'use strict'; const common = require('../common'); if (!common.hasCrypto) common.skip('missing crypto'); const assert = require('assert'); const crypto = require('crypto'); // Second OAKLEY group, see // https://github.com/nodejs/node-v0.x-archive/issues/2338 and // https://xml2rfc.tools.ietf.org/public/rfc/html/rfc2412.html#anchor49 const p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' + '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' + '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF'; crypto.createDiffieHellman(p, 'hex'); // Confirm DH_check() results are exposed for optional examination. const bad_dh = crypto.createDiffieHellman('02', 'hex'); assert.notStrictEqual(bad_dh.verifyError, 0); const availableCurves = new Set(crypto.getCurves()); const availableHashes = new Set(crypto.getHashes()); // Oakley curves do not clean up ERR stack, it was causing unexpected failure // when accessing other OpenSSL APIs afterwards. if (availableCurves.has('Oakley-EC2N-3')) { crypto.createECDH('Oakley-EC2N-3'); crypto.createHash('sha256'); } // Test ECDH if (availableCurves.has('prime256v1') && availableCurves.has('secp256k1')) { const ecdh1 = crypto.createECDH('prime256v1'); const ecdh2 = crypto.createECDH('prime256v1'); const key1 = ecdh1.generateKeys(); const key2 = ecdh2.generateKeys('hex'); const secret1 = ecdh1.computeSecret(key2, 'hex', 'base64'); const secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer'); assert.strictEqual(secret1, secret2.toString('base64')); // Point formats assert.strictEqual(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4); let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0]; assert(firstByte === 2 || firstByte === 3); firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0]; assert(firstByte === 6 || firstByte === 7); // Format value should be string assert.throws( () => ecdh1.getPublicKey('buffer', 10), { code: 'ERR_CRYPTO_ECDH_INVALID_FORMAT', name: 'TypeError', message: 'Invalid ECDH format: 10' }); // ECDH should check that point is on curve const ecdh3 = crypto.createECDH('secp256k1'); const key3 = ecdh3.generateKeys(); assert.throws( () => ecdh2.computeSecret(key3, 'latin1', 'buffer'), { code: 'ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY', name: 'Error', message: 'Public key is not valid for specified curve' }); // ECDH should allow .setPrivateKey()/.setPublicKey() const ecdh4 = crypto.createECDH('prime256v1'); ecdh4.setPrivateKey(ecdh1.getPrivateKey()); ecdh4.setPublicKey(ecdh1.getPublicKey()); assert.throws(() => { ecdh4.setPublicKey(ecdh3.getPublicKey()); }, { message: 'Failed to convert Buffer to EC_POINT' }); // Verify that we can use ECDH without having to use newly generated keys. const ecdh5 = crypto.createECDH('secp256k1'); // Verify errors are thrown when retrieving keys from an uninitialized object. assert.throws(() => { ecdh5.getPublicKey(); }, /^Error: Failed to get ECDH public key$/); assert.throws(() => { ecdh5.getPrivateKey(); }, /^Error: Failed to get ECDH private key$/); // A valid private key for the secp256k1 curve. const cafebabeKey = 'cafebabe'.repeat(8); // Associated compressed and uncompressed public keys (points). const cafebabePubPtComp = '03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3'; const cafebabePubPtUnComp = '04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' + '2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d'; ecdh5.setPrivateKey(cafebabeKey, 'hex'); assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); // Show that the public point (key) is generated while setting the // private key. assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); // Compressed and uncompressed public points/keys for other party's // private key. // 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF const peerPubPtComp = '02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae'; const peerPubPtUnComp = '04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' + 'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e'; const sharedSecret = '1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970'; assert.strictEqual(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'), sharedSecret); assert.strictEqual(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'), sharedSecret); // Verify that we still have the same key pair as before the computation. assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); // Verify setting and getting compressed and non-compressed serializations. ecdh5.setPublicKey(cafebabePubPtComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); assert.strictEqual( ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp ); ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); assert.strictEqual( ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp ); // Show why allowing the public key to be set on this type // does not make sense. ecdh5.setPublicKey(peerPubPtComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), peerPubPtUnComp); assert.throws(() => { // Error because the public key does not match the private key anymore. ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'); }, /Invalid key pair/); // Set to a valid key to show that later attempts to set an invalid key are // rejected. ecdh5.setPrivateKey(cafebabeKey, 'hex'); // Some invalid private keys for the secp256k1 curve. const errMessage = /Private key is not valid for specified curve/; ['0000000000000000000000000000000000000000000000000000000000000000', 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141', 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF', ].forEach((element) => { assert.throws(() => { ecdh5.setPrivateKey(element, 'hex'); }, errMessage); // Verify object state did not change. assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); }); } // Use of invalid keys was not cleaning up ERR stack, and was causing // unexpected failure in subsequent signing operations. if (availableCurves.has('prime256v1') && availableHashes.has('sha256')) { const curve = crypto.createECDH('prime256v1'); const invalidKey = Buffer.alloc(65); invalidKey.fill('\0'); curve.generateKeys(); assert.throws( () => curve.computeSecret(invalidKey), { code: 'ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY', name: 'Error', message: 'Public key is not valid for specified curve' }); // Check that signing operations are not impacted by the above error. const ecPrivateKey = '-----BEGIN EC PRIVATE KEY-----\n' + 'MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49\n' + 'AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2\n' + 'pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==\n' + '-----END EC PRIVATE KEY-----'; crypto.createSign('SHA256').sign(ecPrivateKey); }