node/src/crypto/crypto_sig.cc
Yagiz Nizipli 317d2450f9
src: modernize likely/unlikely hints
PR-URL: https://github.com/nodejs/node/pull/55155
Reviewed-By: Tobias Nießen <tniessen@tnie.de>
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Rafael Gonzaga <rafael.nunu@hotmail.com>
2024-09-30 18:04:16 +00:00

824 lines
26 KiB
C++

#include "crypto/crypto_sig.h"
#include "async_wrap-inl.h"
#include "base_object-inl.h"
#include "crypto/crypto_ec.h"
#include "crypto/crypto_keys.h"
#include "crypto/crypto_util.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "openssl/ec.h"
#include "threadpoolwork-inl.h"
#include "v8.h"
namespace node {
using v8::ArrayBuffer;
using v8::BackingStore;
using v8::Boolean;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Int32;
using v8::Isolate;
using v8::Just;
using v8::JustVoid;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::Nothing;
using v8::Object;
using v8::Uint32;
using v8::Value;
namespace crypto {
namespace {
bool ValidateDSAParameters(EVP_PKEY* key) {
/* Validate DSA2 parameters from FIPS 186-4 */
auto id = EVPKeyPointer::base_id(key);
#if OPENSSL_VERSION_MAJOR >= 3
if (EVP_default_properties_is_fips_enabled(nullptr) && EVP_PKEY_DSA == id) {
#else
if (FIPS_mode() && EVP_PKEY_DSA == id) {
#endif
const DSA* dsa = EVP_PKEY_get0_DSA(key);
const BIGNUM* p;
const BIGNUM* q;
DSA_get0_pqg(dsa, &p, &q, nullptr);
int L = BignumPointer::GetBitCount(p);
int N = BignumPointer::GetBitCount(q);
return (L == 1024 && N == 160) ||
(L == 2048 && N == 224) ||
(L == 2048 && N == 256) ||
(L == 3072 && N == 256);
}
return true;
}
bool ApplyRSAOptions(const EVPKeyPointer& pkey,
EVP_PKEY_CTX* pkctx,
int padding,
const Maybe<int>& salt_len) {
int id = pkey.id();
if (id == EVP_PKEY_RSA || id == EVP_PKEY_RSA2 || id == EVP_PKEY_RSA_PSS) {
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, padding) <= 0)
return false;
if (padding == RSA_PKCS1_PSS_PADDING && salt_len.IsJust()) {
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, salt_len.FromJust()) <= 0)
return false;
}
}
return true;
}
std::unique_ptr<BackingStore> Node_SignFinal(Environment* env,
EVPMDCtxPointer&& mdctx,
const EVPKeyPointer& pkey,
int padding,
Maybe<int> pss_salt_len) {
unsigned char m[EVP_MAX_MD_SIZE];
unsigned int m_len;
if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
return nullptr;
size_t sig_len = pkey.size();
std::unique_ptr<BackingStore> sig;
{
NoArrayBufferZeroFillScope no_zero_fill_scope(env->isolate_data());
sig = ArrayBuffer::NewBackingStore(env->isolate(), sig_len);
}
EVPKeyCtxPointer pkctx = pkey.newCtx();
if (pkctx && EVP_PKEY_sign_init(pkctx.get()) > 0 &&
ApplyRSAOptions(pkey, pkctx.get(), padding, pss_salt_len) &&
EVP_PKEY_CTX_set_signature_md(pkctx.get(), EVP_MD_CTX_md(mdctx.get())) >
0 &&
EVP_PKEY_sign(pkctx.get(),
static_cast<unsigned char*>(sig->Data()),
&sig_len,
m,
m_len) > 0) {
CHECK_LE(sig_len, sig->ByteLength());
if (sig_len == 0) {
sig = ArrayBuffer::NewBackingStore(env->isolate(), 0);
} else if (sig_len != sig->ByteLength()) {
std::unique_ptr<BackingStore> old_sig = std::move(sig);
sig = ArrayBuffer::NewBackingStore(env->isolate(), sig_len);
memcpy(static_cast<char*>(sig->Data()),
static_cast<char*>(old_sig->Data()),
sig_len);
}
return sig;
}
return nullptr;
}
int GetDefaultSignPadding(const EVPKeyPointer& m_pkey) {
return m_pkey.id() == EVP_PKEY_RSA_PSS ? RSA_PKCS1_PSS_PADDING
: RSA_PKCS1_PADDING;
}
unsigned int GetBytesOfRS(const EVPKeyPointer& pkey) {
int bits, base_id = pkey.base_id();
if (base_id == EVP_PKEY_DSA) {
const DSA* dsa_key = EVP_PKEY_get0_DSA(pkey.get());
// Both r and s are computed mod q, so their width is limited by that of q.
