mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 20:44:16 +00:00 
			
		
		
		
	 103e7579dd
			
		
	
	
		103e7579dd
		
	
	
	
	
		
			
			If the CPU is running in default NaN mode (FPCR.DN == 1) and we execute FRSQRTE, FRECPE, or FRECPX with a signaling NaN, parts_silence_nan_frac() will assert due to fpst->default_nan_mode being set. To avoid this, we check to see what NaN mode we're running in before we call floatxx_silence_nan(). Signed-off-by: Joe Komlodi <joe.komlodi@xilinx.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 1624662174-175828-2-git-send-email-joe.komlodi@xilinx.com Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1349 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1349 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM VFP floating-point operations
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "internals.h"
 | |
| #ifdef CONFIG_TCG
 | |
| #include "qemu/log.h"
 | |
| #include "fpu/softfloat.h"
 | |
| #endif
 | |
| 
 | |
| /* VFP support.  We follow the convention used for VFP instructions:
 | |
|    Single precision routines have a "s" suffix, double precision a
 | |
|    "d" suffix.  */
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| 
 | |
| /* Convert host exception flags to vfp form.  */
 | |
| static inline int vfp_exceptbits_from_host(int host_bits)
 | |
| {
 | |
|     int target_bits = 0;
 | |
| 
 | |
|     if (host_bits & float_flag_invalid) {
 | |
|         target_bits |= 1;
 | |
|     }
 | |
|     if (host_bits & float_flag_divbyzero) {
 | |
|         target_bits |= 2;
 | |
|     }
 | |
|     if (host_bits & float_flag_overflow) {
 | |
|         target_bits |= 4;
 | |
|     }
 | |
|     if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
 | |
|         target_bits |= 8;
 | |
|     }
 | |
|     if (host_bits & float_flag_inexact) {
 | |
|         target_bits |= 0x10;
 | |
|     }
 | |
|     if (host_bits & float_flag_input_denormal) {
 | |
|         target_bits |= 0x80;
 | |
|     }
 | |
|     return target_bits;
 | |
| }
 | |
| 
 | |
| /* Convert vfp exception flags to target form.  */
 | |
| static inline int vfp_exceptbits_to_host(int target_bits)
 | |
| {
 | |
|     int host_bits = 0;
 | |
| 
 | |
|     if (target_bits & 1) {
 | |
|         host_bits |= float_flag_invalid;
 | |
|     }
 | |
|     if (target_bits & 2) {
 | |
|         host_bits |= float_flag_divbyzero;
 | |
|     }
 | |
|     if (target_bits & 4) {
 | |
|         host_bits |= float_flag_overflow;
 | |
|     }
 | |
|     if (target_bits & 8) {
 | |
|         host_bits |= float_flag_underflow;
 | |
|     }
 | |
|     if (target_bits & 0x10) {
 | |
|         host_bits |= float_flag_inexact;
 | |
|     }
 | |
|     if (target_bits & 0x80) {
 | |
|         host_bits |= float_flag_input_denormal;
 | |
|     }
 | |
|     return host_bits;
 | |
| }
 | |
| 
 | |
| static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
 | |
| {
 | |
|     uint32_t i;
 | |
| 
 | |
|     i = get_float_exception_flags(&env->vfp.fp_status);
 | |
|     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
 | |
|     /* FZ16 does not generate an input denormal exception.  */
 | |
|     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
 | |
|           & ~float_flag_input_denormal);
 | |
|     i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
 | |
|           & ~float_flag_input_denormal);
 | |
|     return vfp_exceptbits_from_host(i);
 | |
| }
 | |
| 
 | |
| static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
 | |
| 
 | |
|     changed ^= val;
 | |
|     if (changed & (3 << 22)) {
 | |
|         i = (val >> 22) & 3;
 | |
|         switch (i) {
 | |
|         case FPROUNDING_TIEEVEN:
 | |
|             i = float_round_nearest_even;
 | |
|             break;
 | |
|         case FPROUNDING_POSINF:
 | |
|             i = float_round_up;
 | |
|             break;
 | |
|         case FPROUNDING_NEGINF:
 | |
|             i = float_round_down;
 | |
|             break;
 | |
|         case FPROUNDING_ZERO:
 | |
|             i = float_round_to_zero;
 | |
|             break;
 | |
|         }
 | |
|         set_float_rounding_mode(i, &env->vfp.fp_status);
 | |
|         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
 | |
|     }
 | |
|     if (changed & FPCR_FZ16) {
 | |
|         bool ftz_enabled = val & FPCR_FZ16;
 | |
|         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 | |
|         set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 | |
|         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
 | |
|         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
 | |
|     }
 | |
|     if (changed & FPCR_FZ) {
 | |
|         bool ftz_enabled = val & FPCR_FZ;
 | |
|         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
 | |
|         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & FPCR_DN) {
 | |
|         bool dnan_enabled = val & FPCR_DN;
 | |
|         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
 | |
|         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The exception flags are ORed together when we read fpscr so we
 | |
|      * only need to preserve the current state in one of our
 | |
|      * float_status values.
