mirror of
https://github.com/nodejs/node.git
synced 2025-05-08 01:35:51 +00:00

This API exposes key details. It is conceptually different from the previously discussed keyObject.fields property since it does not give access to information that could compromise the security of the key, and the obtained information cannot be used to uniquely identify a key. The intended purpose is to determine "security properties" of keys, e.g. to generate a new key pair with the same parameters, or to decide whether a key is secure enough. closes #30045 PR-URL: https://github.com/nodejs/node/pull/36188 Reviewed-By: Matteo Collina <matteo.collina@gmail.com> Reviewed-By: Tobias Nießen <tniessen@tnie.de> Reviewed-By: Rich Trott <rtrott@gmail.com>
473 lines
15 KiB
JavaScript
473 lines
15 KiB
JavaScript
'use strict';
|
|
|
|
const common = require('../common');
|
|
if (!common.hasCrypto)
|
|
common.skip('missing crypto');
|
|
|
|
const assert = require('assert');
|
|
const {
|
|
createCipheriv,
|
|
createDecipheriv,
|
|
createSign,
|
|
createVerify,
|
|
createSecretKey,
|
|
createPublicKey,
|
|
createPrivateKey,
|
|
KeyObject,
|
|
randomBytes,
|
|
publicDecrypt,
|
|
publicEncrypt,
|
|
privateDecrypt,
|
|
privateEncrypt
|
|
} = require('crypto');
|
|
|
|
const fixtures = require('../common/fixtures');
|
|
|
|
const publicPem = fixtures.readKey('rsa_public.pem', 'ascii');
|
|
const privatePem = fixtures.readKey('rsa_private.pem', 'ascii');
|
|
|
|
const publicDsa = fixtures.readKey('dsa_public_1025.pem', 'ascii');
|
|
const privateDsa = fixtures.readKey('dsa_private_encrypted_1025.pem',
|
|
'ascii');
|
|
|
|
{
|
|
// Attempting to create an empty key should throw.
|
|
assert.throws(() => {
|
|
createSecretKey(Buffer.alloc(0));
|
|
}, {
|
|
name: 'RangeError',
|
|
code: 'ERR_OUT_OF_RANGE',
|
|
message: 'The value of "key.byteLength" is out of range. ' +
|
|
'It must be > 0. Received 0'
|
|
});
|
|
}
|
|
|
|
{
|
|
// Attempting to create a key of a wrong type should throw
|
|
const TYPE = 'wrong_type';
|
|
|
|
assert.throws(() => new KeyObject(TYPE), {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_VALUE',
|
|
message: `The argument 'type' is invalid. Received '${TYPE}'`
|
|
});
|
|
}
|
|
|
|
{
|
|
// Attempting to create a key with non-object handle should throw
|
|
assert.throws(() => new KeyObject('secret', ''), {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_TYPE',
|
|
message:
|
|
'The "handle" argument must be of type object. Received type ' +
|
|
"string ('')"
|
|
});
|
|
}
|
|
|
|
{
|
|
const keybuf = randomBytes(32);
|
|
const key = createSecretKey(keybuf);
|
|
assert.strictEqual(key.type, 'secret');
|
|
assert.strictEqual(key.symmetricKeySize, 32);
|
|
assert.strictEqual(key.asymmetricKeyType, undefined);
|
|
assert.strictEqual(key.asymmetricKeyDetails, undefined);
|
|
|
|
const exportedKey = key.export();
|
|
assert(keybuf.equals(exportedKey));
|
|
|
|
const plaintext = Buffer.from('Hello world', 'utf8');
|
|
|
|
const cipher = createCipheriv('aes-256-ecb', key, null);
|
|
const ciphertext = Buffer.concat([
|
|
cipher.update(plaintext), cipher.final()
|
|
]);
|
|
|
|
const decipher = createDecipheriv('aes-256-ecb', key, null);
|
|
const deciphered = Buffer.concat([
|
|
decipher.update(ciphertext), decipher.final()
|
|
]);
|
|
|
|
assert(plaintext.equals(deciphered));
|
|
}
|
|
|
|
{
|
|
// Passing an existing public key object to createPublicKey should throw.
