndex sub = m.Float32Sub(
add, m.Load(MachineType::Float32(), p1, m.Int64Constant(127)));
OpIndex ret = m.Float32Mul(
m.Load(MachineType::Float32(), p2, m.Int64Constant(127)), sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kSSEFloat32Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kSSEFloat32Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kSSEFloat32Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Float64BinopArithmeticWithLoad) {
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const p2 = m.Parameter(2);
OpIndex add = m.Float64Add(
p0, m.Load(MachineType::Float64(), p1, m.Int64Constant(127)));
OpIndex sub = m.Float64Sub(
add, m.Load(MachineType::Float64(), p1, m.Int64Constant(127)));
OpIndex ret = m.Float64Mul(
m.Load(MachineType::Float64(), p2, m.Int64Constant(127)), sub);
m.Return(ret);
Stream s = m.Build(AVX);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kAVXFloat64Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kAVXFloat64Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kAVXFloat64Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
{
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(),
MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const p1 = m.Parameter(1);
OpIndex const p2 = m.Parameter(2);
OpIndex add = m.Float64Add(
p0, m.Load(MachineType::Float64(), p1, m.Int64Constant(127)));
OpIndex sub = m.Float64Sub(
add, m.Load(MachineType::Float64(), p1, m.Int64Constant(127)));
OpIndex ret = m.Float64Mul(
m.Load(MachineType::Float64(), p2, m.Int64Constant(127)), sub);
m.Return(ret);
Stream s = m.Build();
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kSSEFloat64Add, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(kSSEFloat64Sub, s[1]->arch_opcode());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(kSSEFloat64Mul, s[2]->arch_opcode());
ASSERT_EQ(3U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[2]->InputAt(1)));
}
}
// -----------------------------------------------------------------------------
// Miscellaneous.
TEST_F(TurboshaftInstructionSelectorTest,
Word64ShiftLeftWithChangeInt32ToInt64) {
TRACED_FORRANGE(int32_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n =
m.Word64ShiftLeft(m.ChangeInt32ToInt64(p0), m.Int32Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest,
Word64ShiftLeftWithChangeUint32ToUint64) {
TRACED_FORRANGE(int32_t, x, 32, 63) {
StreamBuilder m(this, MachineType::Int64(), MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n =
m.Word64ShiftLeft(m.ChangeUint32ToUint64(p0), m.Int32Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Shl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(s.IsSameAsFirst(s[0]->Output()));
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word32BitwiseAndWith0xFF) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word32BitwiseAnd(p0, m.Int32Constant(0xFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word64BitwiseAndWith0xFFFFFFFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word64BitwiseAnd(p0, m.Int64Constant(0xFFFFFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word64BitwiseAndWith0xFFFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word64BitwiseAnd(p0, m.Int64Constant(0xFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word64BitwiseAndWith0xFF) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word64BitwiseAnd(p0, m.Int64Constant(0xFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxbq, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word64BitwiseAndWithInt64FitsUint32) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word64BitwiseAnd(p0, m.Int64Constant(15));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest,
Word64BitwiseAndWithInt64DontFitsUint32) {
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word64BitwiseAnd(p0, m.Int64Constant(0x100000000));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64And, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word32BitwiseAndWith0xFFFF) {
{
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word32BitwiseAnd(p0, m.Int32Constant(0xFFFF));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movzxwl, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(TurboshaftInstructionSelectorTest, Word32Clz) {
StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32());
OpIndex const p0 = m.Parameter(0);
OpIndex const n = m.Word32CountLeadingZeros(p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lzcnt32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
TEST_F(TurboshaftInstructionSelectorTest, LoadAndWord64ShiftRight32) {
{
StreamBuilder m(this, MachineType::Uint64(), MachineType::Uint64());
OpIndex const p0 = m.Parameter(0);
OpIndex const load = m.Load(MachineType::Uint64(), p0);
OpIndex const shift = m.Word64ShiftRightLogical(load, m.Int32Constant(32));
m.Return(shift);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const load = m.Load(MachineType::Int64(), p0);
OpIndex const shift =
m.Word64ShiftRightArithmetic(load, m.Int32Constant(32));
m.Return(shift);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movsxlq, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, MachineType::Int64(), MachineType::Int64());
OpIndex const p0 = m.Parameter(0);
OpIndex const load = m.Load(MachineType::Int64(), p0);
OpIndex const shift =
m.Word64ShiftRightArithmetic(load, m.Int32Constant(32));
OpIndex const truncate = m.TruncateWord64ToWord32(shift);
m.Return(truncate);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Movl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(4, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(shift), s.ToVreg(s[0]->Output()));
}
}
#if V8_ENABLE_WEBASSEMBLY
// -----------------------------------------------------------------------------
// SIMD.
