node/deps/v8/test/mjsunit/wasm/memory64.js
Michaël Zasso f226350fcb deps: update V8 to 11.3.244.4
PR-URL: https://github.com/nodejs/node/pull/47251
Reviewed-By: Yagiz Nizipli <yagiz@nizipli.com>
Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
Reviewed-By: Richard Lau <rlau@redhat.com>
2023-03-31 14:15:23 +00:00

414 lines
15 KiB
JavaScript

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --experimental-wasm-memory64
d8.file.execute('test/mjsunit/wasm/wasm-module-builder.js');
// We use standard JavaScript doubles to represent bytes and offsets. They offer
// enough precision (53 bits) for every allowed memory size.
const GB = 1024 * 1024 * 1024;
// The current limit is 16GB. Adapt this test if this changes.
const max_num_pages = 16 * GB / kPageSize;
function BasicMemory64Tests(num_pages, use_atomic_ops) {
const num_bytes = num_pages * kPageSize;
print(`Testing ${num_bytes} bytes (${num_pages} pages) on ${
use_atomic_ops ? '' : 'non-'}atomic memory`);
let builder = new WasmModuleBuilder();
builder.addMemory64(num_pages, num_pages, true);
// A memory operation with alignment (0) and offset (0).
let op = (non_atomic, atomic) => use_atomic_ops ?
[kAtomicPrefix, atomic, 0, 0] :
[non_atomic, 0, 0];
builder.addFunction('load', makeSig([kWasmF64], [kWasmI32]))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprI64UConvertF64, // i64.uconvert_sat.f64
...op(kExprI32LoadMem, kExprI32AtomicLoad) // load
])
.exportFunc();
builder.addFunction('store', makeSig([kWasmF64, kWasmI32], []))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprI64UConvertF64, // i64.uconvert_sat.f64
kExprLocalGet, 1, // local.get 1
...op(kExprI32StoreMem, kExprI32AtomicStore) // store
])
.exportFunc();
let module = builder.instantiate();
let memory = module.exports.memory;
let load = module.exports.load;
let store = module.exports.store;
assertEquals(num_bytes, memory.buffer.byteLength);
// TODO(v8:4153): Enable for all sizes once the TypedArray size limit is
// raised.
const kMaxTypedArraySize = Math.pow(2, 32);
if (num_bytes > kMaxTypedArraySize) {
// TODO(v8:4153): Fix the error message below, if we don't decide to bump
// the limit soon.
assertThrows(
() => new Int8Array(memory.buffer), RangeError,
'Invalid typed array length: undefined');
} else {
let array = new Int8Array(memory.buffer);
assertEquals(num_bytes, array.length);
}
const GB = Math.pow(2, 30);
assertEquals(0, load(num_bytes - 4));
assertTraps(kTrapMemOutOfBounds, () => load(num_bytes));
assertTraps(kTrapMemOutOfBounds, () => load(num_bytes - 3));
assertTraps(kTrapMemOutOfBounds, () => load(num_bytes - 4 + 4 * GB));
assertTraps(kTrapMemOutOfBounds, () => store(num_bytes));
assertTraps(kTrapMemOutOfBounds, () => store(num_bytes - 3));
assertTraps(kTrapMemOutOfBounds, () => store(num_bytes - 4 + 4 * GB));
if (use_atomic_ops) {
assertTraps(kTrapUnalignedAccess, () => load(num_bytes - 7));
assertTraps(kTrapUnalignedAccess, () => store(num_bytes - 7));
}
store(num_bytes - 4, 0x12345678);
assertEquals(0x12345678, load(num_bytes - 4));
let kStoreOffset = use_atomic_ops ? 40 : 27;
store(kStoreOffset, 11);
assertEquals(11, load(kStoreOffset));
// Now check some interesting positions, plus 100 random positions.
const positions = [
// Nothing at the beginning.
0, 1,
// Check positions around the store offset.
kStoreOffset - 1, kStoreOffset, kStoreOffset + 1,
// Check the end.
num_bytes - 5, num_bytes - 4, num_bytes - 3, num_bytes - 2, num_bytes - 1,
// Check positions at the end, truncated to 32 bit (might be
// redundant).
