node/deps/v8/test/unittests/compiler/backend/turboshaft-instruction-selector-unittest.cc
Michaël Zasso 9d7cd9b864
deps: update V8 to 12.8.374.13
PR-URL: https://github.com/nodejs/node/pull/54077
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
2024-08-16 16:03:01 +02:00

585 lines
22 KiB
C++

// Copyright 2024 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/backend/turboshaft-instruction-selector-unittest.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/tick-counter.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph.h"
#include "src/compiler/schedule.h"
#include "src/compiler/turboshaft/instruction-selection-phase.h"
#include "src/compiler/turboshaft/phase.h"
#include "src/compiler/turboshaft/representations.h"
#include "src/flags/flags.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8::internal::compiler::turboshaft {
TurboshaftInstructionSelectorTest::TurboshaftInstructionSelectorTest()
: TestWithNativeContextAndZone(kCompressGraphZone),
rng_(v8_flags.random_seed) {}
TurboshaftInstructionSelectorTest::~TurboshaftInstructionSelectorTest() =
default;
TurboshaftInstructionSelectorTest::Stream
TurboshaftInstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
TurboshaftInstructionSelectorTest::StreamBuilderMode mode,
InstructionSelector::SourcePositionMode source_position_mode) {
if (v8_flags.trace_turbo) {
StdoutStream{} << "=== Graph before instruction selection ===" << std::endl
<< output_graph();
}
size_t const node_count = output_graph().NumberOfOperationsForDebugging();
EXPECT_NE(0u, node_count);
Linkage linkage(call_descriptor());
Graph& graph = output_graph();
// Compute special RPO order....
TurboshaftSpecialRPONumberer numberer(graph, test_->zone());
auto schedule = numberer.ComputeSpecialRPO();
graph.ReorderBlocks(base::VectorOf(schedule));
// Determine deferred blocks.
PropagateDeferred(graph);
// Initialize an instruction sequence.
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(test_->zone(), graph);
InstructionSequence sequence(test_->isolate(), test_->zone(),
instruction_blocks);
TickCounter tick_counter;
size_t max_unoptimized_frame_height = 0;
size_t max_pushed_argument_count = 0;
InstructionSelector selector = InstructionSelector::ForTurboshaft(
test_->zone(), graph.op_id_count(), &linkage, &sequence, &graph, nullptr,
InstructionSelector::kEnableSwitchJumpTable, &tick_counter, nullptr,
&max_unoptimized_frame_height, &max_pushed_argument_count,
source_position_mode, features, InstructionSelector::kDisableScheduling,
InstructionSelector::kEnableRootsRelativeAddressing);
selector.SelectInstructions();
if (v8_flags.trace_turbo) {
StdoutStream{} << "=== Code sequence after instruction selection ==="
<< std::endl
<< sequence;
}
Stream s;
s.virtual_registers_ = selector.GetVirtualRegistersForTesting();
// Map virtual registers.
for (Instruction* const instr : sequence) {
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
int vreg = ConstantOperand::cast(output)->virtual_register();
s.constants_.insert(std::make_pair(vreg, sequence.GetConstant(vreg)));
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
auto imm = ImmediateOperand::cast(input);
if (imm->type() == ImmediateOperand::INDEXED_IMM) {
int index = imm->indexed_value();
s.immediates_.insert(
std::make_pair(index, sequence.GetImmediate(imm)));
}
}
}
s.instructions_.push_back(instr);
}
for (auto i : s.virtual_registers_) {
int const virtual_register = i.second;
if (sequence.IsFP(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsFP(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetDeoptimizationEntryCount(); i++) {
s.deoptimization_entries_.push_back(
sequence.GetDeoptimizationEntry(i).descriptor());
}
return s;
}
int TurboshaftInstructionSelectorTest::Stream::ToVreg(OpIndex index) const {
VirtualRegisters::const_iterator i = virtual_registers_.find(index.id());
CHECK(i != virtual_registers_.end());
return i->second;
}
bool TurboshaftInstructionSelectorTest::Stream::IsFixed(
const InstructionOperand* operand, Register reg) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
if (!unallocated->HasFixedRegisterPolicy()) return false;
return unallocated->fixed_register_index() == reg.code();
}
bool TurboshaftInstructionSelectorTest::Stream::IsSameAsFirst(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->HasSameAsInputPolicy();
}
bool TurboshaftInstructionSelectorTest::Stream::IsSameAsInput(
const InstructionOperand* operand, int input_index) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->HasSameAsInputPolicy() &&
unallocated->input_index() == input_index;
}
bool TurboshaftInstructionSelectorTest::Stream::IsUsedAtStart(
const InstructionOperand* operand) const {
if (!operand->IsUnallocated()) return false;
const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand);
return unallocated->IsUsedAtStart();
}
const FrameStateFunctionInfo*
TurboshaftInstructionSelectorTest::StreamBuilder::GetFrameStateFunctionInfo(
uint16_t parameter_count, int local_count) {
const uint16_t max_arguments = 0;
return test_->zone()->New<FrameStateFunctionInfo>(
FrameStateType::kUnoptimizedFunction, parameter_count, max_arguments,
local_count, Handle<SharedFunctionInfo>());
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(TurboshaftInstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, MachineType::Float32());
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(TurboshaftInstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Int32());
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
TARGET_TEST_F(TurboshaftInstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, MachineType::Int32());
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(2U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(TurboshaftInstructionSelectorTest,
TruncateFloat64ToWord32WithParameter) {
StreamBuilder m(this, MachineType::Int32(), MachineType::Float64());
m.Return(m.JSTruncateFloat64ToWord32(m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(TurboshaftInstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, MachineType::Float64(), MachineType::Float64());
OpIndex param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param));
}
TARGET_TEST_F(TurboshaftInstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged());
OpIndex param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param));
}
// -----------------------------------------------------------------------------
// Phi.