 | |
|      */
 | |
|     i = vfp_exceptbits_to_host(val);
 | |
|     set_float_exception_flags(i, &env->vfp.fp_status);
 | |
|     set_float_exception_flags(0, &env->vfp.fp_status_f16);
 | |
|     set_float_exception_flags(0, &env->vfp.standard_fp_status);
 | |
|     set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 | |
| {
 | |
|     uint32_t i, fpscr;
 | |
| 
 | |
|     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
 | |
|             | (env->vfp.vec_len << 16)
 | |
|             | (env->vfp.vec_stride << 20);
 | |
| 
 | |
|     /*
 | |
|      * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
 | |
|      * two is not applicable to this CPU will always be zero.
 | |
|      */
 | |
|     fpscr |= env->v7m.ltpsize << 16;
 | |
| 
 | |
|     fpscr |= vfp_get_fpscr_from_host(env);
 | |
| 
 | |
|     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
 | |
|     fpscr |= i ? FPCR_QC : 0;
 | |
| 
 | |
|     return fpscr;
 | |
| }
 | |
| 
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env)
 | |
| {
 | |
|     return HELPER(vfp_get_fpscr)(env);
 | |
| }
 | |
| 
 | |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
 | |
|     if (!cpu_isar_feature(any_fp16, cpu)) {
 | |
|         val &= ~FPCR_FZ16;
 | |
|     }
 | |
| 
 | |
|     vfp_set_fpscr_to_host(env, val);
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /*
 | |
|          * Short-vector length and stride; on M-profile these bits
 | |
|          * are used for different purposes.
 | |
|          * We can't make this conditional be "if MVFR0.FPShVec != 0",
 | |
|          * because in v7A no-short-vector-support cores still had to
 | |
|          * allow Stride/Len to be written with the only effect that
 | |
|          * some insns are required to UNDEF if the guest sets them.
 | |
|          */
 | |
|         env->vfp.vec_len = extract32(val, 16, 3);
 | |
|         env->vfp.vec_stride = extract32(val, 20, 2);
 | |
|     } else if (cpu_isar_feature(aa32_mve, cpu)) {
 | |
|         env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
 | |
|                                      FPCR_LTPSIZE_LENGTH);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON) ||
 | |
|         cpu_isar_feature(aa32_mve, cpu)) {
 | |
|         /*
 | |
|          * The bit we set within fpscr_q is arbitrary; the register as a
 | |
|          * whole being zero/non-zero is what counts.
 | |
|          * TODO: M-profile MVE also has a QC bit.
 | |
|          */
 | |
|         env->vfp.qc[0] = val & FPCR_QC;
 | |
|         env->vfp.qc[1] = 0;
 | |
|         env->vfp.qc[2] = 0;
 | |
|         env->vfp.qc[3] = 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We don't implement trapped exception handling, so the
 | |
|      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
 | |
|      *
 | |
|      * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
 | |
|      * fp_status; QC, Len and Stride are stored separately earlier.
 | |
|      * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
 | |
|      * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
 | |
|      */
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
 | |
| }
 | |
| 
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     HELPER(vfp_set_fpscr)(env, val);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| 
 | |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 | |
| 
 | |
| #define VFP_BINOP(name) \
 | |
| dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float16_ ## name(a, b, fpst); \
 | |
| } \
 | |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float32_ ## name(a, b, fpst); \
 | |
| } \
 | |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float64_ ## name(a, b, fpst); \
 | |
| }
 | |
| VFP_BINOP(add)
 | |
| VFP_BINOP(sub)
 | |
| VFP_BINOP(mul)
 | |
| VFP_BINOP(div)
 | |
| VFP_BINOP(min)
 | |
| VFP_BINOP(max)
 | |
| VFP_BINOP(minnum)
 | |
| VFP_BINOP(maxnum)
 | |
| #undef VFP_BINOP
 | |
| 
 | |
| dh_ctype_f16 VFP_HELPER(neg, h)(dh_ctype_f16 a)
 | |
| {
 | |
|     return float16_chs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(neg, s)(float32 a)
 | |
| {
 | |
|     return float32_chs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(neg, d)(float64 a)
 | |
| {
 | |
|     return float64_chs(a);
 | |
| }
 | |
| 
 | |
| dh_ctype_f16 VFP_HELPER(abs, h)(dh_ctype_f16 a)
 | |
| {
 | |
|     return float16_abs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(abs, s)(float32 a)
 | |
| {
 | |
|     return float32_abs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(abs, d)(float64 a)
 | |
| {
 | |
|     return float64_abs(a);
 | |
| }
 | |
| 
 | |
| dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
 | |
| {
 | |
|     return float16_sqrt(a, &env->vfp.fp_status_f16);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return float32_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     return float64_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
 | |
| {
 | |
|     uint32_t flags;
 | |
|     switch (cmp) {
 | |
|     case float_relation_equal:
 | |
|         flags = 0x6;
 | |
|         break;
 | |
|     case float_relation_less:
 | |
|         flags = 0x8;
 | |
|         break;
 | |
|     case float_relation_greater:
 | |
|         flags = 0x2;
 | |
|         break;
 | |
|     case float_relation_unordered:
 | |
|         flags = 0x3;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] =
 | |
|         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
 | |
| }
 | |
| 
 | |
| /* XXX: check quiet/signaling case */
 | |
| #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
 | |
| void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
 | |
| { \
 | |
|     softfloat_to_vfp_compare(env, \
 | |
|         FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
 | |
| } \
 | |
| void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
 | |
| { \
 | |
|     softfloat_to_vfp_compare(env, \
 | |
|         FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
 | |
| }
 | |
| DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
 | |
| DO_VFP_cmp(s, float32, float32, fp_status)
 | |
| DO_VFP_cmp(d, float64, float64, fp_status)
 | |
| #undef DO_VFP_cmp
 | |
| 
 | |
| /* Integer to float and float to integer conversions */
 | |
| 
 | |
| #define CONV_ITOF(name, ftype, fsz, sign)                           \
 | |
| ftype HELPER(name)(uint32_t x, void *fpstp)                         \
 | |
| {                                                                   \
 | |
|     float_status *fpst = fpstp;                                     \
 | |
|     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
