node/deps/v8/test/fuzzer/wasm-fuzzer-common.cc
Michaël Zasso 9d7cd9b864
deps: update V8 to 12.8.374.13
PR-URL: https://github.com/nodejs/node/pull/54077
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
Reviewed-By: Joyee Cheung <joyeec9h3@gmail.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
2024-08-16 16:03:01 +02:00

429 lines
17 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/fuzzer/wasm-fuzzer-common.h"
#include "include/v8-context.h"
#include "include/v8-exception.h"
#include "include/v8-isolate.h"
#include "include/v8-local-handle.h"
#include "include/v8-metrics.h"
#include "src/execution/isolate.h"
#include "src/utils/ostreams.h"
#include "src/wasm/baseline/liftoff-compiler.h"
#include "src/wasm/compilation-environment-inl.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/module-compiler.h"
#include "src/wasm/module-decoder-impl.h"
#include "src/wasm/module-instantiate.h"
#include "src/wasm/string-builder-multiline.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-feature-flags.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/common/flag-utils.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
#include "tools/wasm/mjsunit-module-disassembler-impl.h"
namespace v8::internal::wasm::fuzzing {
namespace {
void CompileAllFunctionsForReferenceExecution(NativeModule* native_module,
int32_t* max_steps,
int32_t* nondeterminism) {
const WasmModule* module = native_module->module();
WasmCodeRefScope code_ref_scope;
CompilationEnv env = CompilationEnv::ForModule(native_module);
ModuleWireBytes wire_bytes_accessor{native_module->wire_bytes()};
for (size_t i = module->num_imported_functions; i < module->functions.size();
++i) {
auto& func = module->functions[i];
base::Vector<const uint8_t> func_code =
wire_bytes_accessor.GetFunctionBytes(&func);
constexpr bool kIsShared = false;
FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(),
func_code.end(), kIsShared);
auto result =
ExecuteLiftoffCompilation(&env, func_body,
LiftoffOptions{}
.set_func_index(func.func_index)
.set_for_debugging(kForDebugging)
.set_max_steps(max_steps)
.set_nondeterminism(nondeterminism));
if (!result.succeeded()) {
FATAL(
"Liftoff compilation failed on a valid module. Run with "
"--trace-wasm-decoder (in a debug build) to see why.");
}
native_module->PublishCode(native_module->AddCompiledCode(result));
}
}
} // namespace
CompileTimeImports CompileTimeImportsForFuzzing() {
CompileTimeImports result;
result.Add(CompileTimeImport::kJsString);
result.Add(CompileTimeImport::kTextDecoder);
result.Add(CompileTimeImport::kTextEncoder);
return result;
}
// Compile a baseline module. We pass a pointer to a max step counter and a
// nondeterminsm flag that are updated during execution by Liftoff.
Handle<WasmModuleObject> CompileReferenceModule(
Isolate* isolate, base::Vector<const uint8_t> wire_bytes,
int32_t* max_steps, int32_t* nondeterminism) {
// Create the native module.
std::shared_ptr<NativeModule> native_module;
constexpr bool kNoVerifyFunctions = false;
auto enabled_features = WasmEnabledFeatures::FromIsolate(isolate);
ModuleResult module_res =
DecodeWasmModule(enabled_features, wire_bytes, kNoVerifyFunctions,
ModuleOrigin::kWasmOrigin);
CHECK(module_res.ok());
std::shared_ptr<WasmModule> module = module_res.value();
CHECK_NOT_NULL(module);
CompileTimeImports compile_imports = CompileTimeImportsForFuzzing();
WasmError imports_error =
ValidateAndSetBuiltinImports(module.get(), wire_bytes, compile_imports);
CHECK(!imports_error.has_error()); // The module was compiled before.
native_module = GetWasmEngine()->NewNativeModule(
isolate, enabled_features, CompileTimeImportsForFuzzing(), module, 0);
native_module->SetWireBytes(base::OwnedVector<uint8_t>::Of(wire_bytes));
// The module is known to be valid as this point (it was compiled by the
// caller before).
module->set_all_functions_validated();
// Compile all functions with Liftoff.
