node/lib/internal/util/comparisons.js
Joyee Cheung 8484b40b3d
src: put bootstrappers in lib/internal/bootstrap/
Create `lib/internal/bootstrap/` and put bootstrappers there:

Before:

```
lib/internal
├── ...
├── bootstrap_loaders.js
└── bootstrap_node.js
```

After:

```
lib/internal
├── ...
└── bootstrap
    ├── loaders.js
    └── node.js
```

PR-URL: https://github.com/nodejs/node/pull/19177
Refs: https://github.com/nodejs/node/pull/19112
Reviewed-By: Gus Caplan <me@gus.host>
Reviewed-By: Matteo Collina <matteo.collina@gmail.com>
Reviewed-By: Benjamin Gruenbaum <benjamingr@gmail.com>
2018-03-15 20:50:34 +08:00

518 lines
16 KiB
JavaScript

'use strict';
const { compare } = process.binding('buffer');
const { isArrayBufferView } = require('internal/util/types');
const { internalBinding } = require('internal/bootstrap/loaders');
const { isDate, isMap, isRegExp, isSet } = internalBinding('types');
function objectToString(o) {
return Object.prototype.toString.call(o);
}
// Check if they have the same source and flags
function areSimilarRegExps(a, b) {
return a.source === b.source && a.flags === b.flags;
}
// For small buffers it's faster to compare the buffer in a loop. The c++
// barrier including the Uint8Array operation takes the advantage of the faster
// binary compare otherwise. The break even point was at about 300 characters.
function areSimilarTypedArrays(a, b, max) {
const len = a.byteLength;
if (len !== b.byteLength) {
return false;
}
if (len < max) {
for (var offset = 0; offset < len; offset++) {
if (a[offset] !== b[offset]) {
return false;
}
}
return true;
}
return compare(new Uint8Array(a.buffer, a.byteOffset, len),
new Uint8Array(b.buffer, b.byteOffset, b.byteLength)) === 0;
}
function isFloatTypedArrayTag(tag) {
return tag === '[object Float32Array]' || tag === '[object Float64Array]';
}
function isArguments(tag) {
return tag === '[object Arguments]';
}
function isObjectOrArrayTag(tag) {
return tag === '[object Array]' || tag === '[object Object]';
}
// Notes: Type tags are historical [[Class]] properties that can be set by
// FunctionTemplate::SetClassName() in C++ or Symbol.toStringTag in JS
// and retrieved using Object.prototype.toString.call(obj) in JS
// See https://tc39.github.io/ecma262/#sec-object.prototype.tostring
// for a list of tags pre-defined in the spec.
// There are some unspecified tags in the wild too (e.g. typed array tags).
// Since tags can be altered, they only serve fast failures
//
// Typed arrays and buffers are checked by comparing the content in their
// underlying ArrayBuffer. This optimization requires that it's
// reasonable to interpret their underlying memory in the same way,
// which is checked by comparing their type tags.
// (e.g. a Uint8Array and a Uint16Array with the same memory content
// could still be different because they will be interpreted differently).
//
// For strict comparison, objects should have
// a) The same built-in type tags
// b) The same prototypes.
function strictDeepEqual(val1, val2, memos) {
if (typeof val1 !== 'object') {
return typeof val1 === 'number' && Number.isNaN(val1) &&
Number.isNaN(val2);
}
if (typeof val2 !== 'object' || val1 === null || val2 === null) {
return false;
}
const val1Tag = objectToString(val1);
const val2Tag = objectToString(val2);
if (val1Tag !== val2Tag) {
return false;
}
if (Object.getPrototypeOf(val1) !== Object.getPrototypeOf(val2)) {
return false;
}
if (val1Tag === '[object Array]') {
// Check for sparse arrays and general fast path
if (val1.length !== val2.length)
return false;
// Skip testing the part below and continue with the keyCheck.
return keyCheck(val1, val2, true, memos);
}
if (val1Tag === '[object Object]') {
// Skip testing the part below and continue with the keyCheck.