 | |
| }
 | |
| 
 | |
| #define CONV_FTOI(name, ftype, fsz, sign, round)                \
 | |
| sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
 | |
| {                                                               \
 | |
|     float_status *fpst = fpstp;                                 \
 | |
|     if (float##fsz##_is_any_nan(x)) {                           \
 | |
|         float_raise(float_flag_invalid, fpst);                  \
 | |
|         return 0;                                               \
 | |
|     }                                                           \
 | |
|     return float##fsz##_to_##sign##int32##round(x, fpst);       \
 | |
| }
 | |
| 
 | |
| #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
 | |
|     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
 | |
|     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
 | |
|     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
 | |
| 
 | |
| FLOAT_CONVS(si, h, uint32_t, 16, )
 | |
| FLOAT_CONVS(si, s, float32, 32, )
 | |
| FLOAT_CONVS(si, d, float64, 64, )
 | |
| FLOAT_CONVS(ui, h, uint32_t, 16, u)
 | |
| FLOAT_CONVS(ui, s, float32, 32, u)
 | |
| FLOAT_CONVS(ui, d, float64, 64, u)
 | |
| 
 | |
| #undef CONV_ITOF
 | |
| #undef CONV_FTOI
 | |
| #undef FLOAT_CONVS
 | |
| 
 | |
| /* floating point conversion */
 | |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 | |
| {
 | |
|     return float32_to_float64(x, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 | |
| {
 | |
|     return float64_to_float32(x, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(bfcvt)(float32 x, void *status)
 | |
| {
 | |
|     return float32_to_bfloat16(x, status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
 | |
| {
 | |
|     bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
 | |
|     bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
 | |
|     return deposit32(lo, 16, 16, hi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
 | |
|  * must always round-to-nearest; the AArch64 ones honour the FPSCR
 | |
|  * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
 | |
|  * round-to-nearest so either helper will work.) AArch32 float-to-fix
 | |
|  * must round-to-zero.
 | |
|  */
 | |
| #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
 | |
| ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
 | |
|                                      void *fpstp) \
 | |
| { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
 | |
| 
 | |
| #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
 | |
|     ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
 | |
|                                                      uint32_t shift,   \
 | |
|                                                      void *fpstp)      \
 | |
|     {                                                                  \
 | |
|         ftype ret;                                                     \
 | |
|         float_status *fpst = fpstp;                                    \
 | |
|         FloatRoundMode oldmode = fpst->float_rounding_mode;            \
 | |
|         fpst->float_rounding_mode = float_round_nearest_even;          \
 | |
|         ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
 | |
|         fpst->float_rounding_mode = oldmode;                           \
 | |
|         return ret;                                                    \
 | |
|     }
 | |
| 
 | |
| #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
 | |
| uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
 | |
|                                             void *fpst)                   \
 | |
| {                                                                         \
 | |
|     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
 | |
|         float_raise(float_flag_invalid, fpst);                            \
 | |
|         return 0;                                                         \
 | |
|     }                                                                     \
 | |
|     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
 | |
| }
 | |
| 
 | |
| #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
 | |
| VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 | |
| VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 | |
|                          float_round_to_zero, _round_to_zero)    \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 | |
|                          get_float_rounding_mode(fpst), )
 | |
| 
 | |
| #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
 | |
| VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
 | |
|                          get_float_rounding_mode(fpst), )
 | |
| 
 | |
| VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
 | |
| VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
 | |
| VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
 | |
| VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
 | |
| VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
 | |
| VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
 | |
| VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
 | |
| VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
 | |
| VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
 | |
| VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
 | |
| VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
 | |
| VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
 | |
| VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
 | |
| VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
 | |
| VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
 | |
| VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
 | |
| VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
 | |
| VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
 | |
| 
 | |
| #undef VFP_CONV_FIX
 | |
| #undef VFP_CONV_FIX_FLOAT
 | |
| #undef VFP_CONV_FLOAT_FIX_ROUND
 | |
| #undef VFP_CONV_FIX_A64
 | |
| 
 | |
| /* Set the current fp rounding mode and return the old one.
 | |
|  * The argument is a softfloat float_round_ value.
 | |
|  */
 | |
| uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
 | |
| {
 | |
|     float_status *fp_status = fpstp;
 | |
| 
 | |
|     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 | |
|     set_float_rounding_mode(rmode, fp_status);
 | |
| 
 | |
|     return prev_rmode;
 | |
| }
 | |
| 
 | |
| /* Half precision conversions.  */
 | |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 | |
| {
 | |
|     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 | |
|      * it would affect flushing input denormals.