|
|
const publicKey = createPublicKey(publicPem);
|
|
assert.throws(() => createPublicKey(publicKey), {
|
|
name: 'TypeError',
|
|
code: 'ERR_CRYPTO_INVALID_KEY_OBJECT_TYPE',
|
|
message: 'Invalid key object type public, expected private.'
|
|
});
|
|
|
|
// Constructing a private key from a public key should be impossible, even
|
|
// if the public key was derived from a private key.
|
|
assert.throws(() => createPrivateKey(createPublicKey(privatePem)), {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_TYPE',
|
|
});
|
|
|
|
// Similarly, passing an existing private key object to createPrivateKey
|
|
// should throw.
|
|
const privateKey = createPrivateKey(privatePem);
|
|
assert.throws(() => createPrivateKey(privateKey), {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_TYPE',
|
|
});
|
|
}
|
|
|
|
{
|
|
const publicKey = createPublicKey(publicPem);
|
|
assert.strictEqual(publicKey.type, 'public');
|
|
assert.strictEqual(publicKey.asymmetricKeyType, 'rsa');
|
|
assert.strictEqual(publicKey.symmetricKeySize, undefined);
|
|
|
|
const privateKey = createPrivateKey(privatePem);
|
|
assert.strictEqual(privateKey.type, 'private');
|
|
assert.strictEqual(privateKey.asymmetricKeyType, 'rsa');
|
|
assert.strictEqual(privateKey.symmetricKeySize, undefined);
|
|
|
|
// It should be possible to derive a public key from a private key.
|
|
const derivedPublicKey = createPublicKey(privateKey);
|
|
assert.strictEqual(derivedPublicKey.type, 'public');
|
|
assert.strictEqual(derivedPublicKey.asymmetricKeyType, 'rsa');
|
|
assert.strictEqual(derivedPublicKey.symmetricKeySize, undefined);
|
|
|
|
// Test exporting with an invalid options object, this should throw.
|
|
for (const opt of [undefined, null, 'foo', 0, NaN]) {
|
|
assert.throws(() => publicKey.export(opt), {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_TYPE',
|
|
message: /^The "options" argument must be of type object/
|
|
});
|
|
}
|
|
|
|
const publicDER = publicKey.export({
|
|
format: 'der',
|
|
type: 'pkcs1'
|
|
});
|
|
|
|
const privateDER = privateKey.export({
|
|
format: 'der',
|
|
type: 'pkcs1'
|
|
});
|
|
|
|
assert(Buffer.isBuffer(publicDER));
|
|
assert(Buffer.isBuffer(privateDER));
|
|
|
|
const plaintext = Buffer.from('Hello world', 'utf8');
|
|
const testDecryption = (fn, ciphertexts, decryptionKeys) => {
|
|
for (const ciphertext of ciphertexts) {
|
|
for (const key of decryptionKeys) {
|
|
const deciphered = fn(key, ciphertext);
|
|
assert.deepStrictEqual(deciphered, plaintext);
|
|
}
|
|
}
|
|
};
|
|
|
|
testDecryption(privateDecrypt, [
|
|
// Encrypt using the public key.
|
|
publicEncrypt(publicKey, plaintext),
|
|
publicEncrypt({ key: publicKey }, plaintext),
|
|
|
|
// Encrypt using the private key.
|
|
publicEncrypt(privateKey, plaintext),
|
|
publicEncrypt({ key: privateKey }, plaintext),
|
|
|
|
// Encrypt using a public key derived from the private key.
|
|
publicEncrypt(derivedPublicKey, plaintext),
|
|
publicEncrypt({ key: derivedPublicKey }, plaintext),
|
|
|
|
// Test distinguishing PKCS#1 public and private keys based on the
|
|
// DER-encoded data only.