using TurboshaftInstructionSelectorPhiTest =
TurboshaftInstructionSelectorTestWithParam<MachineType>;
TARGET_TEST_P(TurboshaftInstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
OpIndex param0 = m.Parameter(0);
OpIndex param1 = m.Parameter(1);
Block *a = m.NewBlock(), *b = m.NewBlock(), *c = m.NewBlock();
m.Branch(m.Int32Constant(0), a, b);
m.Bind(a);
m.Goto(c);
m.Bind(b);
m.Goto(c);
m.Bind(c);
OpIndex phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0));
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1));
}
TARGET_TEST_P(TurboshaftInstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
OpIndex param0 = m.Parameter(0);
OpIndex param1 = m.Parameter(1);
Block *a = m.NewBlock(), *b = m.NewBlock(), *c = m.NewBlock();
m.Branch(m.Int32Constant(1), a, b);
m.Bind(a);
m.Goto(c);
m.Bind(b);
m.Goto(c);
m.Bind(c);
OpIndex phi = m.Phi(type.representation(), param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi), s.IsReference(param0));
EXPECT_EQ(s.IsReference(phi), s.IsReference(param1));
}
INSTANTIATE_TEST_SUITE_P(
TurboshaftInstructionSelectorTest, TurboshaftInstructionSelectorPhiTest,
::testing::Values(MachineType::Float64(), MachineType::Int8(),
MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(),
MachineType::Uint32(), MachineType::Int64(),
MachineType::Uint64(), MachineType::Pointer(),
MachineType::AnyTagged()));
// TODO(dmercadier): port following tests to Turboshaft.
#if 0
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(TurboshaftInstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BytecodeOffset bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> tagged_type(1, MachineType::AnyTagged(), zone());
ZoneVector<MachineType> empty_type(zone());
auto call_descriptor = Linkage::GetJSCallDescriptor(
zone(), false, 1,
CallDescriptor::kNeedsFrameState | CallDescriptor::kCanUseRoots);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(1));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&empty_type, SparseInputMask::Dense()));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&tagged_type, SparseInputMask::Dense()),
m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* state_node = m.AddNode(
m.common()->FrameState(bailout_id, OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 0)),
parameters, locals, stack, context_sentinel, function_node,
m.graph()->start());
// Build the call.
Node* nodes[] = {function_node, receiver, m.UndefinedConstant(),
m.Int32Constant(1), context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeopt) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BytecodeOffset bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
ZoneVector<MachineType> tagged_type(1, MachineType::AnyTagged(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtin::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.5));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&tagged_type, SparseInputMask::Dense()),
m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context_sentinel, function_node,
m.graph()->start());
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallCodeObject.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
6 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1 + // Context.
1; // Entrypoint tag.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(4))); // This should be a context.
// We inserted 0 here.
EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(5)));
EXPECT_TRUE(IsUndefined(*s.ToHeapObject(call_instr->InputAt(6)), isolate()));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(7)));
// Context.
EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(8)));
// Entrypoint tag.
EXPECT_TRUE(call_instr->InputAt(9)->IsImmediate());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeoptRecursiveFrameState) {
StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(),
MachineType::AnyTagged(), MachineType::AnyTagged());
BytecodeOffset bailout_id_before(42);
BytecodeOffset bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
Node* context2 = m.Int32Constant(46);
ZoneVector<MachineType> int32_type(1, MachineType::Int32(), zone());
ZoneVector<MachineType> float64_type(1, MachineType::Float64(), zone());
Callable callable = Builtins::CallableFor(isolate(), Builtin::kToObject);
auto call_descriptor = Linkage::GetStubCallDescriptor(
zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState,
Operator::kNoProperties);
// Build frame state for the state before the call.
Node* parameters = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(63));
Node* locals = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(64));
Node* stack = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(65));
Node* frame_state_parent = m.AddNode(
m.common()->FrameState(bailout_id_parent,
OutputFrameStateCombine::Ignore(),
m.GetFrameStateFunctionInfo(1, 1)),
parameters, locals, stack, context, function_node, m.graph()->start());
Node* parameters2 = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(43));
Node* locals2 = m.AddNode(
m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()),
m.Float64Constant(0.25));
Node* stack2 = m.AddNode(
m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()),
m.Int32Constant(44));
Node* state_node =
m.AddNode(m.common()->FrameState(bailout_id_before,
OutputFrameStateCombine::PokeAt(0),
m.GetFrameStateFunctionInfo(1, 1)),
parameters2, locals2, stack2, context2, function_node,
frame_state_parent);
// Build the call.
Node* stub_code = m.HeapConstant(callable.code());
Node* nodes[] = {stub_code, function_node, receiver, context2, state_node};
Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallCodeObject.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Frame state deopt id
5 + // One input for each value in frame state + context.
5 + // One input for each value in the parent frame state + context.
1 + // Function.
1 + // Context.
1; // Entrypoint tag.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
FrameStateDescriptor* desc_before_outer = desc_before->outer_state();
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before_outer->parameters_count());
EXPECT_EQ(1u, desc_before_outer->locals_count());
EXPECT_EQ(1u, desc_before_outer->stack_count());
// Values from parent environment.
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(3)));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(5)));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(6)));
// Values from the nested frame.
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(8)));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(9)));
EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(10)));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(11)));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(12)));
// Context.
EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(13)));
// Entrypoint tag.
EXPECT_TRUE(call_instr->InputAt(14)->IsImmediate());
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
#endif
} // namespace v8::internal::compiler::turboshaft