 | |
|      */
 | |
|     float_status *fpst = fpstp;
 | |
|     bool save = get_flush_inputs_to_zero(fpst);
 | |
|     set_flush_inputs_to_zero(false, fpst);
 | |
|     float32 r = float16_to_float32(a, !ahp_mode, fpst);
 | |
|     set_flush_inputs_to_zero(save, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
 | |
| {
 | |
|     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 | |
|      * it would affect flushing output denormals.
 | |
|      */
 | |
|     float_status *fpst = fpstp;
 | |
|     bool save = get_flush_to_zero(fpst);
 | |
|     set_flush_to_zero(false, fpst);
 | |
|     float16 r = float32_to_float16(a, !ahp_mode, fpst);
 | |
|     set_flush_to_zero(save, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
 | |
| {
 | |
|     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 | |
|      * it would affect flushing input denormals.
 | |
|      */
 | |
|     float_status *fpst = fpstp;
 | |
|     bool save = get_flush_inputs_to_zero(fpst);
 | |
|     set_flush_inputs_to_zero(false, fpst);
 | |
|     float64 r = float16_to_float64(a, !ahp_mode, fpst);
 | |
|     set_flush_inputs_to_zero(save, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
 | |
| {
 | |
|     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
 | |
|      * it would affect flushing output denormals.
 | |
|      */
 | |
|     float_status *fpst = fpstp;
 | |
|     bool save = get_flush_to_zero(fpst);
 | |
|     set_flush_to_zero(false, fpst);
 | |
|     float16 r = float64_to_float16(a, !ahp_mode, fpst);
 | |
|     set_flush_to_zero(save, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* NEON helpers.  */
 | |
| 
 | |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on
 | |
|  * int->float conversions at run-time.  */
 | |
| #define float64_256 make_float64(0x4070000000000000LL)
 | |
| #define float64_512 make_float64(0x4080000000000000LL)
 | |
| #define float16_maxnorm make_float16(0x7bff)
 | |
| #define float32_maxnorm make_float32(0x7f7fffff)
 | |
| #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 | |
| 
 | |
| /* Reciprocal functions
 | |
|  *
 | |
|  * The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
 | |
|  */
 | |
| 
 | |
| /* See RecipEstimate()
 | |
|  *
 | |
|  * input is a 9 bit fixed point number
 | |
|  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 | |
|  * result range 256 .. 511 for a number from 1.0 to 511/256.
 | |
|  */
 | |
| 
 | |
| static int recip_estimate(int input)
 | |
| {
 | |
|     int a, b, r;
 | |
|     assert(256 <= input && input < 512);
 | |
|     a = (input * 2) + 1;
 | |
|     b = (1 << 19) / a;
 | |
|     r = (b + 1) >> 1;
 | |
|     assert(256 <= r && r < 512);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common wrapper to call recip_estimate
 | |
|  *
 | |
|  * The parameters are exponent and 64 bit fraction (without implicit
 | |
|  * bit) where the binary point is nominally at bit 52. Returns a
 | |
|  * float64 which can then be rounded to the appropriate size by the
 | |
|  * callee.
 | |
|  */
 | |
| 
 | |
| static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
 | |
| {
 | |
|     uint32_t scaled, estimate;
 | |
|     uint64_t result_frac;
 | |
|     int result_exp;
 | |
| 
 | |
|     /* Handle sub-normals */
 | |
|     if (*exp == 0) {
 | |
|         if (extract64(frac, 51, 1) == 0) {
 | |
|             *exp = -1;
 | |
|             frac <<= 2;
 | |
|         } else {
 | |
|             frac <<= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* scaled = UInt('1':fraction<51:44>) */
 | |
|     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 | |
|     estimate = recip_estimate(scaled);
 | |
| 
 | |
|     result_exp = exp_off - *exp;
 | |
|     result_frac = deposit64(0, 44, 8, estimate);
 | |
|     if (result_exp == 0) {
 | |
|         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
 | |
|     } else if (result_exp == -1) {
 | |
|         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
 | |
|         result_exp = 0;
 | |
|     }
 | |
| 
 | |
|     *exp = result_exp;
 | |
| 
 | |
|     return result_frac;
 | |
| }
 | |
| 
 | |
| static bool round_to_inf(float_status *fpst, bool sign_bit)
 | |
| {
 | |
|     switch (fpst->float_rounding_mode) {
 | |
|     case float_round_nearest_even: /* Round to Nearest */
 | |
|         return true;
 | |
|     case float_round_up: /* Round to +Inf */
 | |
|         return !sign_bit;
 | |
|     case float_round_down: /* Round to -Inf */
 | |
|         return sign_bit;
 | |
|     case float_round_to_zero: /* Round to Zero */
 | |
|         return false;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float16 f16 = float16_squash_input_denormal(input, fpst);
 | |
|     uint32_t f16_val = float16_val(f16);
 | |
|     uint32_t f16_sign = float16_is_neg(f16);
 | |
|     int f16_exp = extract32(f16_val, 10, 5);
 | |
|     uint32_t f16_frac = extract32(f16_val, 0, 10);
 | |
|     uint64_t f64_frac;
 | |
| 
 | |
|     if (float16_is_any_nan(f16)) {
 | |
|         float16 nan = f16;
 | |
|         if (float16_is_signaling_nan(f16, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float16_silence_nan(f16, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan =  float16_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float16_is_infinity(f16)) {
 | |
