node/deps/nbytes/include/nbytes.h
Node.js GitHub Bot 90f257176c
deps: update nbytes to 0.1.1
PR-URL: https://github.com/nodejs/node/pull/54277
Reviewed-By: Yagiz Nizipli <yagiz@nizipli.com>
Reviewed-By: Marco Ippolito <marcoippolito54@gmail.com>
Reviewed-By: Benjamin Gruenbaum <benjamingr@gmail.com>
Reviewed-By: Moshe Atlow <moshe@atlow.co.il>
2024-08-10 23:26:02 +00:00

841 lines
29 KiB
C++

#ifndef NBYTES_H
#define NBYTES_H
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
namespace nbytes {
#if NBYTES_DEVELOPMENT_CHECKS
#define NBYTES_STR(x) #x
#define NBYTES_REQUIRE(EXPR) \
{ \
if (!(EXPR) { abort(); }) }
#define NBYTES_FAIL(MESSAGE) \
do { \
std::cerr << "FAIL: " << (MESSAGE) << std::endl; \
abort(); \
} while (0);
#define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE) \
do { \
if (LHS != RHS) { \
std::cerr << "Mismatch: '" << LHS << "' - '" << RHS << "'" << std::endl; \
NBYTES_FAIL(MESSAGE); \
} \
} while (0);
#define NBYTES_ASSERT_TRUE(COND) \
do { \
if (!(COND)) { \
std::cerr << "Assert at line " << __LINE__ << " of file " << __FILE__ \
<< std::endl; \
NBYTES_FAIL(NBYTES_STR(COND)); \
} \
} while (0);
#else
#define NBYTES_FAIL(MESSAGE)
#define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE)
#define NBYTES_ASSERT_TRUE(COND)
#endif
[[noreturn]] inline void unreachable() {
#ifdef __GNUC__
__builtin_unreachable();
#elif defined(_MSC_VER)
__assume(false);
#else
#endif
}
// The nbytes (short for "node bytes") is a set of utility helpers for
// working with bytes that are extracted from Node.js' internals. The
// motivation for extracting these into a separate library is to make it
// easier for other projects to implement functionality that is compatible
// with Node.js' implementation of various byte manipulation functions.
// Round up a to the next highest multiple of b.
template <typename T>
constexpr T RoundUp(T a, T b) {
return a % b != 0 ? a + b - (a % b) : a;
}
// Align ptr to an `alignment`-bytes boundary.
template <typename T, typename U>
constexpr T *AlignUp(T *ptr, U alignment) {
return reinterpret_cast<T *>(
RoundUp(reinterpret_cast<uintptr_t>(ptr), alignment));
}
template <typename T, typename U>
inline T AlignDown(T value, U alignment) {
return reinterpret_cast<T>(
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
}
template <typename T>
inline T MultiplyWithOverflowCheck(T a, T b) {
auto ret = a * b;
if (a != 0) {
NBYTES_ASSERT_TRUE(b == ret / a);
}
return ret;
}
void ForceAsciiSlow(const char *src, char *dst, size_t len);
void ForceAscii(const char *src, char *dst, size_t len);
// ============================================================================
// Byte Swapping
// Swaps bytes in place. nbytes is the number of bytes to swap and must be a
// multiple of the word size (checked by function).