(num_bytes - 5) >>> 0, (num_bytes - 4) >>> 0, (num_bytes - 3) >>> 0,
(num_bytes - 2) >>> 0, (num_bytes - 1) >>> 0
];
const random_positions =
Array.from({length: 100}, () => Math.floor(Math.random() * num_bytes));
for (let position of positions.concat(random_positions)) {
let expected = 0;
if (position == kStoreOffset) {
expected = 11;
} else if (num_bytes - position <= 4) {
expected = [0x12, 0x34, 0x56, 0x78][num_bytes - position - 1];
}
let value = new Int8Array(memory.buffer, position, 1)[0];
assertEquals(expected, value);
}
}
function allowOOM(fn) {
try {
fn();
} catch (e) {
const is_oom =
(e instanceof RangeError) && e.message.includes('Out of memory');
if (!is_oom) throw e;
}
}
(function TestSmallMemory() {
print(arguments.callee.name);
BasicMemory64Tests(4);
})();
(function Test3GBMemory() {
print(arguments.callee.name);
let num_pages = 3 * GB / kPageSize;
// This test can fail if 3GB of memory cannot be allocated.
allowOOM(() => BasicMemory64Tests(num_pages));
})();
(function Test5GBMemory() {
print(arguments.callee.name);
let num_pages = 5 * GB / kPageSize;
// This test can fail if 5GB of memory cannot be allocated.
allowOOM(() => BasicMemory64Tests(num_pages));
})();
(function TestMaxMem64Size() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
builder.addMemory64(max_num_pages);
assertTrue(WebAssembly.validate(builder.toBuffer()));
builder.toModule();
// This test can fail if 16GB of memory cannot be allocated.
allowOOM(() => BasicMemory64Tests(max_num_pages));
})();
(function TestTooBigDeclaredInitial() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
builder.addMemory64(max_num_pages + 1);
assertFalse(WebAssembly.validate(builder.toBuffer()));
assertThrows(
() => builder.toModule(), WebAssembly.CompileError,
'WebAssembly.Module(): initial memory size (262145 pages) is larger ' +
'than implementation limit (262144 pages) @+12');
})();
(function TestTooBigDeclaredMaximum() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
builder.addMemory64(1, max_num_pages + 1);
assertFalse(WebAssembly.validate(builder.toBuffer()));
assertThrows(
() => builder.toModule(), WebAssembly.CompileError,
'WebAssembly.Module(): maximum memory size (262145 pages) is larger ' +
'than implementation limit (262144 pages) @+13');
})();
(function TestGrow64() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
builder.addMemory64(1, 10, false);
builder.addFunction('grow', makeSig([kWasmI64], [kWasmI64]))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprMemoryGrow, 0, // memory.grow 0
])
.exportFunc();
let instance = builder.instantiate();
assertEquals(1n, instance.exports.grow(2n));
assertEquals(3n, instance.exports.grow(1n));
assertEquals(-1n, instance.exports.grow(-1n));
assertEquals(-1n, instance.exports.grow(1n << 31n));
assertEquals(-1n, instance.exports.grow(1n << 32n));
assertEquals(-1n, instance.exports.grow(1n << 33n));
assertEquals(-1n, instance.exports.grow(1n << 63n));
assertEquals(-1n, instance.exports.grow(7n)); // Above the of 10.
assertEquals(4n, instance.exports.grow(6n)); // Just at the maximum of 10.
})();
(function TestBulkMemoryOperations() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
const kMemSizeInPages = 10;
const kMemSize = kMemSizeInPages * kPageSize;
builder.addMemory64(kMemSizeInPages, kMemSizeInPages);
const kSegmentSize = 1024;
// Build a data segment with values [0, kSegmentSize-1].
