mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 eeaf596022
			
		
	
	
		eeaf596022
		
	
	
	
	
		
			
			With the helper we can use exception_target_el at runtime, instead of default_exception_el at translate time. While we're at it, remove the DisasContext parameter from gen_exception, as it is no longer used. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220609202901.1177572-20-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1011 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  ARM helper routines
 | |
|  *
 | |
|  *  Copyright (c) 2005-2007 CodeSourcery, LLC
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "internals.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "cpregs.h"
 | |
| 
 | |
| #define SIGNBIT (uint32_t)0x80000000
 | |
| #define SIGNBIT64 ((uint64_t)1 << 63)
 | |
| 
 | |
| int exception_target_el(CPUARMState *env)
 | |
| {
 | |
|     int target_el = MAX(1, arm_current_el(env));
 | |
| 
 | |
|     /*
 | |
|      * No such thing as secure EL1 if EL3 is aarch32,
 | |
|      * so update the target EL to EL3 in this case.
 | |
|      */
 | |
|     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
 | |
|         target_el = 3;
 | |
|     }
 | |
| 
 | |
|     return target_el;
 | |
| }
 | |
| 
 | |
| void raise_exception(CPUARMState *env, uint32_t excp,
 | |
|                      uint32_t syndrome, uint32_t target_el)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
 | |
|         /*
 | |
|          * Redirect NS EL1 exceptions to NS EL2. These are reported with
 | |
|          * their original syndrome register value, with the exception of
 | |
|          * SIMD/FP access traps, which are reported as uncategorized
 | |
|          * (see DDI0478C.a D1.10.4)
 | |
|          */
 | |
|         target_el = 2;
 | |
|         if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
 | |
|             syndrome = syn_uncategorized();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(!excp_is_internal(excp));
 | |
|     cs->exception_index = excp;
 | |
|     env->exception.syndrome = syndrome;
 | |
|     env->exception.target_el = target_el;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
 | |
|                         uint32_t target_el, uintptr_t ra)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     /*
 | |
|      * restore_state_to_opc() will set env->exception.syndrome, so
 | |
|      * we must restore CPU state here before setting the syndrome
 | |
|      * the caller passed us, and cannot use cpu_loop_exit_restore().
 | |
|      */
 | |
|     cpu_restore_state(cs, ra, true);
 | |
|     raise_exception(env, excp, syndrome, target_el);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
 | |
|                           uint64_t ireg, uint64_t def)
 | |
| {
 | |
|     uint64_t tmp, val = 0;
 | |
|     uint32_t maxindex = ((desc & 3) + 1) * 8;
 | |
|     uint32_t base_reg = desc >> 2;
 | |
|     uint32_t shift, index, reg;
 | |
| 
 | |
|     for (shift = 0; shift < 64; shift += 8) {
 | |
|         index = (ireg >> shift) & 0xff;
 | |
|         if (index < maxindex) {
 | |
|             reg = base_reg + (index >> 3);
 | |
|             tmp = *aa32_vfp_dreg(env, reg);
 | |
|             tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
 | |
|         } else {
 | |
|             tmp = def & (0xffull << shift);
 | |
|         }
 | |
|         val |= tmp;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
 | |
| {
 | |
|     /*
 | |
|      * Perform the v8M stack limit check for SP updates from translated code,
 | |
|      * raising an exception if the limit is breached.
 | |
|      */
 | |
|     if (newvalue < v7m_sp_limit(env)) {
 | |
|         /*
 | |
|          * Stack limit exceptions are a rare case, so rather than syncing
 | |
|          * PC/condbits before the call, we use raise_exception_ra() so
 | |
|          * that cpu_restore_state() will sort them out.