bool SwapBytes16(char *data, size_t nbytes);
bool SwapBytes32(char *data, size_t nbytes);
bool SwapBytes64(char *data, size_t nbytes);
// ============================================================================
// Base64 (legacy)
#ifdef _MSC_VER
#pragma warning(push)
// MSVC C4003: not enough actual parameters for macro 'identifier'
#pragma warning(disable : 4003)
#endif
extern const int8_t unbase64_table[256];
template <typename TypeName>
bool Base64DecodeGroupSlow(char *const dst, const size_t dstlen,
const TypeName *const src, const size_t srclen,
size_t *const i, size_t *const k) {
uint8_t hi;
uint8_t lo;
#define V(expr) \
for (;;) { \
const uint8_t c = static_cast<uint8_t>(src[*i]); \
lo = unbase64_table[c]; \
*i += 1; \
if (lo < 64) break; /* Legal character. */ \
if (c == '=' || *i >= srclen) return false; /* Stop decoding. */ \
} \
expr; \
if (*i >= srclen) return false; \
if (*k >= dstlen) return false; \
hi = lo;
V(/* Nothing. */);
V(dst[(*k)++] = ((hi & 0x3F) << 2) | ((lo & 0x30) >> 4));
V(dst[(*k)++] = ((hi & 0x0F) << 4) | ((lo & 0x3C) >> 2));
V(dst[(*k)++] = ((hi & 0x03) << 6) | ((lo & 0x3F) >> 0));
#undef V
return true; // Continue decoding.
}
enum class Base64Mode { NORMAL, URL };
inline constexpr size_t Base64EncodedSize(
size_t size, Base64Mode mode = Base64Mode::NORMAL) {
return mode == Base64Mode::NORMAL ? ((size + 2) / 3 * 4)
: static_cast<size_t>(std::ceil(
static_cast<double>(size * 4) / 3));
}
// Doesn't check for padding at the end. Can be 1-2 bytes over.
inline constexpr size_t Base64DecodedSizeFast(size_t size) {
// 1-byte input cannot be decoded
return size > 1 ? (size / 4) * 3 + (size % 4 + 1) / 2 : 0;
}
inline uint32_t ReadUint32BE(const unsigned char *p) {
return static_cast<uint32_t>(p[0] << 24U) |
static_cast<uint32_t>(p[1] << 16U) |
static_cast<uint32_t>(p[2] << 8U) | static_cast<uint32_t>(p[3]);
}
template <typename TypeName>
size_t Base64DecodedSize(const TypeName *src, size_t size) {
// 1-byte input cannot be decoded
if (size < 2) return 0;
if (src[size - 1] == '=') {
size--;
if (src[size - 1] == '=') size--;
}
return Base64DecodedSizeFast(size);
}
template <typename TypeName>
size_t Base64DecodeFast(char *const dst, const size_t dstlen,
const TypeName *const src, const size_t srclen,
const size_t decoded_size) {
const size_t available = dstlen < decoded_size ? dstlen : decoded_size;
const size_t max_k = available / 3 * 3;
size_t max_i = srclen / 4 * 4;
size_t i = 0;
size_t k = 0;
while (i < max_i && k < max_k) {
const unsigned char txt[] = {
static_cast<unsigned char>(
unbase64_table[static_cast<uint8_t>(src[i + 0])]),
static_cast<unsigned char>(
unbase64_table[static_cast<uint8_t>(src[i + 1])]),
static_cast<unsigned char>(
unbase64_table[static_cast<uint8_t>(src[i + 2])]),
static_cast<unsigned char>(
unbase64_table[static_cast<uint8_t>(src[i + 3])]),
};
const uint32_t v = ReadUint32BE(txt);
// If MSB is set, input contains whitespace or is not valid base64.
if (v & 0x80808080) {
if (!Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k)) return k;
max_i = i + (srclen - i) / 4 * 4; // Align max_i again.