const segment = Array.from({length: kSegmentSize}, (_, idx) => idx)
builder.addPassiveDataSegment(segment);
builder.exportMemoryAs('memory');
builder.addFunction('fill', makeSig([kWasmI64, kWasmI32, kWasmI64], []))
.addBody([
kExprLocalGet, 0, // local.get 0 (dst)
kExprLocalGet, 1, // local.get 1 (value)
kExprLocalGet, 2, // local.get 2 (size)
kNumericPrefix, kExprMemoryFill, 0 // memory.fill mem=0
])
.exportFunc();
builder.addFunction('copy', makeSig([kWasmI64, kWasmI64, kWasmI64], []))
.addBody([
kExprLocalGet, 0, // local.get 0 (dst)
kExprLocalGet, 1, // local.get 1 (src)
kExprLocalGet, 2, // local.get 2 (size)
kNumericPrefix, kExprMemoryCopy, 0, 0 // memory.copy srcmem=0 dstmem=0
])
.exportFunc();
builder.addFunction('init', makeSig([kWasmI64, kWasmI32, kWasmI32], []))
.addBody([
kExprLocalGet, 0, // local.get 0 (dst)
kExprLocalGet, 1, // local.get 1 (offset)
kExprLocalGet, 2, // local.get 2 (size)
kNumericPrefix, kExprMemoryInit, 0, 0 // memory.init seg=0 mem=0
])
.exportFunc();
let instance = builder.instantiate();
let fill = instance.exports.fill;
let copy = instance.exports.copy;
let init = instance.exports.init;
// {memory(offset,size)} extracts the memory at [offset, offset+size)] into an
// Array.
let memory = (offset, size) => Array.from(new Uint8Array(
instance.exports.memory.buffer.slice(offset, offset + size)));
// Empty init (size=0).
init(0n, 0, 0);
assertEquals([0, 0], memory(0, 2));
// Init memory[5..7] with [10..12].
init(5n, 10, 3);
assertEquals([0, 0, 10, 11, 12, 0, 0], memory(3, 7));
// Init the end of memory ([kMemSize-2, kMemSize-1]) with [20, 21].
init(BigInt(kMemSize-2), 20, 2);
assertEquals([0, 0, 20, 21], memory(kMemSize - 4, 4));
// Writing slightly OOB.
assertTraps(kTrapMemOutOfBounds, () => init(BigInt(kMemSize-2), 20, 3));
// Writing OOB, but the low 32-bit are in-bound.
assertTraps(kTrapMemOutOfBounds, () => init(1n << 32n, 0, 0));
// OOB even though size == 0.
assertTraps(kTrapMemOutOfBounds, () => init(-1n, 0, 0));
// More OOB.
assertTraps(kTrapMemOutOfBounds, () => init(-1n, 0, 1));
assertTraps(kTrapMemOutOfBounds, () => init(1n << 62n, 0, 1));
assertTraps(kTrapMemOutOfBounds, () => init(1n << 63n, 0, 1));
// Empty copy (size=0).
copy(0n, 0n, 0n);
// Copy memory[5..7] (containing [10..12]) to [3..5].
copy(3n, 5n, 3n);
assertEquals([0, 0, 0, 10, 11, 12, 11, 12, 0], memory(0, 9));
// Copy to the end of memory ([kMemSize-2, kMemSize-1]).
copy(BigInt(kMemSize-2), 3n, 2n);
assertEquals([0, 0, 10, 11], memory(kMemSize - 4, 4));
// Writing slightly OOB.
assertTraps(kTrapMemOutOfBounds, () => copy(BigInt(kMemSize-2), 0n, 3n));
// Writing OOB, but the low 32-bit are in-bound.
assertTraps(kTrapMemOutOfBounds, () => copy(1n << 32n, 0n, 1n));
assertTraps(kTrapMemOutOfBounds, () => copy(0n, 0n, 1n << 32n));
// OOB even though size == 0.
assertTraps(kTrapMemOutOfBounds, () => copy(-1n, 0n, 0n));
// More OOB.
assertTraps(kTrapMemOutOfBounds, () => copy(-1n, 0n, 1n));
assertTraps(kTrapMemOutOfBounds, () => copy(1n << 62n, 0n, 1n));
assertTraps(kTrapMemOutOfBounds, () => copy(1n << 63n, 0n, 1n));
// Empty fill (size=0).
fill(0n, 0, 0n);
// Fill memory[15..17] with 3s.
fill(15n, 3, 3n);
assertEquals([0, 3, 3, 3, 0], memory(14, 5));
// Fill the end of memory ([kMemSize-2, kMemSize-1]) with 7s.
fill(BigInt(kMemSize-2), 7, 2n);
assertEquals([0, 0, 7, 7], memory(kMemSize - 4, 4));
// Writing slightly OOB.
assertTraps(kTrapMemOutOfBounds, () => fill(BigInt(kMemSize-2), 0, 3n));
// Writing OOB, but the low 32-bit are in-bound.
assertTraps(kTrapMemOutOfBounds, () => fill(1n << 32n, 0, 1n));
assertTraps(kTrapMemOutOfBounds, () => fill(0n, 0, 1n << 32n));
// OOB even though size == 0.