bits = BignumPointer::GetBitCount(DSA_get0_q(dsa_key));
} else if (base_id == EVP_PKEY_EC) {
const EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(pkey.get());
const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key);
bits = EC_GROUP_order_bits(ec_group);
} else {
return kNoDsaSignature;
}
return (bits + 7) / 8;
}
bool ExtractP1363(
const unsigned char* sig_data,
unsigned char* out,
size_t len,
size_t n) {
ECDSASigPointer asn1_sig(d2i_ECDSA_SIG(nullptr, &sig_data, len));
if (!asn1_sig)
return false;
const BIGNUM* pr;
const BIGNUM* ps;
ECDSA_SIG_get0(asn1_sig.get(), &pr, &ps);
return BignumPointer::EncodePaddedInto(pr, out, n) > 0 &&
BignumPointer::EncodePaddedInto(ps, out + n, n) > 0;
}
// Returns the maximum size of each of the integers (r, s) of the DSA signature.
std::unique_ptr<BackingStore> ConvertSignatureToP1363(
Environment* env,
const EVPKeyPointer& pkey,
std::unique_ptr<BackingStore>&& signature) {
unsigned int n = GetBytesOfRS(pkey);
if (n == kNoDsaSignature)
return std::move(signature);
std::unique_ptr<BackingStore> buf;
{
NoArrayBufferZeroFillScope no_zero_fill_scope(env->isolate_data());
buf = ArrayBuffer::NewBackingStore(env->isolate(), 2 * n);
}
if (!ExtractP1363(static_cast<unsigned char*>(signature->Data()),
static_cast<unsigned char*>(buf->Data()),
signature->ByteLength(), n))
return std::move(signature);
return buf;
}
// Returns the maximum size of each of the integers (r, s) of the DSA signature.
ByteSource ConvertSignatureToP1363(Environment* env,
const EVPKeyPointer& pkey,
const ByteSource& signature) {
unsigned int n = GetBytesOfRS(pkey);
if (n == kNoDsaSignature)
return ByteSource();
const unsigned char* sig_data = signature.data<unsigned char>();
ByteSource::Builder out(n * 2);
memset(out.data<void>(), 0, n * 2);
if (!ExtractP1363(sig_data, out.data<unsigned char>(), signature.size(), n))
return ByteSource();
return std::move(out).release();
}
ByteSource ConvertSignatureToDER(const EVPKeyPointer& pkey, ByteSource&& out) {
unsigned int n = GetBytesOfRS(pkey);
if (n == kNoDsaSignature)
return std::move(out);
const unsigned char* sig_data = out.data<unsigned char>();
if (out.size() != 2 * n)
return ByteSource();
ECDSASigPointer asn1_sig(ECDSA_SIG_new());
CHECK(asn1_sig);
BignumPointer r(sig_data, n);
CHECK(r);
BignumPointer s(sig_data + n, n);
CHECK(s);
CHECK_EQ(1, ECDSA_SIG_set0(asn1_sig.get(), r.release(), s.release()));
unsigned char* data = nullptr;
int len = i2d_ECDSA_SIG(asn1_sig.get(), &data);
if (len <= 0)
return ByteSource();
CHECK_NOT_NULL(data);
return ByteSource::Allocated(data, len);
}
void CheckThrow(Environment* env, SignBase::Error error) {
HandleScope scope(env->isolate());
switch (error) {
case SignBase::Error::kSignUnknownDigest:
return THROW_ERR_CRYPTO_INVALID_DIGEST(env);
case SignBase::Error::kSignNotInitialised:
return THROW_ERR_CRYPTO_INVALID_STATE(env, "Not initialised");
case SignBase::Error::kSignMalformedSignature:
return THROW_ERR_CRYPTO_OPERATION_FAILED(env, "Malformed signature");
case SignBase::Error::kSignInit:
case SignBase::Error::kSignUpdate:
case SignBase::Error::kSignPrivateKey:
case SignBase::Error::kSignPublicKey:
{