CompileAllFunctionsForReferenceExecution(native_module.get(), max_steps,
nondeterminism);
// Create the module object.
constexpr base::Vector<const char> kNoSourceUrl;
DirectHandle<Script> script =
GetWasmEngine()->GetOrCreateScript(isolate, native_module, kNoSourceUrl);
isolate->heap()->EnsureWasmCanonicalRttsSize(module->MaxCanonicalTypeIndex() +
1);
return WasmModuleObject::New(isolate, std::move(native_module), script);
}
void ExecuteAgainstReference(Isolate* isolate,
Handle<WasmModuleObject> module_object,
int32_t max_executed_instructions) {
// We do not instantiate the module if there is a start function, because a
// start function can contain an infinite loop which we cannot handle.
if (module_object->module()->start_function_index >= 0) return;
int32_t max_steps = max_executed_instructions;
int32_t nondeterminism = 0;
HandleScope handle_scope(isolate); // Avoid leaking handles.
Zone reference_module_zone(isolate->allocator(), "wasm reference module");
Handle<WasmModuleObject> module_ref = CompileReferenceModule(
isolate, module_object->native_module()->wire_bytes(), &max_steps,
&nondeterminism);
Handle<WasmInstanceObject> instance_ref;
// Try to instantiate the reference instance, return if it fails.
{
ErrorThrower thrower(isolate, "ExecuteAgainstReference");
if (!GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_ref, {},
{}) // no imports & memory
.ToHandle(&instance_ref)) {
isolate->clear_exception();
thrower.Reset(); // Ignore errors.
return;
}
}
// Get the "main" exported function. Do nothing if it does not exist.
Handle<WasmExportedFunction> main_function;
if (!testing::GetExportedFunction(isolate, instance_ref, "main")
.ToHandle(&main_function)) {
return;
}
struct OomCallbackData {
Isolate* isolate;
bool heap_limit_reached{false};
size_t initial_limit{0};
};
OomCallbackData oom_callback_data{isolate};
auto heap_limit_callback = [](void* raw_data, size_t current_limit,
size_t initial_limit) -> size_t {
OomCallbackData* data = reinterpret_cast<OomCallbackData*>(raw_data);
data->heap_limit_reached = true;
data->isolate->TerminateExecution();
data->initial_limit = initial_limit;
// Return a slightly raised limit, just to make it to the next
// interrupt check point, where execution will terminate.
return initial_limit * 1.25;
};
isolate->heap()->AddNearHeapLimitCallback(heap_limit_callback,
&oom_callback_data);
Tagged<WasmExportedFunctionData> func_data =
main_function->shared()->wasm_exported_function_data();
const FunctionSig* sig = func_data->instance_data()
->module()
->functions[func_data->function_index()]
.sig;
base::OwnedVector<Handle<Object>> compiled_args =
testing::MakeDefaultArguments(isolate, sig);
std::unique_ptr<const char[]> exception_ref;
int32_t result_ref = testing::CallWasmFunctionForTesting(
isolate, instance_ref, "main", compiled_args.as_vector(), &exception_ref);
bool execute = true;
// Reached max steps, do not try to execute the test module as it might
// never terminate.
if (max_steps < 0) execute = false;
// If there is nondeterminism, we cannot guarantee the behavior of the test
// module, and in particular it may not terminate.
if (nondeterminism != 0) execute = false;
// Similar to max steps reached, also discard modules that need too much
// memory.
isolate->heap()->RemoveNearHeapLimitCallback(heap_limit_callback,
oom_callback_data.initial_limit);
if (oom_callback_data.heap_limit_reached) {
execute = false;
isolate->CancelTerminateExecution();
}
if (exception_ref) {
if (strcmp(exception_ref.get(),
"RangeError: Maximum call stack size exceeded") == 0) {
// There was a stack overflow, which may happen nondeterministically. We
// cannot guarantee the behavior of the test module, and in particular it
// may not terminate.
execute = false;
}
}
if (!execute) {
// Before discarding the module, see if Turbofan runs into any DCHECKs.
TierUpAllForTesting(isolate, instance_ref->trusted_data(isolate));
return;
}
// Instantiate a fresh instance for the actual (non-ref) execution.