return keyCheck(val1, val2, true, memos);
}
if (isDate(val1)) {
if (val1.getTime() !== val2.getTime()) {
return false;
}
} else if (isRegExp(val1)) {
if (!areSimilarRegExps(val1, val2)) {
return false;
}
} else if (val1Tag === '[object Error]') {
// Do not compare the stack as it might differ even though the error itself
// is otherwise identical. The non-enumerable name should be identical as
// the prototype is also identical. Otherwise this is caught later on.
if (val1.message !== val2.message) {
return false;
}
} else if (isArrayBufferView(val1)) {
if (!areSimilarTypedArrays(val1, val2,
isFloatTypedArrayTag(val1Tag) ? 0 : 300)) {
return false;
}
// Buffer.compare returns true, so val1.length === val2.length
// if they both only contain numeric keys, we don't need to exam further
return keyCheck(val1, val2, true, memos, val1.length,
val2.length);
} else if (typeof val1.valueOf === 'function') {
const val1Value = val1.valueOf();
// Note: Boxed string keys are going to be compared again by Object.keys
if (val1Value !== val1) {
if (!innerDeepEqual(val1Value, val2.valueOf(), true))
return false;
// Fast path for boxed primitives
var lengthval1 = 0;
var lengthval2 = 0;
if (typeof val1Value === 'string') {
lengthval1 = val1.length;
lengthval2 = val2.length;
}
return keyCheck(val1, val2, true, memos, lengthval1,
lengthval2);
}
}
return keyCheck(val1, val2, true, memos);
}
function looseDeepEqual(val1, val2, memos) {
if (val1 === null || typeof val1 !== 'object') {
if (val2 === null || typeof val2 !== 'object') {
// eslint-disable-next-line eqeqeq
return val1 == val2;
}
return false;
}
if (val2 === null || typeof val2 !== 'object') {
return false;
}
if (isDate(val1) && isDate(val2)) {
return val1.getTime() === val2.getTime();
}
if (isRegExp(val1) && isRegExp(val2)) {
return areSimilarRegExps(val1, val2);
}
if (val1 instanceof Error && val2 instanceof Error) {
if (val1.message !== val2.message || val1.name !== val2.name)
return false;
}
const val1Tag = objectToString(val1);
const val2Tag = objectToString(val2);
if (val1Tag === val2Tag) {
if (!isObjectOrArrayTag(val1Tag) && isArrayBufferView(val1)) {
return areSimilarTypedArrays(val1, val2,
isFloatTypedArrayTag(val1Tag) ?
Infinity : 300);
}
// Ensure reflexivity of deepEqual with `arguments` objects.
// See https://github.com/nodejs/node-v0.x-archive/pull/7178
} else if (isArguments(val1Tag) || isArguments(val2Tag)) {
return false;
}
return keyCheck(val1, val2, false, memos);
}
function keyCheck(val1, val2, strict, memos, lengthA, lengthB) {
// For all remaining Object pairs, including Array, objects and Maps,
// equivalence is determined by having:
// a) The same number of owned enumerable properties
// b) The same set of keys/indexes (although not necessarily the same order)
// c) Equivalent values for every corresponding key/index
// d) For Sets and Maps, equal contents
// Note: this accounts for both named and indexed properties on Arrays.
var aKeys = Object.keys(val1);
var bKeys = Object.keys(val2);
var i;
// The pair must have the same number of owned properties.
if (aKeys.length !== bKeys.length)
return false;
if (strict) {
var symbolKeysA = Object.getOwnPropertySymbols(val1);
var symbolKeysB = Object.getOwnPropertySymbols(val2);
if (symbolKeysA.length !== 0) {
symbolKeysA = symbolKeysA.filter((k) =>
propertyIsEnumerable.call(val1, k));
symbolKeysB = symbolKeysB.filter((k) =>
propertyIsEnumerable.call(val2, k));
if (symbolKeysA.length !== symbolKeysB.length)
return false;
} else if (symbolKeysB.length !== 0 && symbolKeysB.filter((k) =>
propertyIsEnumerable.call(val2, k)).length !== 0) {
return false;
}
if (lengthA !== undefined) {
if (aKeys.length !== lengthA || bKeys.length !== lengthB)
return false;
if (symbolKeysA.length === 0)
return true;
aKeys = [];
bKeys = [];
}
if (symbolKeysA.length !== 0) {
aKeys.push(...symbolKeysA);
bKeys.push(...symbolKeysB);
}
}
// Cheap key test:
const keys = {};
for (i = 0; i < aKeys.length; i++) {
keys[aKeys[i]] = true;
}
for (i = 0; i < aKeys.length; i++) {
if (keys[bKeys[i]] === undefined)
return false;
}
// Use memos to handle cycles.