unsigned long err = ERR_get_error(); // NOLINT(runtime/int)
if (err)
return ThrowCryptoError(env, err);
switch (error) {
case SignBase::Error::kSignInit:
return THROW_ERR_CRYPTO_OPERATION_FAILED(env,
"EVP_SignInit_ex failed");
case SignBase::Error::kSignUpdate:
return THROW_ERR_CRYPTO_OPERATION_FAILED(env,
"EVP_SignUpdate failed");
case SignBase::Error::kSignPrivateKey:
return THROW_ERR_CRYPTO_OPERATION_FAILED(env,
"PEM_read_bio_PrivateKey failed");
case SignBase::Error::kSignPublicKey:
return THROW_ERR_CRYPTO_OPERATION_FAILED(env,
"PEM_read_bio_PUBKEY failed");
default:
ABORT();
}
}
case SignBase::Error::kSignOk:
return;
}
}
bool IsOneShot(const EVPKeyPointer& key) {
return key.id() == EVP_PKEY_ED25519 || key.id() == EVP_PKEY_ED448;
}
bool UseP1363Encoding(const EVPKeyPointer& key, const DSASigEnc& dsa_encoding) {
return (key.id() == EVP_PKEY_EC || key.id() == EVP_PKEY_DSA) &&
dsa_encoding == kSigEncP1363;
}
} // namespace
SignBase::Error SignBase::Init(const char* sign_type) {
CHECK_NULL(mdctx_);
// Historically, "dss1" and "DSS1" were DSA aliases for SHA-1
// exposed through the public API.
if (strcmp(sign_type, "dss1") == 0 ||
strcmp(sign_type, "DSS1") == 0) {
sign_type = "SHA1";
}
const EVP_MD* md = EVP_get_digestbyname(sign_type);
if (md == nullptr)
return kSignUnknownDigest;
mdctx_.reset(EVP_MD_CTX_new());
if (!mdctx_ || !EVP_DigestInit_ex(mdctx_.get(), md, nullptr)) {
mdctx_.reset();
return kSignInit;
}
return kSignOk;
}
SignBase::Error SignBase::Update(const char* data, size_t len) {
if (mdctx_ == nullptr)
return kSignNotInitialised;
if (!EVP_DigestUpdate(mdctx_.get(), data, len))
return kSignUpdate;
return kSignOk;
}
SignBase::SignBase(Environment* env, Local<Object> wrap)
: BaseObject(env, wrap) {}
void SignBase::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackFieldWithSize("mdctx", mdctx_ ? kSizeOf_EVP_MD_CTX : 0);
}
Sign::Sign(Environment* env, Local<Object> wrap) : SignBase(env, wrap) {
MakeWeak();
}
void Sign::Initialize(Environment* env, Local<Object> target) {
Isolate* isolate = env->isolate();
Local<FunctionTemplate> t = NewFunctionTemplate(isolate, New);
t->InstanceTemplate()->SetInternalFieldCount(SignBase::kInternalFieldCount);
SetProtoMethod(isolate, t, "init", SignInit);
SetProtoMethod(isolate, t, "update", SignUpdate);
SetProtoMethod(isolate, t, "sign", SignFinal);
SetConstructorFunction(env->context(), target, "Sign", t);
SignJob::Initialize(env, target);
constexpr int kSignJobModeSign = SignConfiguration::kSign;
constexpr int kSignJobModeVerify = SignConfiguration::kVerify;
NODE_DEFINE_CONSTANT(target, kSignJobModeSign);
NODE_DEFINE_CONSTANT(target, kSignJobModeVerify);
NODE_DEFINE_CONSTANT(target, kSigEncDER);
NODE_DEFINE_CONSTANT(target, kSigEncP1363);
NODE_DEFINE_CONSTANT(target, RSA_PKCS1_PSS_PADDING);
}
void Sign::RegisterExternalReferences(ExternalReferenceRegistry* registry) {
registry->Register(New);
registry->Register(SignInit);
registry->Register(SignUpdate);
registry->Register(SignFinal);
SignJob::RegisterExternalReferences(registry);
}
void Sign::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Sign(env, args.This());
}