Handle<WasmInstanceObject> instance;
{
ErrorThrower thrower(isolate, "ExecuteAgainstReference (second)");
// We instantiated before, so the second instantiation must also succeed.
if (!GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_object, {},
{}) // no imports & memory
.ToHandle(&instance)) {
DCHECK(thrower.error());
// The only reason to fail the second instantiation should be OOM. Make
// this a proper OOM crash so that ClusterFuzz categorizes it as such.
if (strstr(thrower.error_msg(), "Out of memory")) {
V8::FatalProcessOutOfMemory(isolate, "Wasm fuzzer second instantiation",
thrower.error_msg());
}
FATAL("Second instantiation failed unexpectedly: %s",
thrower.error_msg());
}
DCHECK(!thrower.error());
}
std::unique_ptr<const char[]> exception;
int32_t result = testing::CallWasmFunctionForTesting(
isolate, instance, "main", compiled_args.as_vector(), &exception);
if ((exception_ref != nullptr) != (exception != nullptr)) {
FATAL("Exception mismatch! Expected: <%s>; got: <%s>",
exception_ref ? exception_ref.get() : "<no exception>",
exception ? exception.get() : "<no exception>");
}
if (!exception) {
CHECK_EQ(result_ref, result);
}
}
void GenerateTestCase(Isolate* isolate, ModuleWireBytes wire_bytes,
bool compiles) {
// Libfuzzer sometimes runs a test twice (for detecting memory leaks), and in
// this case we do not want multiple outputs by this function.
// Similarly if we explicitly execute the same test multiple times (via
// `-runs=N`).
static std::atomic<bool> did_output_before{false};
if (did_output_before.exchange(true)) return;
constexpr bool kVerifyFunctions = false;
auto enabled_features = WasmEnabledFeatures::FromIsolate(isolate);
ModuleResult module_res =
DecodeWasmModule(enabled_features, wire_bytes.module_bytes(),
kVerifyFunctions, ModuleOrigin::kWasmOrigin);
CHECK_WITH_MSG(module_res.ok(), module_res.error().message().c_str());
WasmModule* module = module_res.value().get();
CHECK_NOT_NULL(module);
AccountingAllocator allocator;
Zone zone(&allocator, "constant expression zone");
MultiLineStringBuilder out;
NamesProvider names(module, wire_bytes.module_bytes());
MjsunitModuleDis disassembler(out, module, &names, wire_bytes, &allocator,
!compiles);
disassembler.PrintModule();
const bool offsets = false; // Not supported by MjsunitModuleDis.
StdoutStream os;
out.WriteTo(os, offsets);
os.flush();
}
void EnableExperimentalWasmFeatures(v8::Isolate* isolate) {
struct EnableExperimentalWasmFeatures {
explicit EnableExperimentalWasmFeatures(v8::Isolate* isolate) {
// Enable all staged features.
#define ENABLE_STAGED_FEATURES(feat, ...) \
v8_flags.experimental_wasm_##feat = true;
FOREACH_WASM_STAGING_FEATURE_FLAG(ENABLE_STAGED_FEATURES)
#undef ENABLE_STAGED_FEATURES
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// Enable non-staged experimental features that we also want to fuzz.
v8_flags.wasm_memory64_trap_handling = true;
#endif // V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// Note: If you add something here, you will also have to add the
// respective flag(s) to the mjsunit/wasm/generate-random-module test.
// Enforce implications from enabling features.
FlagList::EnforceFlagImplications();
// Last, install any conditional features. Implications are handled
// implicitly.
isolate->InstallConditionalFeatures(isolate->GetCurrentContext());
}
};
// The compiler will properly synchronize the constructor call.
static EnableExperimentalWasmFeatures one_time_enable_experimental_features(
isolate);
}
void WasmExecutionFuzzer::FuzzWasmModule(base::Vector<const uint8_t> data,
bool require_valid) {
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
v8::Isolate* isolate = support->GetIsolate();
// Strictly enforce the input size limit. Note that setting "max_len" on the
// fuzzer target is not enough, since different fuzzers are used and not all
// respect that limit.
if (data.size() > max_input_size()) return;
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
v8::Isolate::Scope isolate_scope(isolate);
// Clear recursive groups: The fuzzer creates random types in every run. These
// are saved as recursive groups as part of the type canonicalizer, but types
// from previous runs just waste memory.
