# Single executable applications > Stability: 1 - Experimental: This feature is being designed and will change. This feature allows the distribution of a Node.js application conveniently to a system that does not have Node.js installed. Node.js supports the creation of [single executable applications][] by allowing the injection of a blob prepared by Node.js, which can contain a bundled script, into the `node` binary. During start up, the program checks if anything has been injected. If the blob is found, it executes the script in the blob. Otherwise Node.js operates as it normally does. The single executable application feature currently only supports running a single embedded script using the [CommonJS][] module system. Users can create a single executable application from their bundled script with the `node` binary itself and any tool which can inject resources into the binary. Here are the steps for creating a single executable application using one such tool, [postject][]: 1. Create a JavaScript file: ```bash echo 'console.log(`Hello, ${process.argv[2]}!`);' > hello.js ``` 2. Create a configuration file building a blob that can be injected into the single executable application (see [Generating single executable preparation blobs][] for details): ```bash echo '{ "main": "hello.js", "output": "sea-prep.blob" }' > sea-config.json ``` 3. Generate the blob to be injected: ```bash node --experimental-sea-config sea-config.json ``` 4. Create a copy of the `node` executable and name it according to your needs: * On systems other than Windows: ```bash cp $(command -v node) hello ``` * On Windows: ```text node -e "require('fs').copyFileSync(process.execPath, 'hello.exe')" ``` The `.exe` extension is necessary. 5. Remove the signature of the binary (macOS and Windows only): * On macOS: ```bash codesign --remove-signature hello ``` * On Windows (optional): [signtool][] can be used from the installed [Windows SDK][]. If this step is skipped, ignore any signature-related warning from postject. ```powershell signtool remove /s hello.exe ``` 6. Inject the blob into the copied binary by running `postject` with the following options: * `hello` / `hello.exe` - The name of the copy of the `node` executable created in step 4. * `NODE_SEA_BLOB` - The name of the resource / note / section in the binary where the contents of the blob will be stored. * `sea-prep.blob` - The name of the blob created in step 1. * `--sentinel-fuse NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2` - The [fuse][] used by the Node.js project to detect if a file has been injected. * `--macho-segment-name NODE_SEA` (only needed on macOS) - The name of the segment in the binary where the contents of the blob will be stored. To summarize, here is the required command for each platform: * On Linux: ```bash npx postject hello NODE_SEA_BLOB sea-prep.blob \ --sentinel-fuse NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2 ``` * On Windows - PowerShell: ```powershell npx postject hello.exe NODE_SEA_BLOB sea-prep.blob ` --sentinel-fuse NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2 ``` * On Windows - Command Prompt: ```text npx postject hello.exe NODE_SEA_BLOB sea-prep.blob ^ --sentinel-fuse NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2 ``` * On macOS: ```bash npx postject hello NODE_SEA_BLOB sea-prep.blob \ --sentinel-fuse NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2 \ --macho-segment-name NODE_SEA ``` 7. Sign the binary (macOS and Windows only): * On macOS: ```bash codesign --sign - hello ``` * On Windows (optional): A certificate needs to be present for this to work. However, the unsigned binary would still be runnable. ```powershell signtool sign /fd SHA256 hello.exe ``` 8. Run the binary: * On systems other than Windows ```console $ ./hello world Hello, world! ``` * On Windows ```console $ .\hello.exe world Hello, world! ``` ## Generating single executable preparation blobs Single executable preparation blobs that are injected into the application can be generated using the `--experimental-sea-config` flag of the Node.js binary that will be used to build the single executable. It takes a path to a configuration file in JSON format. If the path passed to it isn't absolute, Node.js will use the path relative to the current working directory. The configuration currently reads the following top-level fields: ```json { "main": "/path/to/bundled/script.js", "output": "/path/to/write/the/generated/blob.blob", "disableExperimentalSEAWarning": true, // Default: false "useSnapshot": false // Default: false } ``` If the paths are not absolute, Node.js will use the path relative to the current working directory. The version of the Node.js binary used to produce the blob must be the same as the one to which the blob will be injected. ### Startup snapshot support The `useSnapshot` field can be used to enable startup snapshot support. In