} else {
dst[k + 0] = ((v >> 22) & 0xFC) | ((v >> 20) & 0x03);
dst[k + 1] = ((v >> 12) & 0xF0) | ((v >> 10) & 0x0F);
dst[k + 2] = ((v >> 2) & 0xC0) | ((v >> 0) & 0x3F);
i += 4;
k += 3;
}
}
if (i < srclen && k < dstlen) {
Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k);
}
return k;
}
template <typename TypeName>
size_t Base64Decode(char *const dst, const size_t dstlen,
const TypeName *const src, const size_t srclen) {
const size_t decoded_size = Base64DecodedSize(src, srclen);
return Base64DecodeFast(dst, dstlen, src, srclen, decoded_size);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// ============================================================================
// Hex (legacy)
extern const int8_t unhex_table[256];
template <typename TypeName>
static size_t HexDecode(char *buf, size_t len, const TypeName *src,
const size_t srcLen) {
size_t i;
for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) {
unsigned a = unhex_table[static_cast<uint8_t>(src[i * 2 + 0])];
unsigned b = unhex_table[static_cast<uint8_t>(src[i * 2 + 1])];
if (!~a || !~b) return i;
buf[i] = (a << 4) | b;
}
return i;
}
size_t HexEncode(const char *src, size_t slen, char *dst, size_t dlen);
std::string HexEncode(const char *src, size_t slen);
// ============================================================================
// StringSearch
namespace stringsearch {
template <typename T>
class Vector {
public:
Vector(T *data, size_t length, bool isForward)
: start_(data), length_(length), is_forward_(isForward) {
CHECK(length > 0 && data != nullptr);
}
// Returns the start of the memory range.
// For vector v this is NOT necessarily &v[0], see forward().
const T *start() const { return start_; }
// Returns the length of the vector, in characters.
size_t length() const { return length_; }
// Returns true if the Vector is front-to-back, false if back-to-front.
// In the latter case, v[0] corresponds to the *end* of the memory range.
bool forward() const { return is_forward_; }
// Access individual vector elements - checks bounds in debug mode.
T &operator[](size_t index) const {
NBYTES_ASSERT_TRUE(index < length_);
return start_[is_forward_ ? index : (length_ - index - 1)];
}
private:
T *start_;
size_t length_;
bool is_forward_;
};
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class StringSearchBase {
protected:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kLatin1AlphabetSize = 256;
static const int kUC16AlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 8;
// Store for the BoyerMoore(Horspool) bad char shift table.
int bad_char_shift_table_[kUC16AlphabetSize];
// Store for the BoyerMoore good suffix shift table.
int good_suffix_shift_table_[kBMMaxShift + 1];
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int suffix_table_[kBMMaxShift + 1];
};
template <typename Char>
class StringSearch : private StringSearchBase {
public:
typedef stringsearch::Vector<const Char> Vector;
explicit StringSearch(Vector pattern) : pattern_(pattern), start_(0) {
if (pattern.length() >= kBMMaxShift) {
start_ = pattern.length() - kBMMaxShift;
}
size_t pattern_length = pattern_.length();
NBYTES_ASSERT_TRUE(pattern_length > 0);
if (pattern_length < kBMMinPatternLength) {
if (pattern_length == 1) {
strategy_ = SearchStrategy::kSingleChar;
return;
}
strategy_ = SearchStrategy::kLinear;
return;
}
strategy_ = SearchStrategy::kInitial;
}
size_t Search(Vector subject, size_t index) {
switch (strategy_) {
case kBoyerMooreHorspool:
return BoyerMooreHorspoolSearch(subject, index);
case kBoyerMoore:
return BoyerMooreSearch(subject, index);
case kInitial:
return InitialSearch(subject, index);
case kLinear:
return LinearSearch(subject, index);
case kSingleChar:
return SingleCharSearch(subject, index);
}
unreachable();
}
static inline int AlphabetSize() {
if (sizeof(Char) == 1) {
// Latin1 needle.
return kLatin1AlphabetSize;
} else {
// UC16 needle.
return kUC16AlphabetSize;
}
static_assert(
sizeof(Char) == sizeof(uint8_t) || sizeof(Char) == sizeof(uint16_t),
"sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)");
}
private:
typedef size_t (StringSearch::*SearchFunction)(Vector, size_t);
size_t SingleCharSearch(Vector subject, size_t start_index);
size_t LinearSearch(Vector subject, size_t start_index);
size_t InitialSearch(Vector subject, size_t start_index);
size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index);
size_t BoyerMooreSearch(Vector subject, size_t start_index);
void PopulateBoyerMooreHorspoolTable();
void PopulateBoyerMooreTable();
static inline int CharOccurrence(int *bad_char_occurrence, Char char_code) {
if (sizeof(Char) == 1) {
return bad_char_occurrence[static_cast<int>(char_code)];
}
// Both pattern and subject are UC16. Reduce character to equivalence class.