|         return float16_set_sign(float16_zero, float16_is_neg(f16));
 | |
|     } else if (float16_is_zero(f16)) {
 | |
|         float_raise(float_flag_divbyzero, fpst);
 | |
|         return float16_set_sign(float16_infinity, float16_is_neg(f16));
 | |
|     } else if (float16_abs(f16) < (1 << 8)) {
 | |
|         /* Abs(value) < 2.0^-16 */
 | |
|         float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | |
|         if (round_to_inf(fpst, f16_sign)) {
 | |
|             return float16_set_sign(float16_infinity, f16_sign);
 | |
|         } else {
 | |
|             return float16_set_sign(float16_maxnorm, f16_sign);
 | |
|         }
 | |
|     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
 | |
|         float_raise(float_flag_underflow, fpst);
 | |
|         return float16_set_sign(float16_zero, float16_is_neg(f16));
 | |
|     }
 | |
| 
 | |
|     f64_frac = call_recip_estimate(&f16_exp, 29,
 | |
|                                    ((uint64_t) f16_frac) << (52 - 10));
 | |
| 
 | |
|     /* result = sign : result_exp<4:0> : fraction<51:42> */
 | |
|     f16_val = deposit32(0, 15, 1, f16_sign);
 | |
|     f16_val = deposit32(f16_val, 10, 5, f16_exp);
 | |
|     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
 | |
|     return make_float16(f16_val);
 | |
| }
 | |
| 
 | |
| float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float32 f32 = float32_squash_input_denormal(input, fpst);
 | |
|     uint32_t f32_val = float32_val(f32);
 | |
|     bool f32_sign = float32_is_neg(f32);
 | |
|     int f32_exp = extract32(f32_val, 23, 8);
 | |
|     uint32_t f32_frac = extract32(f32_val, 0, 23);
 | |
|     uint64_t f64_frac;
 | |
| 
 | |
|     if (float32_is_any_nan(f32)) {
 | |
|         float32 nan = f32;
 | |
|         if (float32_is_signaling_nan(f32, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float32_silence_nan(f32, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan =  float32_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float32_is_infinity(f32)) {
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(f32));
 | |
|     } else if (float32_is_zero(f32)) {
 | |
|         float_raise(float_flag_divbyzero, fpst);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | |
|     } else if (float32_abs(f32) < (1ULL << 21)) {
 | |
|         /* Abs(value) < 2.0^-128 */
 | |
|         float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | |
|         if (round_to_inf(fpst, f32_sign)) {
 | |
|             return float32_set_sign(float32_infinity, f32_sign);
 | |
|         } else {
 | |
|             return float32_set_sign(float32_maxnorm, f32_sign);
 | |
|         }
 | |
|     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 | |
|         float_raise(float_flag_underflow, fpst);
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(f32));
 | |
|     }
 | |
| 
 | |
|     f64_frac = call_recip_estimate(&f32_exp, 253,
 | |
|                                    ((uint64_t) f32_frac) << (52 - 23));
 | |
| 
 | |
|     /* result = sign : result_exp<7:0> : fraction<51:29> */
 | |
|     f32_val = deposit32(0, 31, 1, f32_sign);
 | |
|     f32_val = deposit32(f32_val, 23, 8, f32_exp);
 | |
|     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
 | |
|     return make_float32(f32_val);
 | |
| }
 | |
| 
 | |
| float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float64 f64 = float64_squash_input_denormal(input, fpst);
 | |
|     uint64_t f64_val = float64_val(f64);
 | |
|     bool f64_sign = float64_is_neg(f64);
 | |
|     int f64_exp = extract64(f64_val, 52, 11);
 | |
|     uint64_t f64_frac = extract64(f64_val, 0, 52);
 | |
| 
 | |
|     /* Deal with any special cases */
 | |
|     if (float64_is_any_nan(f64)) {
 | |
|         float64 nan = f64;
 | |
|         if (float64_is_signaling_nan(f64, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float64_silence_nan(f64, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan =  float64_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float64_is_infinity(f64)) {
 | |
|         return float64_set_sign(float64_zero, float64_is_neg(f64));
 | |
|     } else if (float64_is_zero(f64)) {
 | |
|         float_raise(float_flag_divbyzero, fpst);
 | |
|         return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | |
|     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 | |
|         /* Abs(value) < 2.0^-1024 */
 | |
|         float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | |
|         if (round_to_inf(fpst, f64_sign)) {
 | |
|             return float64_set_sign(float64_infinity, f64_sign);
 | |
|         } else {
 | |
|             return float64_set_sign(float64_maxnorm, f64_sign);
 | |
|         }
 | |
|     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 | |
|         float_raise(float_flag_underflow, fpst);
 | |
|         return float64_set_sign(float64_zero, float64_is_neg(f64));
 | |
|     }
 | |
| 
 | |
|     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
 | |
| 
 | |
|     /* result = sign : result_exp<10:0> : fraction<51:0>; */
 | |
|     f64_val = deposit64(0, 63, 1, f64_sign);
 | |
|     f64_val = deposit64(f64_val, 52, 11, f64_exp);
 | |
|     f64_val = deposit64(f64_val, 0, 52, f64_frac);
 | |
|     return make_float64(f64_val);
 | |
| }
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| 