 | |
|          */
 | |
|         raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
 | |
|         env->QF = 1;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
 | |
|         env->QF = 1;
 | |
|         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a - b;
 | |
|     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
 | |
|         env->QF = 1;
 | |
|         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (res < a) {
 | |
|         env->QF = 1;
 | |
|         res = ~0;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a - b;
 | |
|     if (res > a) {
 | |
|         env->QF = 1;
 | |
|         res = 0;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Signed saturation.  */
 | |
| static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
 | |
| {
 | |
|     int32_t top;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     top = val >> shift;
 | |
|     mask = (1u << shift) - 1;
 | |
|     if (top > 0) {
 | |
|         env->QF = 1;
 | |
|         return mask;
 | |
|     } else if (top < -1) {
 | |
|         env->QF = 1;
 | |
|         return ~mask;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Unsigned saturation.  */
 | |
| static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
 | |
| {
 | |
|     uint32_t max;
 | |
| 
 | |
|     max = (1u << shift) - 1;
 | |
|     if (val < 0) {
 | |
|         env->QF = 1;
 | |
|         return 0;
 | |
|     } else if (val > max) {
 | |
|         env->QF = 1;
 | |
|         return max;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Signed saturate.  */
 | |
| uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     return do_ssat(env, x, shift);
 | |
| }
 | |
| 
 | |
| /* Dual halfword signed saturate.  */
 | |
| uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     uint32_t res;
 | |
| 
 | |
|     res = (uint16_t)do_ssat(env, (int16_t)x, shift);
 | |
|     res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Unsigned saturate.  */
 | |
| uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     return do_usat(env, x, shift);
 | |
| }
 | |
| 
 | |
| /* Dual halfword unsigned saturate.  */
 | |
| uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     uint32_t res;
 | |
| 
 | |
|     res = (uint16_t)do_usat(env, (int16_t)x, shift);
 | |
|     res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void HELPER(setend)(CPUARMState *env)
 | |
| {
 | |
|     env->uncached_cpsr ^= CPSR_E;
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
 | |
| {
 | |
|     /*
 | |
|      * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
 | |
|      * check if HSTR.TJDBX means we need to trap to EL2.
 | |
|      */
 | |
|     if (env->cp15.hstr_el2 & HSTR_TJDBX) {
 | |
|         /*
 | |
|          * We know the condition code check passed, so take the IMPDEF
 | |
|          * choice to always report CV=1 COND 0xe
 | |
|          */
 | |
|         uint32_t syn = syn_bxjtrap(1, 0xe, rm);
 | |
|         raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 | |
|  * The function returns the target EL (1-3) if the instruction is to be trapped;
 | |
|  * otherwise it returns 0 indicating it is not trapped.
 | |
|  */
 | |
| static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     uint64_t mask;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /* M profile cores can never trap WFI/WFE. */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* If we are currently in EL0 then we need to check if SCTLR is set up for
 | |
|      * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
 | |
|      */
 | |
|     if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         int target_el;
 | |
| 
 | |
|         mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
 | |
|         if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
 | |
|             /* Secure EL0 and Secure PL1 is at EL3 */
 | |
|             target_el = 3;
 | |
|         } else {
 | |
|             target_el = 1;
 | |
|         }
 | |
| 
 | |
|         if (!(env->cp15.sctlr_el[target_el] & mask)) {
 | |
|             return target_el;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
 | |
|      * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
 | |
|      * bits will be zero indicating no trap.
 | |
|      */
 | |
|     if (cur_el < 2) {
 | |
|         mask = is_wfe ? HCR_TWE : HCR_TWI;
 | |
|         if (arm_hcr_el2_eff(env) & mask) {
 | |
|             return 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
 | |
|     if (cur_el < 3) {
 | |
|         mask = (is_wfe) ? SCR_TWE : SCR_TWI;
 | |
|         if (env->cp15.scr_el3 & mask) {
 | |
|             return 3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     /*
 | |
|      * WFI in the user-mode emulator is technically permitted but not
 | |
|      * something any real-world code would do. AArch64 Linux kernels
 | |
|      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
 | |
|      * AArch32 kernels don't trap it so it will delay a bit.
 | |
|      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
 | |
|      * would trigger an abort.
 | |
|      */
 | |
|     return;
 | |
| #else
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int target_el = check_wfx_trap(env, false);
 | |
| 
 | |
|     if (cpu_has_work(cs)) {
 | |
|         /* Don't bother to go into our "low power state" if
 | |
|          * we would just wake up immediately.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (target_el) {
 | |
|         if (env->aarch64) {
 | |
|             env->pc -= insn_len;
 | |
|         } else {
 | |
|             env->regs[15] -= insn_len;
 | |
|         }
 | |
| 
 | |
|         raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
 | |
|                         target_el);
 | |
|     }
 | |
| 
 | |
|     cs->exception_index = EXCP_HLT;
 | |
|     cs->halted = 1;
 | |
|     cpu_loop_exit(cs);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void HELPER(wfe)(CPUARMState *env)
 | |
| {
 | |
|     /* This is a hint instruction that is semantically different
 | |
|      * from YIELD even though we currently implement it identically.
 | |
|      * Don't actually halt the CPU, just yield back to top
 | |
|      * level loop. This is not going into a "low power state"
 | |
|      * (ie halting until some event occurs), so we never take
 | |
|      * a configurable trap to a different exception level.