int equiv_class = char_code % kUC16AlphabetSize;
return bad_char_occurrence[equiv_class];
}
enum SearchStrategy {
kBoyerMooreHorspool,
kBoyerMoore,
kInitial,
kLinear,
kSingleChar,
};
// The pattern to search for.
Vector pattern_;
SearchStrategy strategy_;
// Cache value of Max(0, pattern_length() - kBMMaxShift)
size_t start_;
};
inline uint8_t GetHighestValueByte(uint16_t character) {
return std::max(static_cast<uint8_t>(character & 0xFF),
static_cast<uint8_t>(character >> 8));
}
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
// Searches for a byte value in a memory buffer, back to front.
// Uses memrchr(3) on systems which support it, for speed.
// Falls back to a vanilla for loop on non-GNU systems such as Windows.
inline const void *MemrchrFill(const void *haystack, uint8_t needle,
size_t haystack_len) {
#ifdef _GNU_SOURCE
return memrchr(haystack, needle, haystack_len);
#else
const uint8_t *haystack8 = static_cast<const uint8_t *>(haystack);
for (size_t i = haystack_len - 1; i != static_cast<size_t>(-1); i--) {
if (haystack8[i] == needle) {
return haystack8 + i;
}
}
return nullptr;
#endif
}
// Finds the first occurrence of *two-byte* character pattern[0] in the string
// `subject`. Does not check that the whole pattern matches.
template <typename Char>
inline size_t FindFirstCharacter(Vector<const Char> pattern,
Vector<const Char> subject, size_t index) {
const Char pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
// For speed, search for the more `rare` of the two bytes in pattern[0]
// using memchr / memrchr (which are much faster than a simple for loop).
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
size_t pos = index;
do {
const size_t bytes_to_search = (max_n - pos) * sizeof(Char);
const void *void_pos;
if (subject.forward()) {
// Assert that bytes_to_search won't overflow
NBYTES_ASSERT_TRUE(pos <= max_n);
NBYTES_ASSERT_TRUE(max_n - pos <= SIZE_MAX / sizeof(Char));
void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search);
} else {
NBYTES_ASSERT_TRUE(pos <= subject.length());
NBYTES_ASSERT_TRUE(subject.length() - pos <= SIZE_MAX / sizeof(Char));
void_pos = MemrchrFill(subject.start() + pattern.length() - 1,
search_byte, bytes_to_search);
}
const Char *char_pos = static_cast<const Char *>(void_pos);
if (char_pos == nullptr) return subject.length();
// Then, for each match, verify that the full two bytes match pattern[0].
char_pos = AlignDown(char_pos, sizeof(Char));
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1);
if (subject[pos] == pattern_first_char) {
// Match found, hooray.
return pos;
}
// Search byte matched, but the other byte of pattern[0] didn't. Keep going.
} while (++pos < max_n);
return subject.length();
}
// Finds the first occurrence of the byte pattern[0] in string `subject`.