 | |
| static int do_recip_sqrt_estimate(int a)
 | |
| {
 | |
|     int b, estimate;
 | |
| 
 | |
|     assert(128 <= a && a < 512);
 | |
|     if (a < 256) {
 | |
|         a = a * 2 + 1;
 | |
|     } else {
 | |
|         a = (a >> 1) << 1;
 | |
|         a = (a + 1) * 2;
 | |
|     }
 | |
|     b = 512;
 | |
|     while (a * (b + 1) * (b + 1) < (1 << 28)) {
 | |
|         b += 1;
 | |
|     }
 | |
|     estimate = (b + 1) / 2;
 | |
|     assert(256 <= estimate && estimate < 512);
 | |
| 
 | |
|     return estimate;
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
 | |
| {
 | |
|     int estimate;
 | |
|     uint32_t scaled;
 | |
| 
 | |
|     if (*exp == 0) {
 | |
|         while (extract64(frac, 51, 1) == 0) {
 | |
|             frac = frac << 1;
 | |
|             *exp -= 1;
 | |
|         }
 | |
|         frac = extract64(frac, 0, 51) << 1;
 | |
|     }
 | |
| 
 | |
|     if (*exp & 1) {
 | |
|         /* scaled = UInt('01':fraction<51:45>) */
 | |
|         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
 | |
|     } else {
 | |
|         /* scaled = UInt('1':fraction<51:44>) */
 | |
|         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
 | |
|     }
 | |
|     estimate = do_recip_sqrt_estimate(scaled);
 | |
| 
 | |
|     *exp = (exp_off - *exp) / 2;
 | |
|     return extract64(estimate, 0, 8) << 44;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float16 f16 = float16_squash_input_denormal(input, s);
 | |
|     uint16_t val = float16_val(f16);
 | |
|     bool f16_sign = float16_is_neg(f16);
 | |
|     int f16_exp = extract32(val, 10, 5);
 | |
|     uint16_t f16_frac = extract32(val, 0, 10);
 | |
|     uint64_t f64_frac;
 | |
| 
 | |
|     if (float16_is_any_nan(f16)) {
 | |
|         float16 nan = f16;
 | |
|         if (float16_is_signaling_nan(f16, s)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|             if (!s->default_nan_mode) {
 | |
|                 nan = float16_silence_nan(f16, fpstp);
 | |
|             }
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             nan =  float16_default_nan(s);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float16_is_zero(f16)) {
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float16_set_sign(float16_infinity, f16_sign);
 | |
|     } else if (f16_sign) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float16_default_nan(s);
 | |
|     } else if (float16_is_infinity(f16)) {
 | |
|         return float16_zero;
 | |
|     }
 | |
| 
 | |
|     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
| 
 | |
|     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
 | |
| 
 | |
|     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
 | |
| 
 | |
|     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
 | |
|     val = deposit32(0, 15, 1, f16_sign);
 | |
|     val = deposit32(val, 10, 5, f16_exp);
 | |
|     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
 | |
|     return make_float16(val);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float32 f32 = float32_squash_input_denormal(input, s);
 | |
|     uint32_t val = float32_val(f32);
 | |
|     uint32_t f32_sign = float32_is_neg(f32);
 | |
|     int f32_exp = extract32(val, 23, 8);
 | |
|     uint32_t f32_frac = extract32(val, 0, 23);
 | |
|     uint64_t f64_frac;
 | |
| 
 | |
|     if (float32_is_any_nan(f32)) {
 | |
|         float32 nan = f32;
 | |
|         if (float32_is_signaling_nan(f32, s)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|             if (!s->default_nan_mode) {
 | |
|                 nan = float32_silence_nan(f32, fpstp);
 | |
|             }
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             nan =  float32_default_nan(s);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float32_is_zero(f32)) {
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | |
|     } else if (float32_is_neg(f32)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float32_default_nan(s);
 | |
|     } else if (float32_is_infinity(f32)) {
 | |
|         return float32_zero;
 | |
|     }
 | |
| 
 | |
|     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
| 
 | |
|     f64_frac = ((uint64_t) f32_frac) << 29;
 | |
| 
 | |
|     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
 | |
| 
 | |
|     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
 | |
|     val = deposit32(0, 31, 1, f32_sign);
 | |
|     val = deposit32(val, 23, 8, f32_exp);
 | |
|     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
 | |
|     return make_float32(val);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float64 f64 = float64_squash_input_denormal(input, s);
 | |
|     uint64_t val = float64_val(f64);
 | |
|     bool f64_sign = float64_is_neg(f64);
 | |
|     int f64_exp = extract64(val, 52, 11);
 | |
|     uint64_t f64_frac = extract64(val, 0, 52);
 | |
| 
 | |
|     if (float64_is_any_nan(f64)) {
 | |
|         float64 nan = f64;
 | |
|         if (float64_is_signaling_nan(f64, s)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|             if (!s->default_nan_mode) {
 | |
|                 nan = float64_silence_nan(f64, fpstp);
 | |
|             }
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             nan =  float64_default_nan(s);
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float64_is_zero(f64)) {