if (memos === undefined) {
memos = {
val1: new Map(),
val2: new Map(),
position: 0
};
} else {
// We prevent up to two map.has(x) calls by directly retrieving the value
// and checking for undefined. The map can only contain numbers, so it is
// safe to check for undefined only.
const val2MemoA = memos.val1.get(val1);
if (val2MemoA !== undefined) {
const val2MemoB = memos.val2.get(val2);
if (val2MemoB !== undefined) {
return val2MemoA === val2MemoB;
}
}
memos.position++;
}
memos.val1.set(val1, memos.position);
memos.val2.set(val2, memos.position);
const areEq = objEquiv(val1, val2, strict, aKeys, memos);
memos.val1.delete(val1);
memos.val2.delete(val2);
return areEq;
}
function innerDeepEqual(val1, val2, strict, memos) {
// All identical values are equivalent, as determined by ===.
if (val1 === val2) {
if (val1 !== 0)
return true;
return strict ? Object.is(val1, val2) : true;
}
// Check more closely if val1 and val2 are equal.
if (strict === true)
return strictDeepEqual(val1, val2, memos);
return looseDeepEqual(val1, val2, memos);
}
function setHasEqualElement(set, val1, strict, memo) {
// Go looking.
for (const val2 of set) {
if (innerDeepEqual(val1, val2, strict, memo)) {
// Remove the matching element to make sure we do not check that again.
set.delete(val2);
return true;
}
}
return false;
}
// Note: we val1ly run this multiple times for each loose key!
// This is done to prevent slowing down the average case.
function setHasLoosePrim(a, b, val) {
const altValues = findLooseMatchingPrimitives(val);
if (altValues === undefined)
return false;
var matches = 1;
for (var i = 0; i < altValues.length; i++) {
if (b.has(altValues[i])) {
matches--;
}
if (a.has(altValues[i])) {
matches++;
}
}
return matches === 0;
}
function setEquiv(a, b, strict, memo) {
// This code currently returns false for this pair of sets:
// assert.deepEqual(new Set(['1', 1]), new Set([1]))
//
// In theory, all the items in the first set have a corresponding == value in
// the second set, but the sets have different sizes. Its a silly case,
// and more evidence that deepStrictEqual should always be preferred over
// deepEqual.
if (a.size !== b.size)
return false;
// This is a lazily initiated Set of entries which have to be compared
// pairwise.
var set = null;
for (const val of a) {
// Note: Checking for the objects first improves the performance for object
// heavy sets but it is a minor slow down for primitives. As they are fast
// to check this improves the worst case scenario instead.
if (typeof val === 'object' && val !== null) {
if (set === null) {
set = new Set();
}
// If the specified value doesn't exist in the second set its an not null
// object (or non strict only: a not matching primitive) we'll need to go
// hunting for something thats deep-(strict-)equal to it. To make this
// O(n log n) complexity we have to copy these values in a new set first.
set.add(val);
} else if (!b.has(val) && (strict || !setHasLoosePrim(a, b, val))) {
return false;
}
}
if (set !== null) {
for (const val of b) {
// We have to check if a primitive value is already
// matching and only if it's not, go hunting for it.