// Does not verify that the whole pattern matches.
template <>
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
Vector<const uint8_t> subject, size_t index) {
const uint8_t pattern_first_char = pattern[0];
const size_t subj_len = subject.length();
const size_t max_n = (subject.length() - pattern.length() + 1);
const void *pos;
if (subject.forward()) {
pos = memchr(subject.start() + index, pattern_first_char, max_n - index);
} else {
pos = MemrchrFill(subject.start() + pattern.length() - 1,
pattern_first_char, max_n - index);
}
const uint8_t *char_pos = static_cast<const uint8_t *>(pos);
if (char_pos == nullptr) {
return subj_len;
}
size_t raw_pos = static_cast<size_t>(char_pos - subject.start());
return subject.forward() ? raw_pos : (subj_len - raw_pos - 1);
}
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::SingleCharSearch(Vector subject, size_t index) {
NBYTES_ASSERT_TRUE(1 == pattern_.length());
return FindFirstCharacter(pattern_, subject, index);
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
// Simple linear search for short patterns. Never bails out.
template <typename Char>
size_t StringSearch<Char>::LinearSearch(Vector subject, size_t index) {
NBYTES_ASSERT_TRUE(pattern_.length() > 1);
const size_t n = subject.length() - pattern_.length();
for (size_t i = index; i <= n; i++) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length()) return subject.length();
NBYTES_ASSERT_TRUE(i <= n);
bool matches = true;
for (size_t j = 1; j < pattern_.length(); j++) {
if (pattern_[j] != subject[i + j]) {
matches = false;
break;
}
}
if (matches) {
return i;
}
}
return subject.length();
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreSearch(Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
size_t start = start_;
int *bad_char_occurrence = bad_char_shift_table_;
int *good_suffix_shift = good_suffix_shift_table_ - start_;
Char last_char = pattern_[pattern_length - 1];
size_t index = start_index;
// Continue search from i.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int c;
while (last_char != (c = subject[index + j])) {
int shift = j - CharOccurrence(bad_char_occurrence, c);
index += shift;
if (index > subject_length - pattern_length) {
return subject.length();
}
}
while (pattern_[j] == (c = subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index +=
pattern_length - 1 - CharOccurrence(bad_char_occurrence, last_char);
} else {
int gs_shift = good_suffix_shift[j + 1];
int bc_occ = CharOccurrence(bad_char_occurrence, c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
index += shift;
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreTable() {
const size_t pattern_length = pattern_.length();
// Only look at the last kBMMaxShift characters of pattern (from start_
// to pattern_length).
const size_t start = start_;
const size_t length = pattern_length - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int *shift_table = good_suffix_shift_table_ - start_;
int *suffix_table = suffix_table_ - start_;
// Initialize table.
for (size_t i = start; i < pattern_length; i++) {
shift_table[i] = length;
}
shift_table[pattern_length] = 1;
suffix_table[pattern_length] = pattern_length + 1;
if (pattern_length <= start) {
return;
}
// Find suffixes.
Char last_char = pattern_[pattern_length - 1];
size_t suffix = pattern_length + 1;
{
size_t i = pattern_length;
while (i > start) {
Char c = pattern_[i - 1];
while (suffix <= pattern_length && c != pattern_[suffix - 1]) {
if (static_cast<size_t>(shift_table[suffix]) == length) {
shift_table[suffix] = suffix - i;
}
suffix = suffix_table[suffix];
}
suffix_table[--i] = --suffix;
if (suffix == pattern_length) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern_[i - 1] != last_char)) {
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
shift_table[pattern_length] = pattern_length - i;
}
suffix_table[--i] = pattern_length;
}
if (i > start) {
suffix_table[--i] = --suffix;
}
}
}
}
// Build shift table using suffixes.
if (suffix < pattern_length) {
for (size_t i = start; i <= pattern_length; i++) {
if (static_cast<size_t>(shift_table[i]) == length) {
shift_table[i] = suffix - start;
}
if (i == suffix) {
suffix = suffix_table[suffix];
}
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename Char>
size_t StringSearch<Char>::BoyerMooreHorspoolSearch(Vector subject,
size_t start_index) {
const size_t subject_length = subject.length();
const size_t pattern_length = pattern_.length();
int *char_occurrences = bad_char_shift_table_;
int64_t badness = -static_cast<int64_t>(pattern_length);
// How bad we are doing without a good-suffix table.