|
|
publicEncrypt({ format: 'der', type: 'pkcs1', key: publicDER }, plaintext),
|
|
publicEncrypt({ format: 'der', type: 'pkcs1', key: privateDER }, plaintext)
|
|
], [
|
|
privateKey,
|
|
{ format: 'pem', key: privatePem },
|
|
{ format: 'der', type: 'pkcs1', key: privateDER }
|
|
]);
|
|
|
|
testDecryption(publicDecrypt, [
|
|
privateEncrypt(privateKey, plaintext)
|
|
], [
|
|
// Decrypt using the public key.
|
|
publicKey,
|
|
{ format: 'pem', key: publicPem },
|
|
{ format: 'der', type: 'pkcs1', key: publicDER },
|
|
|
|
// Decrypt using the private key.
|
|
privateKey,
|
|
{ format: 'pem', key: privatePem },
|
|
{ format: 'der', type: 'pkcs1', key: privateDER }
|
|
]);
|
|
}
|
|
|
|
{
|
|
// This should not cause a crash: https://github.com/nodejs/node/issues/25247
|
|
assert.throws(() => {
|
|
createPrivateKey({ key: '' });
|
|
}, {
|
|
message: 'error:0909006C:PEM routines:get_name:no start line',
|
|
code: 'ERR_OSSL_PEM_NO_START_LINE',
|
|
reason: 'no start line',
|
|
library: 'PEM routines',
|
|
function: 'get_name',
|
|
});
|
|
|
|
// This should not abort either: https://github.com/nodejs/node/issues/29904
|
|
assert.throws(() => {
|
|
createPrivateKey({ key: Buffer.alloc(0), format: 'der', type: 'spki' });
|
|
}, {
|
|
code: 'ERR_INVALID_ARG_VALUE',
|
|
message: "The property 'options.type' is invalid. Received 'spki'"
|
|
});
|
|
|
|
// Unlike SPKI, PKCS#1 is a valid encoding for private keys (and public keys),
|
|
// so it should be accepted by createPrivateKey, but OpenSSL won't parse it.
|
|
assert.throws(() => {
|
|
const key = createPublicKey(publicPem).export({
|
|
format: 'der',
|
|
type: 'pkcs1'
|
|
});
|
|
createPrivateKey({ key, format: 'der', type: 'pkcs1' });
|
|
}, {
|
|
message: /asn1 encoding/,
|
|
library: 'asn1 encoding routines'
|
|
});
|
|
}
|
|
|
|
[
|
|
{ private: fixtures.readKey('ed25519_private.pem', 'ascii'),
|
|
public: fixtures.readKey('ed25519_public.pem', 'ascii'),
|
|
keyType: 'ed25519' },
|
|
{ private: fixtures.readKey('ed448_private.pem', 'ascii'),
|
|
public: fixtures.readKey('ed448_public.pem', 'ascii'),
|
|
keyType: 'ed448' },
|
|
{ private: fixtures.readKey('x25519_private.pem', 'ascii'),
|
|
public: fixtures.readKey('x25519_public.pem', 'ascii'),
|
|
keyType: 'x25519' },
|
|
{ private: fixtures.readKey('x448_private.pem', 'ascii'),
|
|
public: fixtures.readKey('x448_public.pem', 'ascii'),
|
|
keyType: 'x448' },
|
|
].forEach((info) => {
|
|
const keyType = info.keyType;
|
|
|
|
{
|
|
const exportOptions = { type: 'pkcs8', format: 'pem' };
|
|
const key = createPrivateKey(info.private);
|
|
assert.strictEqual(key.type, 'private');
|
|
assert.strictEqual(key.asymmetricKeyType, keyType);
|
|
assert.strictEqual(key.symmetricKeySize, undefined);
|
|
assert.strictEqual(key.export(exportOptions), info.private);
|
|
}
|
|
|
|
{
|
|
const exportOptions = { type: 'spki', format: 'pem' };
|
|
[info.private, info.public].forEach((pem) => {
|
|
const key = createPublicKey(pem);
|
|
assert.strictEqual(key.type, 'public');
|
|
assert.strictEqual(key.asymmetricKeyType, keyType);
|
|
assert.strictEqual(key.symmetricKeySize, undefined);
|
|
assert.strictEqual(key.export(exportOptions), info.public);
|
|
});
|
|
}
|
|
});
|
|
|
|
{
|
|
// Reading an encrypted key without a passphrase should fail.