TEST_F(TurboshaftInstructionSelectorTest, SIMDSplatZero) {
// Test optimization for splat of contant 0.
// {i8x16,i16x8,i32x4,i64x2}.splat(const(0)) -> v128.zero().
// Optimizations for f32x4.splat and f64x2.splat not implemented since it
// doesn't improve the codegen as much (same number of instructions).
{
StreamBuilder m(this, MachineType::Simd128());
OpIndex const splat = m.I64x2Splat(m.Int64Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64SZero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
OpIndex const splat = m.I32x4Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64SZero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
OpIndex const splat = m.I16x8Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64SZero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, MachineType::Simd128());
OpIndex const splat = m.I8x16Splat(m.Int32Constant(0));
m.Return(splat);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64SZero, s[0]->arch_opcode());
ASSERT_EQ(0U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
struct ArchShuffle {
uint8_t shuffle[kSimd128Size];
ArchOpcode arch_opcode;
size_t input_count;
};
static constexpr ArchShuffle kArchShuffles[] = {
// These are architecture specific shuffles defined in
// instruction-selecor-x64.cc arch_shuffles.
{
{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23},
kX64S64x2UnpackLow,
2,
},
{
{8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31},
kX64S64x2UnpackHigh,
2,
},
{
{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
kX64S32x4UnpackLow,
2,
},
{
{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
kX64S32x4UnpackHigh,
2,
},
{
{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
kX64S16x8UnpackLow,
2,
},
{
{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
kX64S16x8UnpackHigh,
2,
},
{
{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
kX64S8x16UnpackLow,
2,
},
{
{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
kX64S8x16UnpackHigh,
2,
},
{
{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
kX64S16x8UnzipLow,
2,
},
{
{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
kX64S16x8UnzipHigh,
2,
},
{
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
kX64S8x16UnzipLow,
2,
},
{
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
kX64S8x16UnzipHigh,
2,
},
{
{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
kX64S8x16TransposeLow,
2,
},
{
{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
kX64S8x16TransposeHigh,
2,
},
{
{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8},
kX64S8x8Reverse,
1,
},
{
{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12},
kX64S8x4Reverse,
1,
},
{
{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14},
kX64S8x2Reverse,
1,
},
// These are matched by TryMatchConcat && TryMatch32x4Rotate.
{
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3},
kX64S32x4Rotate,
2,
},
{
{8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7},
kX64S32x4Rotate,
2,
},
{
{12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
kX64S32x4Rotate,
2,
},
// These are matched by TryMatchConcat && !TryMatch32x4Rotate.
{
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2},
kX64S8x16Alignr,
3,
},
{
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1},
kX64S8x16Alignr,
3,
},
{
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17},
kX64S8x16Alignr,
3,
},
// These are matched by TryMatch32x4Shuffle && is_swizzle.
{
{0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15},
kX64S32x4Swizzle,
2,
},
{
{0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11},
kX64S32x4Swizzle,
2,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle && TryMatchBlend.