 | |
|      */
 | |
|     HELPER(yield)(env);
 | |
| }
 | |
| 
 | |
| void HELPER(yield)(CPUARMState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     /* This is a non-trappable hint instruction that generally indicates
 | |
|      * that the guest is currently busy-looping. Yield control back to the
 | |
|      * top level loop so that a more deserving VCPU has a chance to run.
 | |
|      */
 | |
|     cs->exception_index = EXCP_YIELD;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| /* Raise an internal-to-QEMU exception. This is limited to only
 | |
|  * those EXCP values which are special cases for QEMU to interrupt
 | |
|  * execution and not to be used for exceptions which are passed to
 | |
|  * the guest (those must all have syndrome information and thus should
 | |
|  * use exception_with_syndrome*).
 | |
|  */
 | |
| void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     assert(excp_is_internal(excp));
 | |
|     cs->exception_index = excp;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| /* Raise an exception with the specified syndrome register value */
 | |
| void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
 | |
|                                         uint32_t syndrome, uint32_t target_el)
 | |
| {
 | |
|     raise_exception(env, excp, syndrome, target_el);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Raise an exception with the specified syndrome register value
 | |
|  * to the default target el.
 | |
|  */
 | |
| void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
 | |
|                                      uint32_t syndrome)
 | |
| {
 | |
|     raise_exception(env, excp, syndrome, exception_target_el(env));
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(cpsr_read)(CPUARMState *env)
 | |
| {
 | |
|     return cpsr_read(env) & ~CPSR_EXEC;
 | |
| }
 | |
| 
 | |
| void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     cpsr_write(env, val, mask, CPSRWriteByInstr);
 | |
|     /* TODO: Not all cpsr bits are relevant to hflags.  */
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| /* Write the CPSR for a 32-bit exception return */
 | |
| void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     arm_call_pre_el_change_hook(env_archcpu(env));
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
 | |
|     cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
 | |
| 
 | |
|     /* Generated code has already stored the new PC value, but
 | |
|      * without masking out its low bits, because which bits need
 | |
|      * masking depends on whether we're returning to Thumb or ARM
 | |
|      * state. Do the masking now.
 | |
|      */
 | |
|     env->regs[15] &= (env->thumb ? ~1 : ~3);
 | |
|     arm_rebuild_hflags(env);
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     arm_call_el_change_hook(env_archcpu(env));
 | |
|     qemu_mutex_unlock_iothread();
 | |
| }
 | |
| 
 | |
| /* Access to user mode registers from privileged modes.  */
 | |
| uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
 | |
| {
 | |
|     uint32_t val;
 | |
| 
 | |
|     if (regno == 13) {
 | |
|         val = env->banked_r13[BANK_USRSYS];
 | |
|     } else if (regno == 14) {
 | |
|         val = env->banked_r14[BANK_USRSYS];
 | |
|     } else if (regno >= 8
 | |
|                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | |
|         val = env->usr_regs[regno - 8];
 | |
|     } else {
 | |
|         val = env->regs[regno];
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
 | |
| {
 | |
|     if (regno == 13) {
 | |
|         env->banked_r13[BANK_USRSYS] = val;
 | |
|     } else if (regno == 14) {
 | |
|         env->banked_r14[BANK_USRSYS] = val;
 | |
|     } else if (regno >= 8
 | |
|                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | |
|         env->usr_regs[regno - 8] = val;
 | |
|     } else {
 | |
|         env->regs[regno] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         env->regs[13] = val;
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(mode)] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
 | |
|         /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
 | |
|          * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
 | |
|          */
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| 
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         return env->regs[13];
 | |
|     } else {
 | |
|         return env->banked_r13[bank_number(mode)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
 | |
|                                       uint32_t regno)
 | |
| {
 | |
|     /* Raise an exception if the requested access is one of the UNPREDICTABLE
 | |
|      * cases; otherwise return. This broadly corresponds to the pseudocode
 | |
|      * BankedRegisterAccessValid() and SPSRAccessValid(),
 | |
|      * except that we have already handled some cases at translate time.