this case the `main` script would not be when the final executable is launched. Instead, it would be run when the single executable application preparation blob is generated on the building machine. The generated preparation blob would then include a snapshot capturing the states initialized by the `main` script. The final executable with the preparation blob injected would deserialize the snapshot at run time. When `useSnapshot` is true, the main script must invoke the [`v8.startupSnapshot.setDeserializeMainFunction()`][] API to configure code that needs to be run when the final executable is launched by the users. The typical pattern for an application to use snapshot in a single executable application is: 1. At build time, on the building machine, the main script is run to initialize the heap to a state that's ready to take user input. The script should also configure a main function with [`v8.startupSnapshot.setDeserializeMainFunction()`][]. This function will be compiled and serialized into the snapshot, but not invoked at build time. 2. At run time, the main function will be run on top of the deserialized heap on the user machine to process user input and generate output. The general constraints of the startup snapshot scripts also apply to the main script when it's used to build snapshot for the single executable application, and the main script can use the [`v8.startupSnapshot` API][] to adapt to these constraints. See [documentation about startup snapshot support in Node.js][]. ## Notes ### `require(id)` in the injected module is not file based `require()` in the injected module is not the same as the [`require()`][] available to modules that are not injected. It also does not have any of the properties that non-injected [`require()`][] has except [`require.main`][]. It can only be used to load built-in modules. Attempting to load a module that can only be found in the file system will throw an error. Instead of relying on a file based `require()`, users can bundle their application into a standalone JavaScript file to inject into the executable. This also ensures a more deterministic dependency graph. However, if a file based `require()` is still needed, that can also be achieved: ```js const { createRequire } = require('node:module'); require = createRequire(__filename); ``` ### `__filename` and `module.filename` in the injected module The values of `__filename` and `module.filename` in the injected module are equal to [`process.execPath`][]. ### `__dirname` in the injected module The value of `__dirname` in the injected module is equal to the directory name of [`process.execPath`][]. ### Single executable application creation process A tool aiming to create a single executable Node.js application must inject the contents of the blob prepared with `--experimental-sea-config"` into: * a resource named `NODE_SEA_BLOB` if the `node` binary is a [PE][] file * a section named `NODE_SEA_BLOB` in the `NODE_SEA` segment if the `node` binary is a [Mach-O][] file * a note named `NODE_SEA_BLOB` if the `node` binary is an [ELF][] file Search the binary for the `NODE_SEA_FUSE_fce680ab2cc467b6e072b8b5df1996b2:0` [fuse][] string and flip the last character to `1` to indicate that a resource has been injected. ### Platform support Single-executable support is tested regularly on CI only on the following platforms: * Windows * macOS * Linux (all distributions [supported by Node.js][] except Alpine and all architectures [supported by Node.js][] except s390x) This is due to a lack of better tools to generate single-executables that can be used to test this feature on other platforms. Suggestions for other resource injection tools/workflows are welcomed. Please start a discussion at to help us document them. [CommonJS]: modules.md#modules-commonjs-modules [ELF]: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format [Generating single executable preparation blobs]: #generating-single-executable-preparation-blobs [Mach-O]: https://en.wikipedia.org/wiki/Mach-O [PE]: https://en.wikipedia.org/wiki/Portable_Executable [Windows SDK]: https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/ [`process.execPath`]: process.md#processexecpath [`require()`]: modules.md#requireid [`require.main`]: modules.md#accessing-the-main-module [`v8.startupSnapshot.setDeserializeMainFunction()`]: v8.md#v8startupsnapshotsetdeserializemainfunctioncallback-data [`v8.startupSnapshot` API]: v8.md#startup-snapshot-api [documentation about startup snapshot support in Node.js]: cli.md#--build-snapshot [fuse]: https://www.electronjs.org/docs/latest/tutorial/fuses [postject]: https://github.com/nodejs/postject [signtool]: https://learn.microsoft.com/en-us/windows/win32/seccrypto/signtool [single executable applications]: https://github.com/nodejs/single-executable [supported by Node.js]: https://github.com/nodejs/node/blob/main/BUILDING.md#platform-list