|
|
assert.throws(() => createPrivateKey(privateDsa), {
|
|
name: 'TypeError',
|
|
code: 'ERR_MISSING_PASSPHRASE',
|
|
message: 'Passphrase required for encrypted key'
|
|
});
|
|
|
|
// Reading an encrypted key with a passphrase that exceeds OpenSSL's buffer
|
|
// size limit should fail with an appropriate error code.
|
|
assert.throws(() => createPrivateKey({
|
|
key: privateDsa,
|
|
format: 'pem',
|
|
passphrase: Buffer.alloc(1025, 'a')
|
|
}), {
|
|
code: 'ERR_OSSL_PEM_BAD_PASSWORD_READ',
|
|
name: 'Error'
|
|
});
|
|
|
|
// The buffer has a size of 1024 bytes, so this passphrase should be permitted
|
|
// (but will fail decryption).
|
|
assert.throws(() => createPrivateKey({
|
|
key: privateDsa,
|
|
format: 'pem',
|
|
passphrase: Buffer.alloc(1024, 'a')
|
|
}), {
|
|
message: /bad decrypt/
|
|
});
|
|
|
|
const publicKey = createPublicKey(publicDsa);
|
|
assert.strictEqual(publicKey.type, 'public');
|
|
assert.strictEqual(publicKey.asymmetricKeyType, 'dsa');
|
|
assert.strictEqual(publicKey.symmetricKeySize, undefined);
|
|
|
|
const privateKey = createPrivateKey({
|
|
key: privateDsa,
|
|
format: 'pem',
|
|
passphrase: 'secret'
|
|
});
|
|
assert.strictEqual(privateKey.type, 'private');
|
|
assert.strictEqual(privateKey.asymmetricKeyType, 'dsa');
|
|
assert.strictEqual(privateKey.symmetricKeySize, undefined);
|
|
|
|
}
|
|
|
|
{
|
|
// Test RSA-PSS.
|
|
{
|
|
// This key pair does not restrict the message digest algorithm or salt
|
|
// length.
|
|
const publicPem = fixtures.readKey('rsa_pss_public_2048.pem');
|
|
const privatePem = fixtures.readKey('rsa_pss_private_2048.pem');
|
|
|
|
const publicKey = createPublicKey(publicPem);
|
|
const privateKey = createPrivateKey(privatePem);
|
|
|
|
assert.strictEqual(publicKey.type, 'public');
|
|
assert.strictEqual(publicKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
assert.strictEqual(privateKey.type, 'private');
|
|
assert.strictEqual(privateKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
for (const key of [privatePem, privateKey]) {
|
|
// Any algorithm should work.
|
|
for (const algo of ['sha1', 'sha256']) {
|
|
// Any salt length should work.
|
|
for (const saltLength of [undefined, 8, 10, 12, 16, 18, 20]) {
|
|
const signature = createSign(algo)
|
|
.update('foo')
|
|
.sign({ key, saltLength });
|
|
|
|
for (const pkey of [key, publicKey, publicPem]) {
|
|
const okay = createVerify(algo)
|
|
.update('foo')
|
|
.verify({ key: pkey, saltLength }, signature);
|
|
|
|
assert.ok(okay);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exporting the key using PKCS#1 should not work since this would discard
|
|
// any algorithm restrictions.
|
|
assert.throws(() => {
|
|
publicKey.export({ format: 'pem', type: 'pkcs1' });
|
|
}, {
|
|
code: 'ERR_CRYPTO_INCOMPATIBLE_KEY_OPTIONS'
|
|
});
|
|
}
|
|
|
|
{
|
|
// This key pair enforces sha256 as the message digest and the MGF1
|
|
// message digest and a salt length of at least 16 bytes.