GetTypeCanonicalizer()->EmptyStorageForTesting();
i_isolate->heap()->ClearWasmCanonicalRttsForTesting();
// Clear any exceptions from a prior run.
if (i_isolate->has_exception()) {
i_isolate->clear_exception();
}
v8::HandleScope handle_scope(isolate);
v8::Context::Scope context_scope(support->GetContext());
// We explicitly enable staged WebAssembly features here to increase fuzzer
// coverage. For libfuzzer fuzzers it is not possible that the fuzzer enables
// the flag by itself.
EnableExperimentalWasmFeatures(isolate);
v8::TryCatch try_catch(isolate);
HandleScope scope(i_isolate);
AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
ZoneBuffer buffer(&zone);
// The first byte specifies some internal configuration, like which function
// is compiled with with compiler, and other flags.
uint8_t configuration_byte = data.empty() ? 0 : data[0];
if (!data.empty()) data += 1;
// Derive the compiler configuration for the first four functions from the
// configuration byte, to choose for each function between:
// 0: TurboFan
// 1: Liftoff
// 2: Liftoff for debugging
// 3: Turboshaft
uint8_t tier_mask = 0;
uint8_t debug_mask = 0;
uint8_t turboshaft_mask = 0;
for (int i = 0; i < 4; ++i, configuration_byte /= 4) {
int compiler_config = configuration_byte % 4;
tier_mask |= (compiler_config == 0) << i;
debug_mask |= (compiler_config == 2) << i;
turboshaft_mask |= (compiler_config == 3) << i;
}
// Enable tierup for all turboshaft functions.
tier_mask |= turboshaft_mask;
if (!GenerateModule(i_isolate, &zone, data, &buffer)) {
return;
}
testing::SetupIsolateForWasmModule(i_isolate);
ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
auto enabled_features = WasmEnabledFeatures::FromIsolate(i_isolate);
bool valid = GetWasmEngine()->SyncValidate(
i_isolate, enabled_features, CompileTimeImportsForFuzzing(), wire_bytes);
if (v8_flags.wasm_fuzzer_gen_test) {
GenerateTestCase(i_isolate, wire_bytes, valid);
}
FlagScope<bool> eager_compile(&v8_flags.wasm_lazy_compilation, false);
// We want to keep dynamic tiering enabled because that changes the code
// Liftoff generates as well as optimizing compilers' behavior (especially
// around inlining). We switch it to synchronous mode to avoid the
// nondeterminism of background jobs finishing at random times.
FlagScope<bool> sync_tier_up(&v8_flags.wasm_sync_tier_up, true);
// The purpose of setting the tier mask (which affects the initial
// compilation of each function) is to deterministically test a combination
// of Liftoff and Turbofan.
FlagScope<int> tier_mask_scope(&v8_flags.wasm_tier_mask_for_testing,
tier_mask);
FlagScope<int> debug_mask_scope(&v8_flags.wasm_debug_mask_for_testing,
debug_mask);
FlagScope<int> turboshaft_mask_scope(
&v8_flags.wasm_turboshaft_mask_for_testing, turboshaft_mask);
ErrorThrower thrower(i_isolate, "WasmFuzzerSyncCompile");
MaybeHandle<WasmModuleObject> compiled_module = GetWasmEngine()->SyncCompile(
i_isolate, enabled_features, CompileTimeImportsForFuzzing(), &thrower,
wire_bytes);
CHECK_EQ(valid, !compiled_module.is_null());
CHECK_EQ(!valid, thrower.error());
if (require_valid && !valid) {
FATAL("Generated module should validate, but got: %s", thrower.error_msg());
}
thrower.Reset();
if (valid) {
ExecuteAgainstReference(i_isolate, compiled_module.ToHandleChecked(),
kDefaultMaxFuzzerExecutedInstructions);
}
}
} // namespace v8::internal::wasm::fuzzing