void Sign::SignInit(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Sign* sign;
ASSIGN_OR_RETURN_UNWRAP(&sign, args.This());
const node::Utf8Value sign_type(args.GetIsolate(), args[0]);
crypto::CheckThrow(env, sign->Init(*sign_type));
}
void Sign::SignUpdate(const FunctionCallbackInfo<Value>& args) {
Decode<Sign>(args, [](Sign* sign, const FunctionCallbackInfo<Value>& args,
const char* data, size_t size) {
Environment* env = Environment::GetCurrent(args);
if (size > INT_MAX) [[unlikely]]
return THROW_ERR_OUT_OF_RANGE(env, "data is too long");
Error err = sign->Update(data, size);
crypto::CheckThrow(sign->env(), err);
});
}
Sign::SignResult Sign::SignFinal(const EVPKeyPointer& pkey,
int padding,
const Maybe<int>& salt_len,
DSASigEnc dsa_sig_enc) {
if (!mdctx_)
return SignResult(kSignNotInitialised);
EVPMDCtxPointer mdctx = std::move(mdctx_);
if (!ValidateDSAParameters(pkey.get()))
return SignResult(kSignPrivateKey);
std::unique_ptr<BackingStore> buffer =
Node_SignFinal(env(), std::move(mdctx), pkey, padding, salt_len);
Error error = buffer ? kSignOk : kSignPrivateKey;
if (error == kSignOk && dsa_sig_enc == kSigEncP1363) {
buffer = ConvertSignatureToP1363(env(), pkey, std::move(buffer));
CHECK_NOT_NULL(buffer->Data());
}
return SignResult(error, std::move(buffer));
}
void Sign::SignFinal(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Sign* sign;
ASSIGN_OR_RETURN_UNWRAP(&sign, args.This());
ClearErrorOnReturn clear_error_on_return;
unsigned int offset = 0;
auto data = KeyObjectData::GetPrivateKeyFromJs(args, &offset, true);
if (!data) [[unlikely]]
return;
const auto& key = data.GetAsymmetricKey();
if (!key)
return;
if (IsOneShot(key)) {
THROW_ERR_CRYPTO_UNSUPPORTED_OPERATION(env);
return;
}
int padding = GetDefaultSignPadding(key);
if (!args[offset]->IsUndefined()) {
CHECK(args[offset]->IsInt32());
padding = args[offset].As<Int32>()->Value();
}
Maybe<int> salt_len = Nothing<int>();
if (!args[offset + 1]->IsUndefined()) {
CHECK(args[offset + 1]->IsInt32());
salt_len = Just<int>(args[offset + 1].As<Int32>()->Value());
}
CHECK(args[offset + 2]->IsInt32());
DSASigEnc dsa_sig_enc =
static_cast<DSASigEnc>(args[offset + 2].As<Int32>()->Value());
SignResult ret = sign->SignFinal(
key,
padding,
salt_len,
dsa_sig_enc);
if (ret.error != kSignOk)
return crypto::CheckThrow(env, ret.error);
Local<ArrayBuffer> ab =
ArrayBuffer::New(env->isolate(), std::move(ret.signature));
args.GetReturnValue().Set(
Buffer::New(env, ab, 0, ab->ByteLength()).FromMaybe(Local<Value>()));
}
Verify::Verify(Environment* env, Local<Object> wrap)
: SignBase(env, wrap) {
MakeWeak();
}
void Verify::Initialize(Environment* env, Local<Object> target) {
Isolate* isolate = env->isolate();
Local<FunctionTemplate> t = NewFunctionTemplate(isolate, New);
t->InstanceTemplate()->SetInternalFieldCount(SignBase::kInternalFieldCount);
SetProtoMethod(isolate, t, "init", VerifyInit);
SetProtoMethod(isolate, t, "update", VerifyUpdate);
SetProtoMethod(isolate, t, "verify", VerifyFinal);
SetConstructorFunction(env->context(), target, "Verify", t);
}
void Verify::RegisterExternalReferences(ExternalReferenceRegistry* registry) {
registry->Register(New);
registry->Register(VerifyInit);