|
|
const publicPem =
|
|
fixtures.readKey('rsa_pss_public_2048_sha256_sha256_16.pem');
|
|
const privatePem =
|
|
fixtures.readKey('rsa_pss_private_2048_sha256_sha256_16.pem');
|
|
|
|
const publicKey = createPublicKey(publicPem);
|
|
const privateKey = createPrivateKey(privatePem);
|
|
|
|
assert.strictEqual(publicKey.type, 'public');
|
|
assert.strictEqual(publicKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
assert.strictEqual(privateKey.type, 'private');
|
|
assert.strictEqual(privateKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
for (const key of [privatePem, privateKey]) {
|
|
// Signing with anything other than sha256 should fail.
|
|
assert.throws(() => {
|
|
createSign('sha1').sign(key);
|
|
}, /digest not allowed/);
|
|
|
|
// Signing with salt lengths less than 16 bytes should fail.
|
|
for (const saltLength of [8, 10, 12]) {
|
|
assert.throws(() => {
|
|
createSign('sha1').sign({ key, saltLength });
|
|
}, /pss saltlen too small/);
|
|
}
|
|
|
|
// Signing with sha256 and appropriate salt lengths should work.
|
|
for (const saltLength of [undefined, 16, 18, 20]) {
|
|
const signature = createSign('sha256')
|
|
.update('foo')
|
|
.sign({ key, saltLength });
|
|
|
|
for (const pkey of [key, publicKey, publicPem]) {
|
|
const okay = createVerify('sha256')
|
|
.update('foo')
|
|
.verify({ key: pkey, saltLength }, signature);
|
|
|
|
assert.ok(okay);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// This key enforces sha512 as the message digest and sha256 as the MGF1
|
|
// message digest.
|
|
const publicPem =
|
|
fixtures.readKey('rsa_pss_public_2048_sha512_sha256_20.pem');
|
|
const privatePem =
|
|
fixtures.readKey('rsa_pss_private_2048_sha512_sha256_20.pem');
|
|
|
|
const publicKey = createPublicKey(publicPem);
|
|
const privateKey = createPrivateKey(privatePem);
|
|
|
|
assert.strictEqual(publicKey.type, 'public');
|
|
assert.strictEqual(publicKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
assert.strictEqual(privateKey.type, 'private');
|
|
assert.strictEqual(privateKey.asymmetricKeyType, 'rsa-pss');
|
|
|
|
// Node.js usually uses the same hash function for the message and for MGF1.
|
|
// However, when a different MGF1 message digest algorithm has been
|
|
// specified as part of the key, it should automatically switch to that.
|
|
// This behavior is required by sections 3.1 and 3.3 of RFC4055.
|
|
for (const key of [privatePem, privateKey]) {
|
|
// sha256 matches the MGF1 hash function and should be used internally,
|
|
// but it should not be permitted as the main message digest algorithm.
|
|
for (const algo of ['sha1', 'sha256']) {
|
|
assert.throws(() => {
|
|
createSign(algo).sign(key);
|
|
}, /digest not allowed/);
|
|
}
|
|
|
|
// sha512 should produce a valid signature.
|
|
const signature = createSign('sha512')
|
|
.update('foo')
|
|
.sign(key);
|
|
|
|
for (const pkey of [key, publicKey, publicPem]) {
|
|
const okay = createVerify('sha512')
|
|
.update('foo')
|
|
.verify(pkey, signature);
|
|
|
|
assert.ok(okay);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// Exporting an encrypted private key requires a cipher
|
|
const privateKey = createPrivateKey(privatePem);
|
|
assert.throws(() => {
|
|
privateKey.export({
|
|
format: 'pem', type: 'pkcs8', passphrase: 'super-secret'
|
|
});
|
|
}, {
|
|
name: 'TypeError',
|
|
code: 'ERR_INVALID_ARG_VALUE',
|
|
message: "The property 'options.cipher' is invalid. Received undefined"
|
|
});
|
|
}
|