Char last_char = pattern_[pattern_length - 1];
int last_char_shift =
pattern_length - 1 - CharOccurrence(char_occurrences, last_char);
// Perform search
size_t index = start_index; // No matches found prior to this index.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int subject_char;
while (last_char != (subject_char = subject[index + j])) {
int bc_occ = CharOccurrence(char_occurrences, subject_char);
int shift = j - bc_occ;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subject_length - pattern_length) {
return subject_length;
}
}
j--;
while (pattern_[j] == (subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
index += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (pattern_length - j) - last_char_shift;
if (badness > 0) {
PopulateBoyerMooreTable();
strategy_ = SearchStrategy::kBoyerMoore;
return BoyerMooreSearch(subject, index);
}
}
return subject.length();
}
template <typename Char>
void StringSearch<Char>::PopulateBoyerMooreHorspoolTable() {
const size_t pattern_length = pattern_.length();
int *bad_char_occurrence = bad_char_shift_table_;
// Only preprocess at most kBMMaxShift last characters of pattern.
const size_t start = start_;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
const size_t table_size = AlphabetSize();
if (start == 0) {
// All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (size_t i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (size_t i = start; i < pattern_length - 1; i++) {
Char c = pattern_[i];
int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize();
bad_char_occurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename Char>
size_t StringSearch<Char>::InitialSearch(Vector subject, size_t index) {
const size_t pattern_length = pattern_.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int64_t badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness <= 0) {
i = FindFirstCharacter(pattern_, subject, i);
if (i == subject.length()) return subject.length();
NBYTES_ASSERT_TRUE(i <= n);
size_t j = 1;
do {
if (pattern_[j] != subject[i + j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
return i;
}
badness += j;
} else {
PopulateBoyerMooreHorspoolTable();
strategy_ = SearchStrategy::kBoyerMooreHorspool;
return BoyerMooreHorspoolSearch(subject, i);
}
}
return subject.length();
}
// Perform a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename Char>
size_t SearchString(Vector<const Char> subject, Vector<const Char> pattern,
size_t start_index) {
StringSearch<Char> search(pattern);
return search.Search(subject, start_index);
}
} // namespace stringsearch
template <typename Char>
size_t SearchString(const Char *haystack, size_t haystack_length,
const Char *needle, size_t needle_length,
size_t start_index, bool is_forward) {
if (haystack_length < needle_length) return haystack_length;
// To do a reverse search (lastIndexOf instead of indexOf) without redundant
// code, create two vectors that are reversed views into the input strings.
// For example, v_needle[0] would return the *last* character of the needle.
// So we're searching for the first instance of rev(needle) in rev(haystack)
stringsearch::Vector<const Char> v_needle(needle, needle_length, is_forward);
stringsearch::Vector<const Char> v_haystack(haystack, haystack_length,
is_forward);
size_t diff = haystack_length - needle_length;
size_t relative_start_index;
if (is_forward) {
relative_start_index = start_index;
} else if (diff < start_index) {
relative_start_index = 0;
} else {
relative_start_index = diff - start_index;
}
size_t pos =
stringsearch::SearchString(v_haystack, v_needle, relative_start_index);
if (pos == haystack_length) {
// not found
return pos;
}
return is_forward ? pos : (haystack_length - needle_length - pos);
}
template <size_t N>
size_t SearchString(const char *haystack, size_t haystack_length,
const char (&needle)[N]) {
return SearchString(
reinterpret_cast<const uint8_t *>(haystack), haystack_length,
reinterpret_cast<const uint8_t *>(needle), N - 1, 0, true);
}
// ============================================================================
// Version metadata
#define NBYTES_VERSION "0.1.1"
enum {
NBYTES_VERSION_MAJOR = 0,
NBYTES_VERSION_MINOR = 1,
NBYTES_VERSION_REVISION = 1,
};
} // namespace nbytes
#endif // NBYTES_H