registry->Register(VerifyUpdate);
registry->Register(VerifyFinal);
}
void Verify::New(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
new Verify(env, args.This());
}
void Verify::VerifyInit(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Verify* verify;
ASSIGN_OR_RETURN_UNWRAP(&verify, args.This());
const node::Utf8Value verify_type(args.GetIsolate(), args[0]);
crypto::CheckThrow(env, verify->Init(*verify_type));
}
void Verify::VerifyUpdate(const FunctionCallbackInfo<Value>& args) {
Decode<Verify>(args, [](Verify* verify,
const FunctionCallbackInfo<Value>& args,
const char* data, size_t size) {
Environment* env = Environment::GetCurrent(args);
if (size > INT_MAX) [[unlikely]]
return THROW_ERR_OUT_OF_RANGE(env, "data is too long");
Error err = verify->Update(data, size);
crypto::CheckThrow(verify->env(), err);
});
}
SignBase::Error Verify::VerifyFinal(const EVPKeyPointer& pkey,
const ByteSource& sig,
int padding,
const Maybe<int>& saltlen,
bool* verify_result) {
if (!mdctx_)
return kSignNotInitialised;
unsigned char m[EVP_MAX_MD_SIZE];
unsigned int m_len;
*verify_result = false;
EVPMDCtxPointer mdctx = std::move(mdctx_);
if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
return kSignPublicKey;
EVPKeyCtxPointer pkctx = pkey.newCtx();
if (pkctx) {
const int init_ret = EVP_PKEY_verify_init(pkctx.get());
if (init_ret == -2) {
return kSignPublicKey;
}
if (init_ret > 0 && ApplyRSAOptions(pkey, pkctx.get(), padding, saltlen) &&
EVP_PKEY_CTX_set_signature_md(pkctx.get(), EVP_MD_CTX_md(mdctx.get())) >
0) {
const unsigned char* s = sig.data<unsigned char>();
const int r = EVP_PKEY_verify(pkctx.get(), s, sig.size(), m, m_len);
*verify_result = r == 1;
}
}
return kSignOk;
}
void Verify::VerifyFinal(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
ClearErrorOnReturn clear_error_on_return;
Verify* verify;
ASSIGN_OR_RETURN_UNWRAP(&verify, args.This());
unsigned int offset = 0;
auto data = KeyObjectData::GetPublicOrPrivateKeyFromJs(args, &offset);
if (!data) return;
const auto& pkey = data.GetAsymmetricKey();
if (!pkey)
return;
if (IsOneShot(pkey)) {
THROW_ERR_CRYPTO_UNSUPPORTED_OPERATION(env);
return;
}
ArrayBufferOrViewContents<char> hbuf(args[offset]);
if (!hbuf.CheckSizeInt32()) [[unlikely]]
return THROW_ERR_OUT_OF_RANGE(env, "buffer is too big");
int padding = GetDefaultSignPadding(pkey);
if (!args[offset + 1]->IsUndefined()) {
CHECK(args[offset + 1]->IsInt32());
padding = args[offset + 1].As<Int32>()->Value();
}
Maybe<int> salt_len = Nothing<int>();
if (!args[offset + 2]->IsUndefined()) {
CHECK(args[offset + 2]->IsInt32());
salt_len = Just<int>(args[offset + 2].As<Int32>()->Value());
}
CHECK(args[offset + 3]->IsInt32());
DSASigEnc dsa_sig_enc =
static_cast<DSASigEnc>(args[offset + 3].As<Int32>()->Value());
ByteSource signature = hbuf.ToByteSource();
if (dsa_sig_enc == kSigEncP1363) {
signature = ConvertSignatureToDER(pkey, hbuf.ToByteSource());
if (signature.data() == nullptr)
return crypto::CheckThrow(env, Error::kSignMalformedSignature);
}
bool verify_result;
Error err = verify->VerifyFinal(pkey, signature, padding,
salt_len, &verify_result);
if (err != kSignOk)
return crypto::CheckThrow(env, err);
