#ifndef NBYTES_H #define NBYTES_H #include #include #include #include #include #include namespace nbytes { #if NBYTES_DEVELOPMENT_CHECKS #define NBYTES_STR(x) #x #define NBYTES_REQUIRE(EXPR) \ { \ if (!(EXPR) { abort(); }) } #define NBYTES_FAIL(MESSAGE) \ do { \ std::cerr << "FAIL: " << (MESSAGE) << std::endl; \ abort(); \ } while (0); #define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE) \ do { \ if (LHS != RHS) { \ std::cerr << "Mismatch: '" << LHS << "' - '" << RHS << "'" << std::endl; \ NBYTES_FAIL(MESSAGE); \ } \ } while (0); #define NBYTES_ASSERT_TRUE(COND) \ do { \ if (!(COND)) { \ std::cerr << "Assert at line " << __LINE__ << " of file " << __FILE__ \ << std::endl; \ NBYTES_FAIL(NBYTES_STR(COND)); \ } \ } while (0); #else #define NBYTES_FAIL(MESSAGE) #define NBYTES_ASSERT_EQUAL(LHS, RHS, MESSAGE) #define NBYTES_ASSERT_TRUE(COND) #endif [[noreturn]] inline void unreachable() { #ifdef __GNUC__ __builtin_unreachable(); #elif defined(_MSC_VER) __assume(false); #else #endif } // The nbytes (short for "node bytes") is a set of utility helpers for // working with bytes that are extracted from Node.js' internals. The // motivation for extracting these into a separate library is to make it // easier for other projects to implement functionality that is compatible // with Node.js' implementation of various byte manipulation functions. // Round up a to the next highest multiple of b. template constexpr T RoundUp(T a, T b) { return a % b != 0 ? a + b - (a % b) : a; } // Align ptr to an `alignment`-bytes boundary. template constexpr T *AlignUp(T *ptr, U alignment) { return reinterpret_cast( RoundUp(reinterpret_cast(ptr), alignment)); } template inline T AlignDown(T value, U alignment) { return reinterpret_cast( (reinterpret_cast(value) & ~(alignment - 1))); } template inline T MultiplyWithOverflowCheck(T a, T b) { auto ret = a * b; if (a != 0) { NBYTES_ASSERT_TRUE(b == ret / a); } return ret; } void ForceAsciiSlow(const char *src, char *dst, size_t len); void ForceAscii(const char *src, char *dst, size_t len); // ============================================================================ // Byte Swapping // Swaps bytes in place. nbytes is the number of bytes to swap and must be a // multiple of the word size (checked by function). bool SwapBytes16(char *data, size_t nbytes); bool SwapBytes32(char *data, size_t nbytes); bool SwapBytes64(char *data, size_t nbytes); // ============================================================================ // Base64 (legacy) #ifdef _MSC_VER #pragma warning(push) // MSVC C4003: not enough actual parameters for macro 'identifier' #pragma warning(disable : 4003) #endif extern const int8_t unbase64_table[256]; template bool Base64DecodeGroupSlow(char *const dst, const size_t dstlen, const TypeName *const src, const size_t srclen, size_t *const i, size_t *const k) { uint8_t hi; uint8_t lo; #define V(expr) \ for (;;) { \ const uint8_t c = static_cast(src[*i]); \ lo = unbase64_table[c]; \ *i += 1; \ if (lo < 64) break; /* Legal character. */ \ if (c == '=' || *i >= srclen) return false; /* Stop decoding. */ \ } \ expr; \ if (*i >= srclen) return false; \ if (*k >= dstlen) return false; \ hi = lo; V(/* Nothing. */); V(dst[(*k)++] = ((hi & 0x3F) << 2) | ((lo & 0x30) >> 4)); V(dst[(*k)++] = ((hi & 0x0F) << 4) | ((lo & 0x3C) >> 2)); V(dst[(*k)++] = ((hi & 0x03) << 6) | ((lo & 0x3F) >> 0)); #undef V return true; // Continue decoding. } enum class Base64Mode { NORMAL, URL }; inline constexpr size_t Base64EncodedSize( size_t size, Base64Mode mode = Base64Mode::NORMAL) { return mode == Base64Mode::NORMAL ? ((size + 2) / 3 * 4) : static_cast(std::ceil( static_cast(size * 4) / 3)); } // Doesn't check for padding at the end. Can be 1-2 bytes over. inline constexpr size_t Base64DecodedSizeFast(size_t size) { // 1-byte input cannot be decoded return size > 1 ? (size / 4) * 3 + (size % 4 + 1) / 2 : 0; } inline uint32_t ReadUint32BE(const unsigned char *p) { return static_cast(p[0] << 24U) | static_cast(p[1] << 16U) | static_cast(p[2] << 8U) | static_cast(p[3]); } template size_t