 | |
|      */
 | |
|     int curmode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     if (regno == 17) {
 | |
|         /* ELR_Hyp: a special case because access from tgtmode is OK */
 | |
|         if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
 | |
|             goto undef;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (curmode == tgtmode) {
 | |
|         goto undef;
 | |
|     }
 | |
| 
 | |
|     if (tgtmode == ARM_CPU_MODE_USR) {
 | |
|         switch (regno) {
 | |
|         case 8 ... 12:
 | |
|             if (curmode != ARM_CPU_MODE_FIQ) {
 | |
|                 goto undef;
 | |
|             }
 | |
|             break;
 | |
|         case 13:
 | |
|             if (curmode == ARM_CPU_MODE_SYS) {
 | |
|                 goto undef;
 | |
|             }
 | |
|             break;
 | |
|         case 14:
 | |
|             if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
 | |
|                 goto undef;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (tgtmode == ARM_CPU_MODE_HYP) {
 | |
|         /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
 | |
|         if (curmode != ARM_CPU_MODE_MON) {
 | |
|             goto undef;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| undef:
 | |
|     raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                     exception_target_el(env));
 | |
| }
 | |
| 
 | |
| void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
 | |
|                         uint32_t regno)
 | |
| {
 | |
|     msr_mrs_banked_exc_checks(env, tgtmode, regno);
 | |
| 
 | |
|     switch (regno) {
 | |
|     case 16: /* SPSRs */
 | |
|         env->banked_spsr[bank_number(tgtmode)] = value;
 | |
|         break;
 | |
|     case 17: /* ELR_Hyp */
 | |
|         env->elr_el[2] = value;
 | |
|         break;
 | |
|     case 13:
 | |
|         env->banked_r13[bank_number(tgtmode)] = value;
 | |
|         break;
 | |
|     case 14:
 | |
|         env->banked_r14[r14_bank_number(tgtmode)] = value;
 | |
|         break;
 | |
|     case 8 ... 12:
 | |
|         switch (tgtmode) {
 | |
|         case ARM_CPU_MODE_USR:
 | |
|             env->usr_regs[regno - 8] = value;
 | |
|             break;
 | |
|         case ARM_CPU_MODE_FIQ:
 | |
|             env->fiq_regs[regno - 8] = value;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
 | |
| {
 | |
|     msr_mrs_banked_exc_checks(env, tgtmode, regno);
 | |
| 
 | |
|     switch (regno) {
 | |
|     case 16: /* SPSRs */
 | |
|         return env->banked_spsr[bank_number(tgtmode)];
 | |
|     case 17: /* ELR_Hyp */
 | |
|         return env->elr_el[2];
 | |
|     case 13:
 | |
|         return env->banked_r13[bank_number(tgtmode)];
 | |
|     case 14:
 | |
|         return env->banked_r14[r14_bank_number(tgtmode)];
 | |
|     case 8 ... 12:
 | |
|         switch (tgtmode) {
 | |
|         case ARM_CPU_MODE_USR:
 | |
|             return env->usr_regs[regno - 8];
 | |
|         case ARM_CPU_MODE_FIQ:
 | |
|             return env->fiq_regs[regno - 8];
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
 | |
|                                  uint32_t isread)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
|     CPAccessResult res = CP_ACCESS_OK;
 | |
|     int target_el;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
 | |
|         && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
 | |
|         res = CP_ACCESS_TRAP;
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
 | |
|      * to sysregs non accessible at EL0 to have UNDEF-ed already.