assertTraps(kTrapMemOutOfBounds, () => fill(-1n, 0, 0n));
// More OOB.
assertTraps(kTrapMemOutOfBounds, () => fill(-1n, 0, 1n));
assertTraps(kTrapMemOutOfBounds, () => fill(1n << 62n, 0, 1n));
assertTraps(kTrapMemOutOfBounds, () => fill(1n << 63n, 0, 1n));
})();
(function TestMemory64SharedBasic() {
print(arguments.callee.name);
let builder = new WasmModuleBuilder();
builder.addMemory64(1, 10, true, true);
builder.addFunction('load', makeSig([kWasmI64], [kWasmI32]))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprI32LoadMem, 0, 0, // i32.load_mem align=1 offset=0
])
.exportFunc();
let instance = builder.instantiate();
assertTrue(instance.exports.memory instanceof WebAssembly.Memory);
assertTrue(instance.exports.memory.buffer instanceof SharedArrayBuffer);
assertEquals(0, instance.exports.load(0n));
})();
(function TestMemory64SharedBetweenWorkers() {
print(arguments.callee.name);
// Generate a shared memory64 by instantiating an module that exports one.
// TODO(clemensb): Use the proper API once that's decided.
let shared_mem64 = (function() {
let builder = new WasmModuleBuilder();
builder.addMemory64(1, 10, true, true);
return builder.instantiate().exports.memory;
})();
let builder = new WasmModuleBuilder();
builder.addImportedMemory('imp', 'mem', 1, 10, true, true);
builder.addFunction('grow', makeSig([kWasmI64], [kWasmI64]))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprMemoryGrow, 0, // memory.grow 0
])
.exportFunc();
builder.addFunction('load', makeSig([kWasmI64], [kWasmI32]))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprI32LoadMem, 0, 0, // i32.load_mem align=1 offset=0
])
.exportFunc();
builder.addFunction('store', makeSig([kWasmI64, kWasmI32], []))
.addBody([
kExprLocalGet, 0, // local.get 0
kExprLocalGet, 1, // local.get 1
kExprI32StoreMem, 0, 0, // i32.store_mem align=1 offset=0
])
.exportFunc();
let module = builder.toModule();
let instance = new WebAssembly.Instance(module, {imp: {mem: shared_mem64}});
assertEquals(1n, instance.exports.grow(2n));
assertEquals(3n, instance.exports.grow(1n));
const kOffset1 = 47n;
const kOffset2 = 128n;
const kValue = 21;
assertEquals(0, instance.exports.load(kOffset1));
instance.exports.store(kOffset1, kValue);
assertEquals(kValue, instance.exports.load(kOffset1));
let worker = new Worker(function() {
onmessage = function([mem, module]) {
function workerAssert(condition, message) {
if (!condition) postMessage(`Check failed: ${message}`);
}
function workerAssertEquals(expected, actual, message) {
if (expected != actual)
postMessage(`Check failed (${message}): ${expected} != ${actual}`);
}
const kOffset1 = 47n;
const kOffset2 = 128n;
const kValue = 21;
workerAssert(mem instanceof WebAssembly.Memory, 'Wasm memory');
workerAssert(mem.buffer instanceof SharedArrayBuffer);
workerAssertEquals(4, mem.grow(1), 'grow');
let instance = new WebAssembly.Instance(module, {imp: {mem: mem}});
let exports = instance.exports;
workerAssertEquals(kValue, exports.load(kOffset1), 'load 1');
workerAssertEquals(0, exports.load(kOffset2), 'load 2');
exports.store(kOffset2, kValue);
workerAssertEquals(kValue, exports.load(kOffset2), 'load 3');
postMessage('OK');
}
}, {type: 'function'});
worker.postMessage([shared_mem64, module]);
assertEquals('OK', worker.getMessage());
assertEquals(kValue, instance.exports.load(kOffset2));
assertEquals(5n, instance.exports.grow(1n));
})();
(function TestAtomics_SmallMemory() {
print(arguments.callee.name);
BasicMemory64Tests(4, true);
})();
(function TestAtomics_5GB() {
print(arguments.callee.name);
let num_pages = 5 * GB / kPageSize;
// This test can fail if 5GB of memory cannot be allocated.
allowOOM(() => BasicMemory64Tests(num_pages, true));
})();