{
{0, 1, 2, 3, 20, 21, 22, 23, 8, 9, 10, 11, 28, 29, 30, 31},
kX64S16x8Blend,
3,
},
{
{16, 17, 18, 19, 4, 5, 6, 7, 24, 25, 26, 27, 12, 13, 14, 15},
kX64S16x8Blend,
3,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle &&
// TryMatchShufps.
{
{0, 1, 2, 3, 8, 9, 10, 11, 28, 29, 30, 31, 28, 29, 30, 31},
kX64Shufps,
3,
},
{
{8, 9, 10, 11, 0, 1, 2, 3, 28, 29, 30, 31, 28, 29, 30, 31},
kX64Shufps,
3,
},
// These are matched by TryMatch32x4Shuffle && !is_swizzle.
{
{28, 29, 30, 31, 0, 1, 2, 3, 28, 29, 30, 31, 28, 29, 30, 31},
kX64S32x4Shuffle,
4,
},
// These are matched by TryMatch16x8Shuffle && TryMatchBlend.
{
{16, 17, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 12, 13, 14, 15},
kX64S16x8Blend,
3,
},
// These are matched by TryMatch16x8Shuffle && TryMatchSplat<8>.
{
{2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3},
kX64S16x8Dup,
2,
},
// These are matched by TryMatch16x8Shuffle && TryMatch16x8HalfShuffle.
{
{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9},
kX64S16x8HalfShuffle1,
3,
},
{
{6, 7, 4, 5, 2, 3, 0, 1, 30, 31, 28, 29, 26, 27, 24, 25},
kX64S16x8HalfShuffle2,
5,
},
// These are matched by TryMatchSplat<16>.
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
kX64S8x16Dup,
2,
},
// Generic shuffle that only uses 1 input.
{
{1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8},
kX64I8x16Shuffle,
5,
},
// Generic shuffle that uses both input.
{
{1, 31, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8},
kX64I8x16Shuffle,
6,
},
};
using TurboshaftInstructionSelectorSIMDArchShuffleTest =
TurboshaftInstructionSelectorTestWithParam<ArchShuffle>;
TEST_P(TurboshaftInstructionSelectorSIMDArchShuffleTest, SIMDArchShuffle) {
MachineType type = MachineType::Simd128();
{
// Tests various shuffle optimizations
StreamBuilder m(this, type, type, type);
auto param = GetParam();
OpIndex n = m.Simd128Shuffle(m.Parameter(0), m.Parameter(1), param.shuffle);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(param.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(param.input_count, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorSIMDArchShuffleTest,
::testing::ValuesIn(kArchShuffles));
// TODO(dmercadier): port to Turboshaft once Turboshaft supports Simd256
// shuffles.
#if 0
struct ArchShuffle256 {
uint8_t shuffle[kSimd256Size];
ArchOpcode arch_opcode;
size_t input_count;
};
static constexpr ArchShuffle256 kArchShuffles256[] = {
{{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 16, 17, 18, 19},
kX64Vpshufd,
2}};
using TurboshaftInstructionSelectorSIMDArchShuffle256Test =
TurboshaftInstructionSelectorTestWithParam<ArchShuffle256>;
TEST_P(TurboshaftInstructionSelectorSIMDArchShuffle256Test,
SIMDArchShuffle256) {
MachineType type = MachineType::Simd128();
{
// Tests various shuffle optimizations
StreamBuilder m(this, type, type, type);
auto param = GetParam();
auto shuffle = param.shuffle;
const Operator* op = m.machine()->I8x32Shuffle(shuffle);
OpIndex n = m.AddNode(op, m.Parameter(0), m.Parameter(1));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(param.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(param.input_count, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorSIMDArchShuffle256Test,
::testing::ValuesIn(kArchShuffles256));
#endif
struct ShuffleWithZeroInput {
uint8_t shuffle_mask[kSimd128Size];
ArchOpcode arch_opcode;
size_t input_count;
};
static constexpr ShuffleWithZeroInput kShuffleWithZeroInput[] = {
// These are matched by TryMatchByteToDwordZeroExtend.