 | |
|      */
 | |
|     if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
 | |
|         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 | |
|         uint32_t mask = 1 << ri->crn;
 | |
| 
 | |
|         if (ri->type & ARM_CP_64BIT) {
 | |
|             mask = 1 << ri->crm;
 | |
|         }
 | |
| 
 | |
|         /* T4 and T14 are RES0 */
 | |
|         mask &= ~((1 << 4) | (1 << 14));
 | |
| 
 | |
|         if (env->cp15.hstr_el2 & mask) {
 | |
|             res = CP_ACCESS_TRAP_EL2;
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ri->accessfn) {
 | |
|         res = ri->accessfn(env, ri, isread);
 | |
|     }
 | |
|     if (likely(res == CP_ACCESS_OK)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|  fail:
 | |
|     switch (res & ~CP_ACCESS_EL_MASK) {
 | |
|     case CP_ACCESS_TRAP:
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_UNCATEGORIZED:
 | |
|         if (cpu_isar_feature(aa64_ids, cpu) && isread &&
 | |
|             arm_cpreg_in_idspace(ri)) {
 | |
|             /*
 | |
|              * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
 | |
|              * not EC_UNCATEGORIZED
 | |
|              */
 | |
|             break;
 | |
|         }
 | |
|         syndrome = syn_uncategorized();
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     target_el = res & CP_ACCESS_EL_MASK;
 | |
|     switch (target_el) {
 | |
|     case 0:
 | |
|         target_el = exception_target_el(env);
 | |
|         break;
 | |
|     case 2:
 | |
|         assert(arm_current_el(env) != 3);
 | |
|         assert(arm_is_el2_enabled(env));
 | |
|         break;
 | |
|     case 3:
 | |
|         assert(arm_feature(env, ARM_FEATURE_EL3));
 | |
|         break;
 | |
|     default:
 | |
|         /* No "direct" traps to EL1 */
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     raise_exception(env, EXCP_UDEF, syndrome, target_el);
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     if (ri->type & ARM_CP_IO) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         ri->writefn(env, ri, value);
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     } else {
 | |
|         ri->writefn(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
|     uint32_t res;
 | |
| 
 | |
|     if (ri->type & ARM_CP_IO) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         res = ri->readfn(env, ri);
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     } else {
 | |
|         res = ri->readfn(env, ri);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     if (ri->type & ARM_CP_IO) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         ri->writefn(env, ri, value);
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     } else {
 | |
|         ri->writefn(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
|     uint64_t res;
 | |
| 
 | |
|     if (ri->type & ARM_CP_IO) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         res = ri->readfn(env, ri);
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     } else {
 | |
|         res = ri->readfn(env, ri);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void HELPER(pre_hvc)(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
|     /* FIXME: Use actual secure state.  */
 | |
|     bool secure = false;
 | |
|     bool undef;
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, EXCP_HVC)) {
 | |
|         /* If PSCI is enabled and this looks like a valid PSCI call then
 | |
|          * that overrides the architecturally mandated HVC behaviour.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         /* If EL2 doesn't exist, HVC always UNDEFs */
 | |
|         undef = true;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         /* EL3.HCE has priority over EL2.HCD. */
 | |
|         undef = !(env->cp15.scr_el3 & SCR_HCE);
 | |
|     } else {
 | |
|         undef = env->cp15.hcr_el2 & HCR_HCD;
 | |
|     }
 | |
| 
 | |
|     /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
 | |
|      * For ARMv8/AArch64, HVC is allowed in EL3.
 | |
|      * Note that we've already trapped HVC from EL0 at translation
 | |
|      * time.
 | |
|      */
 | |
|     if (secure && (!is_a64(env) || cur_el == 1)) {
 | |
|         undef = true;
 | |
|     }
 | |
| 
 | |
|     if (undef) {
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
 | |
| 
 | |
|     /*
 | |
|      * SMC behaviour is summarized in the following table.
 | |
|      * This helper handles the "Trap to EL2" and "Undef insn" cases.
 | |
|      * The "Trap to EL3" and "PSCI call" cases are handled in the exception
 | |
|      * helper.
 | |
|      *
 | |
|      *  -> ARM_FEATURE_EL3 and !SMD
 | |
|      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
 | |
|      *
 | |
|      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
 | |
|      *  Conduit SMC, inval call  Trap to EL2         Trap to EL3
 | |
|      *  Conduit not SMC          Trap to EL2         Trap to EL3
 | |
|      *
 | |
|      *
 | |
|      *  -> ARM_FEATURE_EL3 and SMD
 | |
|      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
 | |
|      *
 | |
|      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
 | |
|      *  Conduit SMC, inval call  Trap to EL2         Undef insn
 | |
|      *  Conduit not SMC          Trap to EL2         Undef insn
 | |
|      *
 | |
|      *
 | |
|      *  -> !ARM_FEATURE_EL3
 | |
|      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
 | |
|      *
 | |
|      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
 | |
|      *  Conduit SMC, inval call  Trap to EL2         Undef insn
 | |
|      *  Conduit not SMC          Undef insn          Undef insn
 | |
|      */
 | |
| 
 | |
|     /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
 | |
|      * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
 | |
|      *  extensions, SMD only applies to NS state.
 | |
|      * On ARMv7 without the Virtualization extensions, the SMD bit
 | |
|      * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
 | |
|      * so we need not special case this here.
 | |
|      */
 | |
|     bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
 | |
|                                                      : smd_flag && !secure;
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
 | |
|         /* If we have no EL3 then SMC always UNDEFs and can't be
 | |
|          * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
 | |
|          * firmware within QEMU, and we want an EL2 guest to be able
 | |
|          * to forbid its EL1 from making PSCI calls into QEMU's
 | |
|          * "firmware" via HCR.TSC, so for these purposes treat
 | |
|          * PSCI-via-SMC as implying an EL3.