Base64DecodedSize(const TypeName *src, size_t size) { // 1-byte input cannot be decoded if (size < 2) return 0; if (src[size - 1] == '=') { size--; if (src[size - 1] == '=') size--; } return Base64DecodedSizeFast(size); } template size_t Base64DecodeFast(char *const dst, const size_t dstlen, const TypeName *const src, const size_t srclen, const size_t decoded_size) { const size_t available = dstlen < decoded_size ? dstlen : decoded_size; const size_t max_k = available / 3 * 3; size_t max_i = srclen / 4 * 4; size_t i = 0; size_t k = 0; while (i < max_i && k < max_k) { const unsigned char txt[] = { static_cast( unbase64_table[static_cast(src[i + 0])]), static_cast( unbase64_table[static_cast(src[i + 1])]), static_cast( unbase64_table[static_cast(src[i + 2])]), static_cast( unbase64_table[static_cast(src[i + 3])]), }; const uint32_t v = ReadUint32BE(txt); // If MSB is set, input contains whitespace or is not valid base64. if (v & 0x80808080) { if (!Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k)) return k; max_i = i + (srclen - i) / 4 * 4; // Align max_i again. } else { dst[k + 0] = ((v >> 22) & 0xFC) | ((v >> 20) & 0x03); dst[k + 1] = ((v >> 12) & 0xF0) | ((v >> 10) & 0x0F); dst[k + 2] = ((v >> 2) & 0xC0) | ((v >> 0) & 0x3F); i += 4; k += 3; } } if (i < srclen && k < dstlen) { Base64DecodeGroupSlow(dst, dstlen, src, srclen, &i, &k); } return k; } template size_t Base64Decode(char *const dst, const size_t dstlen, const TypeName *const src, const size_t srclen) { const size_t decoded_size = Base64DecodedSize(src, srclen); return Base64DecodeFast(dst, dstlen, src, srclen, decoded_size); } #ifdef _MSC_VER #pragma warning(pop) #endif // ============================================================================ // Hex (legacy) extern const int8_t unhex_table[256]; template static size_t HexDecode(char *buf, size_t len, const TypeName *src, const size_t srcLen) { size_t i; for (i = 0; i < len && i * 2 + 1 < srcLen; ++i) { unsigned a = unhex_table[static_cast(src[i * 2 + 0])]; unsigned b = unhex_table[static_cast(src[i * 2 + 1])]; if (!~a || !~b) return i; buf[i] = (a << 4) | b; } return i; } size_t HexEncode(const char *src, size_t slen, char *dst, size_t dlen); std::string HexEncode(const char *src, size_t slen); // ============================================================================ // StringSearch namespace stringsearch { template class Vector { public: Vector(T *data, size_t length, bool isForward) : start_(data), length_(length), is_forward_(isForward) { CHECK(length > 0 && data != nullptr); } // Returns the start of the memory range. // For vector v this is NOT necessarily &v[0], see forward(). const T *start() const { return start_; } // Returns the length of the vector, in characters. size_t length() const { return length_; } // Returns true if the Vector is front-to-back, false if back-to-front. // In the latter case, v[0] corresponds to the *end* of the memory range. bool forward() const { return is_forward_; } // Access individual vector elements - checks bounds in debug mode. T &operator[](size_t index) const { NBYTES_ASSERT_TRUE(index < length_); return start_[is_forward_ ? index : (length_ - index - 1)]; } private: T *start_; size_t length_; bool is_forward_; }; //--------------------------------------------------------------------- // String Search object. //--------------------------------------------------------------------- // Class holding constants and methods that apply to all string search variants, // independently of subject and pattern char size. class StringSearchBase { protected: // Cap on the maximal shift in the Boyer-Moore implementation. By setting a // limit, we can fix the size of tables. For a needle longer than this limit, // search will not be optimal, since we only build tables for a suffix // of the string, but it is a safe approximation. static const int kBMMaxShift = 250; // Reduce alphabet to this size. // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size // proportional to the input alphabet. We reduce the alphabet size by // equating input characters modulo a