{
{16, 1, 2, 3, 17, 4, 5, 6, 18, 7, 8, 9, 19, 10, 11, 12},
kX64I32X4ShiftZeroExtendI8x16,
2,
},
// Generic shuffle that uses one zero input.
{
{16, 1, 2, 3, 17, 4, 5, 6, 18, 7, 8, 9, 19, 20, 21, 22},
kX64I8x16Shuffle,
5,
},
};
using TurboshaftInstructionSelectorSIMDShuffleWithZeroInputTest =
TurboshaftInstructionSelectorTestWithParam<ShuffleWithZeroInput>;
TEST_P(TurboshaftInstructionSelectorSIMDShuffleWithZeroInputTest,
SIMDShuffleWithZeroInputTest) {
MachineType type = MachineType::Simd128();
{
// Tests shuffle to packed zero extend optimization
uint8_t zeros[kSimd128Size] = {0};
StreamBuilder m(this, type, type);
auto param = GetParam();
OpIndex const c = m.Simd128Constant(zeros);
OpIndex n = m.Simd128Shuffle(c, m.Parameter(0), param.shuffle_mask);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(param.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(param.input_count, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_SUITE_P(
TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorSIMDShuffleWithZeroInputTest,
::testing::ValuesIn(kShuffleWithZeroInput));
struct SwizzleConstants {
uint8_t shuffle[kSimd128Size];
bool omit_add;
};
static constexpr SwizzleConstants kSwizzleConstants[] = {
{
// all lanes < kSimd128Size
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
true,
},
{
// lanes that are >= kSimd128Size have top bit set
{12, 13, 14, 15, 0x90, 0x91, 0x92, 0x93, 0xA0, 0xA1, 0xA2, 0xA3, 0xFC,
0xFD, 0xFE, 0xFF},
true,
},
{
{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27},
false,
},
};
using TurboshaftInstructionSelectorSIMDSwizzleConstantTest =
TurboshaftInstructionSelectorTestWithParam<SwizzleConstants>;
TEST_P(TurboshaftInstructionSelectorSIMDSwizzleConstantTest,
SimdSwizzleConstant) {
// Test optimization of swizzle with constant indices.
auto param = GetParam();
StreamBuilder m(this, MachineType::Simd128(), MachineType::Simd128());
OpIndex const c = m.Simd128Constant(param.shuffle);
OpIndex swizzle = m.I8x16Swizzle(m.Parameter(0), c);
m.Return(swizzle);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
ASSERT_EQ(kX64I8x16Swizzle, s[1]->arch_opcode());
ASSERT_EQ(param.omit_add, s[1]->misc());
ASSERT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_SUITE_P(TurboshaftInstructionSelectorTest,
TurboshaftInstructionSelectorSIMDSwizzleConstantTest,
::testing::ValuesIn(kSwizzleConstants));
#if 0
TEST_F(TurboshaftInstructionSelectorTest,
F64x2PromoteLowF32x4WithS128Load64Zero) {
StreamBuilder m(this, MachineType::Simd128(), MachineType::Int64());
OpIndex const load = m.Simd128LoadTransform(
m.Int64Constant(2), m.Parameter(0),
Simd128LoadTransformOp::LoadKind::RawAligned().Protected(),
Simd128LoadTransformOp::TransformKind::k64Zero, 0);
OpIndex const promote = m.F64x2PromoteLowF32x4(load);
m.Return(promote);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
ASSERT_EQ(kX64F64x2PromoteLowF32x4, s[0]->arch_opcode());
ASSERT_EQ(kMode_MRI, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
#endif
#endif // V8_ENABLE_WEBASSEMBLY
} // namespace v8::internal::compiler::turboshaft