 | |
|          * This handles the very last line of the previous table.
 | |
|          */
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| 
 | |
|     if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
 | |
|         /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
 | |
|          * We also want an EL2 guest to be able to forbid its EL1 from
 | |
|          * making PSCI calls into QEMU's "firmware" via HCR.TSC.
 | |
|          * This handles all the "Trap to EL2" cases of the previous table.
 | |
|          */
 | |
|         raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
 | |
|     }
 | |
| 
 | |
|     /* Catch the two remaining "Undef insn" cases of the previous table:
 | |
|      *    - PSCI conduit is SMC but we don't have a valid PCSI call,
 | |
|      *    - We don't have EL3 or SMD is set.
 | |
|      */
 | |
|     if (!arm_is_psci_call(cpu, EXCP_SMC) &&
 | |
|         (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
 | |
|    The only way to do that in TCG is a conditional branch, which clobbers
 | |
|    all our temporaries.  For now implement these as helper functions.  */
 | |
| 
 | |
| /* Similarly for variable shift instructions.  */
 | |
| 
 | |
| uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         if (shift == 32)
 | |
|             env->CF = x & 1;
 | |
|         else
 | |
|             env->CF = 0;
 | |
|         return 0;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (32 - shift)) & 1;
 | |
|         return x << shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         if (shift == 32)
 | |
|             env->CF = (x >> 31) & 1;
 | |
|         else
 | |
|             env->CF = 0;
 | |
|         return 0;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return x >> shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         env->CF = (x >> 31) & 1;
 | |
|         return (int32_t)x >> 31;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return (int32_t)x >> shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift1, shift;
 | |
|     shift1 = i & 0xff;
 | |
|     shift = shift1 & 0x1f;
 | |
|     if (shift == 0) {
 | |
|         if (shift1 != 0)
 | |
|             env->CF = (x >> 31) & 1;
 | |
|         return x;
 | |
|     } else {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return ((uint32_t)x >> shift) | (x << (32 - shift));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
 | |
|                           uint32_t access_type, uint32_t mmu_idx,
 | |
|                           uint32_t size)
 | |
| {
 | |
|     uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
 | |
|     uintptr_t ra = GETPC();
 | |
| 
 | |
|     if (likely(size <= in_page)) {
 | |
|         probe_access(env, ptr, size, access_type, mmu_idx, ra);
 | |
|     } else {
 | |
|         probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
 | |
|         probe_access(env, ptr + in_page, size - in_page,
 | |
|                      access_type, mmu_idx, ra);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function corresponds to AArch64.vESBOperation().
 | |
|  * Note that the AArch32 version is not functionally different.
 | |
|  */
 | |
| void HELPER(vesb)(CPUARMState *env)
 | |
| {
 | |
|     /*
 | |
|      * The EL2Enabled() check is done inside arm_hcr_el2_eff,
 | |
|      * and will return HCR_EL2.VSE == 0, so nothing happens.
 | |
|      */
 | |
|     uint64_t hcr = arm_hcr_el2_eff(env);
 | |
|     bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
 | |
|     bool pending = enabled && (hcr & HCR_VSE);
 | |
|     bool masked  = (env->daif & PSTATE_A);
 | |
| 
 | |
|     /* If VSE pending and masked, defer the exception.  */
 | |
|     if (pending && masked) {
 | |
|         uint32_t syndrome;
 | |
| 
 | |
|         if (arm_el_is_aa64(env, 1)) {
 | |
|             /* Copy across IDS and ISS from VSESR. */
 | |
|             syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
 | |
|         } else {
 | |
|             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
 | |
| 
 | |
|             if (extended_addresses_enabled(env)) {
 | |
|                 syndrome = arm_fi_to_lfsc(&fi);
 | |
|             } else {
 | |
|                 syndrome = arm_fi_to_sfsc(&fi);
 | |
|             }
 | |
|             /* Copy across AET and ExT from VSESR. */
 | |
|             syndrome |= env->cp15.vsesr_el2 & 0xd000;
 | |
|         }
 | |
| 
 | |
|         /* Set VDISR_EL2.A along with the syndrome. */
 | |
|         env->cp15.vdisr_el2 = syndrome | (1u << 31);
 | |
| 
 | |
|         /* Clear pending virtual SError */
 | |
|         env->cp15.hcr_el2 &= ~HCR_VSE;
 | |
|         cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
 | |
|     }
 | |
| }
 |