args.GetReturnValue().Set(verify_result);
}
SignConfiguration::SignConfiguration(SignConfiguration&& other) noexcept
: job_mode(other.job_mode),
mode(other.mode),
key(std::move(other.key)),
data(std::move(other.data)),
signature(std::move(other.signature)),
digest(other.digest),
flags(other.flags),
padding(other.padding),
salt_length(other.salt_length),
dsa_encoding(other.dsa_encoding) {}
SignConfiguration& SignConfiguration::operator=(
SignConfiguration&& other) noexcept {
if (&other == this) return *this;
this->~SignConfiguration();
return *new (this) SignConfiguration(std::move(other));
}
void SignConfiguration::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("key", key);
if (job_mode == kCryptoJobAsync) {
tracker->TrackFieldWithSize("data", data.size());
tracker->TrackFieldWithSize("signature", signature.size());
}
}
Maybe<void> SignTraits::AdditionalConfig(
CryptoJobMode mode,
const FunctionCallbackInfo<Value>& args,
unsigned int offset,
SignConfiguration* params) {
ClearErrorOnReturn clear_error_on_return;
Environment* env = Environment::GetCurrent(args);
params->job_mode = mode;
CHECK(args[offset]->IsUint32()); // Sign Mode
params->mode =
static_cast<SignConfiguration::Mode>(args[offset].As<Uint32>()->Value());
unsigned int keyParamOffset = offset + 1;
if (params->mode == SignConfiguration::kVerify) {
auto data =
KeyObjectData::GetPublicOrPrivateKeyFromJs(args, &keyParamOffset);
if (!data) return Nothing<void>();
params->key = std::move(data);
} else {
auto data = KeyObjectData::GetPrivateKeyFromJs(args, &keyParamOffset, true);
if (!data) return Nothing<void>();
params->key = std::move(data);
}
ArrayBufferOrViewContents<char> data(args[offset + 5]);
if (!data.CheckSizeInt32()) [[unlikely]] {
THROW_ERR_OUT_OF_RANGE(env, "data is too big");
return Nothing<void>();
}
params->data = mode == kCryptoJobAsync
? data.ToCopy()
: data.ToByteSource();
if (args[offset + 6]->IsString()) {
Utf8Value digest(env->isolate(), args[offset + 6]);
params->digest = EVP_get_digestbyname(*digest);
if (params->digest == nullptr) {
THROW_ERR_CRYPTO_INVALID_DIGEST(env, "Invalid digest: %s", *digest);
return Nothing<void>();
}
}
if (args[offset + 7]->IsInt32()) { // Salt length
params->flags |= SignConfiguration::kHasSaltLength;
params->salt_length = args[offset + 7].As<Int32>()->Value();
}
if (args[offset + 8]->IsUint32()) { // Padding
params->flags |= SignConfiguration::kHasPadding;
params->padding = args[offset + 8].As<Uint32>()->Value();
}
if (args[offset + 9]->IsUint32()) { // DSA Encoding
params->dsa_encoding =
static_cast<DSASigEnc>(args[offset + 9].As<Uint32>()->Value());
if (params->dsa_encoding != kSigEncDER &&
params->dsa_encoding != kSigEncP1363) {
THROW_ERR_OUT_OF_RANGE(env, "invalid signature encoding");
return Nothing<void>();
}
}
if (params->mode == SignConfiguration::kVerify) {
ArrayBufferOrViewContents<char> signature(args[offset + 10]);
if (!signature.CheckSizeInt32()) [[unlikely]] {
THROW_ERR_OUT_OF_RANGE(env, "signature is too big");
return Nothing<void>();
}
// If this is an EC key (assuming ECDSA) we need to convert the
// the signature from WebCrypto format into DER format...