if (typeof val === 'object' && val !== null) {
if (!setHasEqualElement(set, val, strict, memo))
return false;
} else if (!a.has(val) && (strict || !setHasLoosePrim(b, a, val))) {
return false;
}
}
}
return true;
}
function findLooseMatchingPrimitives(prim) {
var values, number;
switch (typeof prim) {
case 'number':
values = ['' + prim];
if (prim === 1 || prim === 0)
values.push(Boolean(prim));
return values;
case 'string':
number = +prim;
if ('' + number === prim) {
values = [number];
if (number === 1 || number === 0)
values.push(Boolean(number));
}
return values;
case 'undefined':
return [null];
case 'object': // Only pass in null as object!
return [undefined];
case 'boolean':
number = +prim;
return [number, '' + number];
}
}
// This is a ugly but relatively fast way to determine if a loose equal entry
// val1ly has a correspondent matching entry. Otherwise checking for such
// values would be way more expensive (O(n^2)).
// Note: we val1ly run this multiple times for each loose key!
// This is done to prevent slowing down the average case.
function mapHasLoosePrim(a, b, key1, memo, item1, item2) {
const altKeys = findLooseMatchingPrimitives(key1);
if (altKeys === undefined)
return false;
const setA = new Set();
const setB = new Set();
var keyCount = 1;
setA.add(item1);
if (b.has(key1)) {
keyCount--;
setB.add(item2);
}
for (var i = 0; i < altKeys.length; i++) {
const key2 = altKeys[i];
if (a.has(key2)) {
keyCount++;
setA.add(a.get(key2));
}
if (b.has(key2)) {
keyCount--;
setB.add(b.get(key2));
}
}
if (keyCount !== 0 || setA.size !== setB.size)
return false;
for (const val of setA) {
if (typeof val === 'object' && val !== null) {
if (!setHasEqualElement(setB, val, false, memo))
return false;
} else if (!setB.has(val) && !setHasLoosePrim(setA, setB, val)) {
return false;
}
}
return true;
}
function mapHasEqualEntry(set, map, key1, item1, strict, memo) {
// To be able to handle cases like:
// Map([[{}, 'a'], [{}, 'b']]) vs Map([[{}, 'b'], [{}, 'a']])
// ... we need to consider *all* matching keys, not just the first we find.
for (const key2 of set) {
if (innerDeepEqual(key1, key2, strict, memo) &&
innerDeepEqual(item1, map.get(key2), strict, memo)) {
set.delete(key2);
return true;
}
}
return false;
}
function mapEquiv(a, b, strict, memo) {
if (a.size !== b.size)
return false;
var set = null;
for (const [key, item1] of a) {
if (typeof key === 'object' && key !== null) {
if (set === null) {
set = new Set();
}
set.add(key);
} else {
// By directly retrieving the value we prevent another b.has(key) check in
// almost all possible cases.
const item2 = b.get(key);
if ((item2 === undefined && !b.has(key) ||
!innerDeepEqual(item1, item2, strict, memo)) &&
(strict || !mapHasLoosePrim(a, b, key, memo, item1, item2))) {
return false;
}
}
}
if (set !== null) {
for (const [key, item] of b) {
if (typeof key === 'object' && key !== null) {
if (!mapHasEqualEntry(set, a, key, item, strict, memo))
return false;
} else if (!a.has(key) &&
(strict || !mapHasLoosePrim(b, a, key, memo, item))) {
return false;
}
}
}
return true;
}
function objEquiv(a, b, strict, keys, memos) {
// Sets and maps don't have their entries accessible via normal object
// properties.
if (isSet(a)) {
if (!isSet(b) || !setEquiv(a, b, strict, memos))
return false;
} else if (isMap(a)) {
if (!isMap(b) || !mapEquiv(a, b, strict, memos))
return false;
} else if (isSet(b) || isMap(b)) {
return false;
}
// The pair must have equivalent values for every corresponding key.
// Possibly expensive deep test:
for (var i = 0; i < keys.length; i++) {
const key = keys[i];
if (!innerDeepEqual(a[key], b[key], strict, memos))
return false;
}
return true;
}
function isDeepEqual(val1, val2) {
return innerDeepEqual(val1, val2, false);
}
function isDeepStrictEqual(val1, val2) {
return innerDeepEqual(val1, val2, true);
}
module.exports = {
isDeepEqual,
isDeepStrictEqual
};