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | |
|     } else if (float64_is_neg(f64)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float64_default_nan(s);
 | |
|     } else if (float64_is_infinity(f64)) {
 | |
|         return float64_zero;
 | |
|     }
 | |
| 
 | |
|     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
 | |
| 
 | |
|     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
 | |
|     val = deposit64(0, 61, 1, f64_sign);
 | |
|     val = deposit64(val, 52, 11, f64_exp);
 | |
|     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
 | |
|     return make_float64(val);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(recpe_u32)(uint32_t a)
 | |
| {
 | |
|     int input, estimate;
 | |
| 
 | |
|     if ((a & 0x80000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     input = extract32(a, 23, 9);
 | |
|     estimate = recip_estimate(input);
 | |
| 
 | |
|     return deposit32(0, (32 - 9), 9, estimate);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrte_u32)(uint32_t a)
 | |
| {
 | |
|     int estimate;
 | |
| 
 | |
|     if ((a & 0xc0000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
 | |
| 
 | |
|     return deposit32(0, 23, 9, estimate);
 | |
| }
 | |
| 
 | |
| /* VFPv4 fused multiply-accumulate */
 | |
| dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
 | |
|                                    dh_ctype_f16 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float16_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float32_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float64_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| /* ARMv8 round to integral */
 | |
| dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
 | |
| {
 | |
|     return float16_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rints_exact)(float32 x, void *fp_status)
 | |
| {
 | |
|     return float32_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rintd_exact)(float64 x, void *fp_status)
 | |
| {
 | |
|     return float64_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float16 ret;
 | |
| 
 | |
|     ret = float16_round_to_int(x, fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| float32 HELPER(rints)(float32 x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float32 ret;
 | |
| 
 | |
|     ret = float32_round_to_int(x, fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| float64 HELPER(rintd)(float64 x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float64 ret;
 | |
| 
 | |
|     ret = float64_round_to_int(x, fp_status);
 | |
| 
 | |
|     new_flags = get_float_exception_flags(fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Convert ARM rounding mode to softfloat */
 | |
| int arm_rmode_to_sf(int rmode)
 | |
| {
 | |
|     switch (rmode) {
 | |
|     case FPROUNDING_TIEAWAY:
 | |
|         rmode = float_round_ties_away;
 | |
|         break;
 | |
|     case FPROUNDING_ODD:
 | |
|         /* FIXME: add support for TIEAWAY and ODD */
 | |
|         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
 | |
|                       rmode);
 | |
|         /* fall through for now */
 | |
|     case FPROUNDING_TIEEVEN:
 | |
|     default:
 | |
|         rmode = float_round_nearest_even;
 | |
|         break;
 | |
|     case FPROUNDING_POSINF:
 | |
|         rmode = float_round_up;
 | |
|         break;
 | |
|     case FPROUNDING_NEGINF:
 | |
|         rmode = float_round_down;
 | |
|         break;
 | |
|     case FPROUNDING_ZERO:
 | |
|         rmode = float_round_to_zero;
 | |
|         break;
 | |
|     }
 | |
|     return rmode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implement float64 to int32_t conversion without saturation;
 | |
|  * the result is supplied modulo 2^32.
 | |
|  */
 | |
| uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
 | |
| {
 | |
|     float_status *status = vstatus;
 | |
|     uint32_t exp, sign;
 | |
|     uint64_t frac;
 | |
|     uint32_t inexact = 1; /* !Z */
 | |
| 
 | |
|     sign = extract64(value, 63, 1);
 | |
|     exp = extract64(value, 52, 11);
 | |
|     frac = extract64(value, 0, 52);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
 | |
|         inexact = sign;
 | |
|         if (frac != 0) {
 | |
|             if (status->flush_inputs_to_zero) {
 | |
|                 float_raise(float_flag_input_denormal, status);
 | |
|             } else {
 | |
|                 float_raise(float_flag_inexact, status);
 | |
|                 inexact = 1;
 | |
|             }
 | |
|         }
 | |
|         frac = 0;
 | |
|     } else if (exp == 0x7ff) {
 | |
|         /* This operation raises Invalid for both NaN and overflow (Inf).  */
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         frac = 0;
 | |
|     } else {
 | |
|         int true_exp = exp - 1023;
 | |
|         int shift = true_exp - 52;
 | |
| 
 | |
|         /* Restore implicit bit.  */
 | |
|         frac |= 1ull << 52;
 | |
| 
 | |
|         /* Shift the fraction into place.  */
 | |
|         if (shift >= 0) {
 | |
|             /* The number is so large we must shift the fraction left.  */
 | |
|             if (shift >= 64) {
 | |
|                 /* The fraction is shifted out entirely.  */
 | |
|                 frac = 0;
 | |
|             } else {
 | |