Mutex::ScopedLock lock(params->key.mutex());
const auto& akey = params->key.GetAsymmetricKey();
if (UseP1363Encoding(akey, params->dsa_encoding)) {
params->signature = ConvertSignatureToDER(akey, signature.ToByteSource());
} else {
params->signature = mode == kCryptoJobAsync
? signature.ToCopy()
: signature.ToByteSource();
}
}
return JustVoid();
}
bool SignTraits::DeriveBits(
Environment* env,
const SignConfiguration& params,
ByteSource* out) {
ClearErrorOnReturn clear_error_on_return;
EVPMDCtxPointer context(EVP_MD_CTX_new());
EVP_PKEY_CTX* ctx = nullptr;
const auto& key = params.key.GetAsymmetricKey();
switch (params.mode) {
case SignConfiguration::kSign:
if (!EVP_DigestSignInit(
context.get(), &ctx, params.digest, nullptr, key.get())) {
crypto::CheckThrow(env, SignBase::Error::kSignInit);
return false;
}
break;
case SignConfiguration::kVerify:
if (!EVP_DigestVerifyInit(
context.get(), &ctx, params.digest, nullptr, key.get())) {
crypto::CheckThrow(env, SignBase::Error::kSignInit);
return false;
}
break;
}
int padding = params.flags & SignConfiguration::kHasPadding
? params.padding
: GetDefaultSignPadding(key);
Maybe<int> salt_length = params.flags & SignConfiguration::kHasSaltLength
? Just<int>(params.salt_length) : Nothing<int>();
if (!ApplyRSAOptions(key, ctx, padding, salt_length)) {
crypto::CheckThrow(env, SignBase::Error::kSignPrivateKey);
return false;
}
switch (params.mode) {
case SignConfiguration::kSign: {
if (IsOneShot(key)) {
size_t len;
if (!EVP_DigestSign(
context.get(),
nullptr,
&len,
params.data.data<unsigned char>(),
params.data.size())) {
crypto::CheckThrow(env, SignBase::Error::kSignPrivateKey);
return false;
}
ByteSource::Builder buf(len);
if (!EVP_DigestSign(context.get(),
buf.data<unsigned char>(),
&len,
params.data.data<unsigned char>(),
params.data.size())) {
crypto::CheckThrow(env, SignBase::Error::kSignPrivateKey);
return false;
}
*out = std::move(buf).release(len);
} else {
size_t len;
if (!EVP_DigestSignUpdate(
context.get(),
params.data.data<unsigned char>(),
params.data.size()) ||
!EVP_DigestSignFinal(context.get(), nullptr, &len)) {
crypto::CheckThrow(env, SignBase::Error::kSignPrivateKey);
return false;
}
ByteSource::Builder buf(len);
if (!EVP_DigestSignFinal(
context.get(), buf.data<unsigned char>(), &len)) {
crypto::CheckThrow(env, SignBase::Error::kSignPrivateKey);
return false;
}
if (UseP1363Encoding(key, params.dsa_encoding)) {
*out = ConvertSignatureToP1363(env, key, std::move(buf).release());
} else {
*out = std::move(buf).release(len);
}
}
break;
}
case SignConfiguration::kVerify: {
ByteSource::Builder buf(1);
buf.data<char>()[0] = 0;
if (EVP_DigestVerify(
context.get(),
params.signature.data<unsigned char>(),
params.signature.size(),
params.data.data<unsigned char>(),
params.data.size()) == 1) {
buf.data<char>()[0] = 1;
}
*out = std::move(buf).release();
}
}
return true;
}
MaybeLocal<Value> SignTraits::EncodeOutput(Environment* env,
const SignConfiguration& params,
ByteSource* out) {
switch (params.mode) {
case SignConfiguration::kSign:
return out->ToArrayBuffer(env);
case SignConfiguration::kVerify:
return Boolean::New(env->isolate(), out->data<char>()[0] == 1);
}
UNREACHABLE();
}
} // namespace crypto
} // namespace node