smaller alphabet size. This gives // a potentially less efficient searching, but is a safe approximation. // For needles using only characters in the same Unicode 256-code point page, // there is no search speed degradation. static const int kLatin1AlphabetSize = 256; static const int kUC16AlphabetSize = 256; // Bad-char shift table stored in the state. It's length is the alphabet size. // For patterns below this length, the skip length of Boyer-Moore is too short // to compensate for the algorithmic overhead compared to simple brute force. static const int kBMMinPatternLength = 8; // Store for the BoyerMoore(Horspool) bad char shift table. int bad_char_shift_table_[kUC16AlphabetSize]; // Store for the BoyerMoore good suffix shift table. int good_suffix_shift_table_[kBMMaxShift + 1]; // Table used temporarily while building the BoyerMoore good suffix // shift table. int suffix_table_[kBMMaxShift + 1]; }; template class StringSearch : private StringSearchBase { public: typedef stringsearch::Vector Vector; explicit StringSearch(Vector pattern) : pattern_(pattern), start_(0) { if (pattern.length() >= kBMMaxShift) { start_ = pattern.length() - kBMMaxShift; } size_t pattern_length = pattern_.length(); NBYTES_ASSERT_TRUE(pattern_length > 0); if (pattern_length < kBMMinPatternLength) { if (pattern_length == 1) { strategy_ = SearchStrategy::kSingleChar; return; } strategy_ = SearchStrategy::kLinear; return; } strategy_ = SearchStrategy::kInitial; } size_t Search(Vector subject, size_t index) { switch (strategy_) { case kBoyerMooreHorspool: return BoyerMooreHorspoolSearch(subject, index); case kBoyerMoore: return BoyerMooreSearch(subject, index); case kInitial: return InitialSearch(subject, index); case kLinear: return LinearSearch(subject, index); case kSingleChar: return SingleCharSearch(subject, index); } unreachable(); } static inline int AlphabetSize() { if (sizeof(Char) == 1) { // Latin1 needle. return kLatin1AlphabetSize; } else { // UC16 needle. return kUC16AlphabetSize; } static_assert( sizeof(Char) == sizeof(uint8_t) || sizeof(Char) == sizeof(uint16_t), "sizeof(Char) == sizeof(uint16_t) || sizeof(uint8_t)"); } private: typedef size_t (StringSearch::*SearchFunction)(Vector, size_t); size_t SingleCharSearch(Vector subject, size_t start_index); size_t LinearSearch(Vector subject, size_t start_index); size_t InitialSearch(Vector subject, size_t start_index); size_t BoyerMooreHorspoolSearch(Vector subject, size_t start_index); size_t BoyerMooreSearch(Vector subject, size_t start_index); void PopulateBoyerMooreHorspoolTable(); void PopulateBoyerMooreTable(); static inline int CharOccurrence(int *bad_char_occurrence, Char char_code) { if (sizeof(Char) == 1) { return bad_char_occurrence[static_cast(char_code)]; } // Both pattern and subject are UC16. Reduce character to equivalence class. int equiv_class = char_code % kUC16AlphabetSize; return bad_char_occurrence[equiv_class]; } enum SearchStrategy { kBoyerMooreHorspool, kBoyerMoore, kInitial, kLinear, kSingleChar, }; // The pattern to search for. Vector pattern_; SearchStrategy strategy_; // Cache value of Max(0, pattern_length() - kBMMaxShift) size_t start_; }; inline uint8_t GetHighestValueByte(uint16_t character) { return std::max(static_cast(character & 0xFF), static_cast(character >> 8)); } inline uint8_t GetHighestValueByte(uint8_t character) { return character; } // Searches for a byte value in a memory buffer, back to front. // Uses memrchr(3) on systems which support it, for speed. // Falls back to a vanilla for loop on non-GNU systems such as Windows. inline const void *MemrchrFill(const void *haystack, uint8_t needle, size_t haystack_len) { #ifdef _GNU_SOURCE return memrchr(haystack, needle, haystack_len); #else const uint8_t *haystack8 = static_cast(haystack); for (size_t i = haystack_len - 1; i != static_cast(-1); i--) { if (haystack8[i] == needle) { return haystack8 + i; } } return nullptr; #endif } // Finds the first occurrence of *two-byte* character pattern[0] in the string // `subject`. Does not check that the whole pattern matches. template inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const Char pattern_first_char = pattern[0]; const size_t max_n = (subject.length() - pattern.length() + 1); // For speed, search for the more `rare` of the two bytes in pattern[0] // using memchr / memrchr (which are much faster than a simple for loop). const uint8_t search_byte = GetHighestValueByte(pattern_first_char); size_t pos = index; do { const size_t bytes_to_search = (max_n - pos) * sizeof(Char); const void *void_pos; if (subject.forward()) { // Assert that bytes_to_search won't overflow NBYTES_ASSERT_TRUE(pos <= max_n); NBYTES_ASSERT_TRUE(max_n - pos <= SIZE_MAX / sizeof(Char)); void_pos = memchr(subject.start() + pos, search_byte, bytes_to_search); } else { NBYTES_ASSERT_TRUE(pos <= subject.length()); NBYTES_ASSERT_TRUE(subject.length() - pos <= SIZE_MAX / sizeof(Char)); void_pos = MemrchrFill(subject.start() + pattern.length() - 1, search_byte, bytes_to_search); } const Char *char_pos = static_cast(void_pos); if (char_pos == nullptr) return subject.length(); // Then, for each match, verify that the full two bytes match pattern[0]. char_pos = AlignDown(char_pos, sizeof(Char)); size_t raw_pos = static_cast(char_pos - subject.start()); pos = subject.forward() ? raw_pos : (subject.length() - raw_pos - 1); if (subject[pos] == pattern_first_char) { // Match found, hooray. return pos; } // Search byte matched, but the other byte of pattern[0] didn't. Keep going. } while (++pos < max_n); return subject.length(); } // Finds the first occurrence of the byte pattern[0] in string `subject`. // Does not verify that the whole pattern matches. template <> inline size_t FindFirstCharacter(Vector pattern, Vector subject, size_t index) { const uint8_t pattern_first_char = pattern[0]; const size_t subj_len = subject.length(); const size_t max_n = (subject.length() - pattern.length() + 1); const void *pos; if (subject.forward()) { pos = memchr(subject.start() + index, pattern_first_char, max_n - index); } else { pos = MemrchrFill(subject.start() + pattern.length() - 1, pattern_first_char, max_n - index); } const uint8_t *char_pos = static_cast(pos); if (char_pos == nullptr) { return subj_len; } size_t raw_pos = static_cast(char_pos - subject.start()); return subject.forward() ? raw_pos : (subj_len - raw_pos - 1); } //--------------------------------------------------------------------- // Single Character Pattern Search Strategy //--------------------------------------------------------------------- template size_t StringSearch::SingleCharSearch(Vector subject, size_t index) { NBYTES_ASSERT_TRUE(1 == pattern_.length()); return FindFirstCharacter(pattern_, subject, index); } //--------------------------------------------------------------------- // Linear Search Strategy //--------------------------------------------------------------------- // Simple linear search for short patterns. Never bails out. template size_t StringSearch::LinearSearch(Vector subject, size_t index) { NBYTES_ASSERT_TRUE(pattern_.length() > 1); const size_t n = subject.length() - pattern_.length(); for (size_t i = index; i <= n; i++) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); NBYTES_ASSERT_TRUE(i <= n); bool matches = true; for (size_t j = 1; j < pattern_.length(); j++) { if (pattern_[j] != subject[i + j]) { matches = false; break; } } if (matches) { return i; } } return subject.length(); } //--------------------------------------------------------------------- // Boyer-Moore string search //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreSearch(Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); // Only preprocess at most kBMMaxShift last characters of pattern. size_t start = start_; int *bad_char_occurrence = bad_char_shift_table_; int *good_suffix_shift = good_suffix_shift_table_ - start_; Char last_char = pattern_[pattern_length - 1]; size_t index = start_index; // Continue search from i. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int c; while (last_char != (c = subject[index + j])) { int shift = j - CharOccurrence(bad_char_occurrence, c); index += shift; if (index > subject_length - pattern_length) { return subject.length(); } } while (pattern_[j] == (c = subject[index + j])) { if (j == 0) { return index; } j--; } if (j < start) { // we have matched more than our tables allow us to be smart about. // Fall back on BMH shift. index += pattern_length - 1 - CharOccurrence(bad_char_occurrence, last_char); } else { int gs_shift = good_suffix_shift[j + 1]; int bc_occ = CharOccurrence(bad_char_occurrence, c); int shift = j - bc_occ; if (gs_shift > shift) { shift = gs_shift; } index += shift; } } return subject.length(); } template void StringSearch::PopulateBoyerMooreTable() { const size_t pattern_length = pattern_.length(); // Only look at the last kBMMaxShift characters of pattern (from start_ // to pattern_length). const size_t start = start_; const size_t length = pattern_length - start; // Biased tables so that we can use pattern indices as table indices, // even if we only cover the part of the pattern from offset start. int *shift_table = good_suffix_shift_table_ - start_; int *suffix_table = suffix_table_ - start_; // Initialize table. for (size_t i = start; i < pattern_length; i++) { shift_table[i] = length; } shift_table[pattern_length] = 1; suffix_table[pattern_length] = pattern_length + 1; if (pattern_length <= start) { return; } // Find suffixes. Char last_char = pattern_[pattern_length - 1]; size_t suffix = pattern_length + 1; { size_t i = pattern_length; while (i > start) { Char c = pattern_[i - 1]; while (suffix <= pattern_length && c != pattern_[suffix - 1]) { if (static_cast(shift_table[suffix]) == length) { shift_table[suffix] = suffix - i; } suffix = suffix_table[suffix]; } suffix_table[--i] = --suffix; if (suffix == pattern_length) { // No suffix to extend, so we check against last_char only. while ((i > start) && (pattern_[i - 1] != last_char)) { if (static_cast(shift_table[pattern_length]) == length) { shift_table[pattern_length] = pattern_length - i; } suffix_table[--i] = pattern_length; } if (i > start) { suffix_table[--i] = --suffix; } } } } // Build shift table using suffixes. if (suffix < pattern_length) { for (size_t i = start; i <= pattern_length; i++) { if (static_cast(shift_table[i]) == length) { shift_table[i] = suffix - start; } if (i == suffix) { suffix = suffix_table[suffix]; } } } } //--------------------------------------------------------------------- // Boyer-Moore-Horspool string search. //--------------------------------------------------------------------- template size_t StringSearch::BoyerMooreHorspoolSearch(Vector subject, size_t start_index) { const size_t subject_length = subject.length(); const size_t pattern_length = pattern_.length(); int *char_occurrences = bad_char_shift_table_; int64_t badness = -static_cast(pattern_length); // How bad we are doing without a good-suffix table. Char last_char = pattern_[pattern_length - 1]; int last_char_shift = pattern_length - 1 - CharOccurrence(char_occurrences, last_char); // Perform search size_t index = start_index; // No matches found prior to this index. while (index <= subject_length - pattern_length) { size_t j = pattern_length - 1; int subject_char; while (last_char != (subject_char = subject[index + j])) { int bc_occ = CharOccurrence(char_occurrences, subject_char); int shift = j - bc_occ; index += shift; badness += 1 - shift; // at most zero, so badness cannot increase. if (index > subject_length - pattern_length) { return subject_length; } } j--; while (pattern_[j] == (subject[index + j])) { if (j == 0) { return index; } j--; } index += last_char_shift; // Badness increases by the number of characters we have // checked, and decreases by the number of characters we // can skip by shifting. It's a measure of how we are doing // compared to reading each character exactly once. badness += (pattern_length - j) - last_char_shift; if (badness > 0) { PopulateBoyerMooreTable(); strategy_ = SearchStrategy::kBoyerMoore; return BoyerMooreSearch(subject, index); } } return subject.length(); } template void StringSearch::PopulateBoyerMooreHorspoolTable() { const size_t pattern_length = pattern_.length(); int *bad_char_occurrence = bad_char_shift_table_; // Only preprocess at most kBMMaxShift last characters of pattern. const size_t start = start_; // Run forwards to populate bad_char_table, so that *last* instance // of character equivalence class is the one registered. // Notice: Doesn't include the last character. const size_t table_size = AlphabetSize(); if (start == 0) { // All patterns less than kBMMaxShift in length. memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence)); } else { for (size_t i = 0; i < table_size; i++) { bad_char_occurrence[i] = start - 1; } } for (size_t i = start; i < pattern_length - 1; i++) { Char c = pattern_[i]; int bucket = (sizeof(Char) == 1) ? c : c % AlphabetSize(); bad_char_occurrence[bucket] = i; } } //--------------------------------------------------------------------- // Linear string search with bailout to BMH. //--------------------------------------------------------------------- // Simple linear search for short patterns, which bails out if the string // isn't found very early in the subject. Upgrades to BoyerMooreHorspool. template size_t StringSearch::InitialSearch(Vector subject, size_t index) { const size_t pattern_length = pattern_.length(); // Badness is a count of how much work we have done. When we have // done enough work we decide it's probably worth switching to a better // algorithm. int64_t badness = -10 - (pattern_length << 2); // We know our pattern is at least 2 characters, we cache the first so // the common case of the first character not matching is faster. for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) { badness++; if (badness <= 0) { i = FindFirstCharacter(pattern_, subject, i); if (i == subject.length()) return subject.length(); NBYTES_ASSERT_TRUE(i <= n); size_t j = 1; do { if (pattern_[j] != subject[i + j]) { break; } j++; } while (j < pattern_length); if (j == pattern_length) { return i; } badness += j; } else { PopulateBoyerMooreHorspoolTable(); strategy_ = SearchStrategy::kBoyerMooreHorspool; return BoyerMooreHorspoolSearch(subject, i); } } return subject.length(); } // Perform a single stand-alone search. // If searching multiple times for the same pattern, a search // object should be constructed once and the Search function then called // for each search. template size_t SearchString(Vector subject, Vector pattern, size_t start_index) { StringSearch search(pattern); return search.Search(subject, start_index); } } // namespace stringsearch template size_t SearchString(const Char *haystack, size_t haystack_length, const Char *needle, size_t needle_length, size_t start_index, bool is_forward) { if (haystack_length < needle_length) return haystack_length; // To do a reverse search (lastIndexOf instead of indexOf) without redundant // code, create two vectors that are reversed views into the input strings. // For example, v_needle[0] would return the *last* character of the needle. // So we're searching for the first instance of rev(needle) in rev(haystack) stringsearch::Vector v_needle(needle, needle_length, is_forward); stringsearch::Vector v_haystack(haystack, haystack_length, is_forward); size_t diff = haystack_length - needle_length; size_t relative_start_index; if (is_forward) { relative_start_index = start_index; } else if (diff < start_index) { relative_start_index = 0; } else { relative_start_index = diff - start_index; } size_t pos = stringsearch::SearchString(v_haystack, v_needle, relative_start_index); if (pos == haystack_length) { // not found return pos; } return is_forward ? pos : (haystack_length - needle_length - pos); } template size_t SearchString(const char *haystack, size_t haystack_length, const char (&needle)[N]) { return SearchString( reinterpret_cast(haystack), haystack_length, reinterpret_cast(needle), N - 1, 0, true); } // ============================================================================ // Version metadata #define NBYTES_VERSION "0.1.1" enum { NBYTES_VERSION_MAJOR = 0, NBYTES_VERSION_MINOR = 1, NBYTES_VERSION_REVISION = 1, }; } // namespace nbytes #endif // NBYTES_H