|                 frac <<= shift;
 | |
|             }
 | |
|         } else if (shift > -64) {
 | |
|             /* Normal case -- shift right and notice if bits shift out.  */
 | |
|             inexact = (frac << (64 + shift)) != 0;
 | |
|             frac >>= -shift;
 | |
|         } else {
 | |
|             /* The fraction is shifted out entirely.  */
 | |
|             frac = 0;
 | |
|         }
 | |
| 
 | |
|         /* Notice overflow or inexact exceptions.  */
 | |
|         if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
 | |
|             /* Overflow, for which this operation raises invalid.  */
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             inexact = 1;
 | |
|         } else if (inexact) {
 | |
|             float_raise(float_flag_inexact, status);
 | |
|         }
 | |
| 
 | |
|         /* Honor the sign.  */
 | |
|         if (sign) {
 | |
|             frac = -frac;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Pack the result and the env->ZF representation of Z together.  */
 | |
|     return deposit64(frac, 32, 32, inexact);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
 | |
| {
 | |
|     uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
 | |
|     uint32_t result = pair;
 | |
|     uint32_t z = (pair >> 32) == 0;
 | |
| 
 | |
|     /* Store Z, clear NCV, in FPSCR.NZCV.  */
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR]
 | |
|         = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Round a float32 to an integer that fits in int32_t or int64_t.  */
 | |
| static float32 frint_s(float32 f, float_status *fpst, int intsize)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fpst);
 | |
|     uint32_t exp = extract32(f, 23, 8);
 | |
| 
 | |
|     if (unlikely(exp == 0xff)) {
 | |
|         /* NaN or Inf.  */
 | |
|         goto overflow;
 | |
|     }
 | |
| 
 | |
|     /* Round and re-extract the exponent.  */
 | |
|     f = float32_round_to_int(f, fpst);
 | |
|     exp = extract32(f, 23, 8);
 | |
| 
 | |
|     /* Validate the range of the result.  */
 | |
|     if (exp < 126 + intsize) {
 | |
|         /* abs(F) <= INT{N}_MAX */
 | |
|         return f;
 | |
|     }
 | |
|     if (exp == 126 + intsize) {
 | |
|         uint32_t sign = extract32(f, 31, 1);
 | |
|         uint32_t frac = extract32(f, 0, 23);
 | |
|         if (sign && frac == 0) {
 | |
|             /* F == INT{N}_MIN */
 | |
|             return f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|  overflow:
 | |
|     /*
 | |
|      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
 | |
|      * inexact exception float32_round_to_int may have raised.
 | |
|      */
 | |
|     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
 | |
|     return (0x100u + 126u + intsize) << 23;
 | |
| }
 | |
| 
 | |
| float32 HELPER(frint32_s)(float32 f, void *fpst)
 | |
| {
 | |
|     return frint_s(f, fpst, 32);
 | |
| }
 | |
| 
 | |
| float32 HELPER(frint64_s)(float32 f, void *fpst)
 | |
| {
 | |
|     return frint_s(f, fpst, 64);
 | |
| }
 | |
| 
 | |
| /* Round a float64 to an integer that fits in int32_t or int64_t.  */
 | |
| static float64 frint_d(float64 f, float_status *fpst, int intsize)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fpst);
 | |
|     uint32_t exp = extract64(f, 52, 11);
 | |
| 
 | |
|     if (unlikely(exp == 0x7ff)) {
 | |
|         /* NaN or Inf.  */
 | |
|         goto overflow;
 | |
|     }
 | |
| 
 | |
|     /* Round and re-extract the exponent.  */
 | |
|     f = float64_round_to_int(f, fpst);
 | |
|     exp = extract64(f, 52, 11);
 | |
| 
 | |
|     /* Validate the range of the result.  */
 | |
|     if (exp < 1022 + intsize) {
 | |
|         /* abs(F) <= INT{N}_MAX */
 | |
|         return f;
 | |
|     }
 | |
|     if (exp == 1022 + intsize) {
 | |
|         uint64_t sign = extract64(f, 63, 1);
 | |
|         uint64_t frac = extract64(f, 0, 52);
 | |
|         if (sign && frac == 0) {
 | |
|             /* F == INT{N}_MIN */
 | |
|             return f;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|  overflow:
 | |
|     /*
 | |
|      * Raise Invalid and return INT{N}_MIN as a float.  Revert any
 | |
|      * inexact exception float64_round_to_int may have raised.
 | |
|      */
 | |
|     set_float_exception_flags(old_flags | float_flag_invalid, fpst);
 | |
|     return (uint64_t)(0x800 + 1022 + intsize) << 52;
 | |
| }
 | |
| 
 | |
| float64 HELPER(frint32_d)(float64 f, void *fpst)
 | |
| {
 | |
|     return frint_d(f, fpst, 32);
 | |
| }
 | |
| 
 | |
| float64 HELPER(frint64_d)(float64 f, void *fpst)
 | |
| {
 | |
|     return frint_d(f, fpst, 64);
 | |
| }
 | |
| 
 | |
| void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
 | |
| {
 | |
|     uint32_t syndrome;
 | |
| 
 | |
|     switch (reg) {
 | |
|     case ARM_VFP_MVFR0:
 | |
|     case ARM_VFP_MVFR1:
 | |
|     case ARM_VFP_MVFR2:
 | |
|         if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     case ARM_VFP_FPSID:
 | |
|         if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
 | |
|                 | ARM_EL_IL
 | |
|                 | (1 << 24) | (0xe << 20) | (7 << 14)
 | |
|                 | (reg << 10) | (rt << 5) | 1);
 | |
| 
 | |
|     raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
 | |
| }
 | |
| 
 | |
| #endif
 |