mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 20:44:16 +00:00 
			
		
		
		
	 e9fb709041
			
		
	
	
		e9fb709041
		
	
	
	
	
		
			
			Remove the use of regime_is_secure from pmsav8_mpu_lookup, passing the new parameter to the lookup instead. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220822152741.1617527-13-richard.henderson@linaro.org Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1348 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1348 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU ARM CPU -- internal functions and types
 | |
|  *
 | |
|  * Copyright (c) 2014 Linaro Ltd
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see
 | |
|  * <http://www.gnu.org/licenses/gpl-2.0.html>
 | |
|  *
 | |
|  * This header defines functions, types, etc which need to be shared
 | |
|  * between different source files within target/arm/ but which are
 | |
|  * private to it and not required by the rest of QEMU.
 | |
|  */
 | |
| 
 | |
| #ifndef TARGET_ARM_INTERNALS_H
 | |
| #define TARGET_ARM_INTERNALS_H
 | |
| 
 | |
| #include "hw/registerfields.h"
 | |
| #include "tcg/tcg-gvec-desc.h"
 | |
| #include "syndrome.h"
 | |
| 
 | |
| /* register banks for CPU modes */
 | |
| #define BANK_USRSYS 0
 | |
| #define BANK_SVC    1
 | |
| #define BANK_ABT    2
 | |
| #define BANK_UND    3
 | |
| #define BANK_IRQ    4
 | |
| #define BANK_FIQ    5
 | |
| #define BANK_HYP    6
 | |
| #define BANK_MON    7
 | |
| 
 | |
| static inline bool excp_is_internal(int excp)
 | |
| {
 | |
|     /* Return true if this exception number represents a QEMU-internal
 | |
|      * exception that will not be passed to the guest.
 | |
|      */
 | |
|     return excp == EXCP_INTERRUPT
 | |
|         || excp == EXCP_HLT
 | |
|         || excp == EXCP_DEBUG
 | |
|         || excp == EXCP_HALTED
 | |
|         || excp == EXCP_EXCEPTION_EXIT
 | |
|         || excp == EXCP_KERNEL_TRAP
 | |
|         || excp == EXCP_SEMIHOST;
 | |
| }
 | |
| 
 | |
| /* Scale factor for generic timers, ie number of ns per tick.
 | |
|  * This gives a 62.5MHz timer.
 | |
|  */
 | |
| #define GTIMER_SCALE 16
 | |
| 
 | |
| /* Bit definitions for the v7M CONTROL register */
 | |
| FIELD(V7M_CONTROL, NPRIV, 0, 1)
 | |
| FIELD(V7M_CONTROL, SPSEL, 1, 1)
 | |
| FIELD(V7M_CONTROL, FPCA, 2, 1)
 | |
| FIELD(V7M_CONTROL, SFPA, 3, 1)
 | |
| 
 | |
| /* Bit definitions for v7M exception return payload */
 | |
| FIELD(V7M_EXCRET, ES, 0, 1)
 | |
| FIELD(V7M_EXCRET, RES0, 1, 1)
 | |
| FIELD(V7M_EXCRET, SPSEL, 2, 1)
 | |
| FIELD(V7M_EXCRET, MODE, 3, 1)
 | |
| FIELD(V7M_EXCRET, FTYPE, 4, 1)
 | |
| FIELD(V7M_EXCRET, DCRS, 5, 1)
 | |
| FIELD(V7M_EXCRET, S, 6, 1)
 | |
| FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
 | |
| 
 | |
| /* Minimum value which is a magic number for exception return */
 | |
| #define EXC_RETURN_MIN_MAGIC 0xff000000
 | |
| /* Minimum number which is a magic number for function or exception return
 | |
|  * when using v8M security extension
 | |
|  */
 | |
| #define FNC_RETURN_MIN_MAGIC 0xfefffffe
 | |
| 
 | |
| /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
 | |
| FIELD(DBGWCR, E, 0, 1)
 | |
| FIELD(DBGWCR, PAC, 1, 2)
 | |
| FIELD(DBGWCR, LSC, 3, 2)
 | |
| FIELD(DBGWCR, BAS, 5, 8)
 | |
| FIELD(DBGWCR, HMC, 13, 1)
 | |
| FIELD(DBGWCR, SSC, 14, 2)
 | |
| FIELD(DBGWCR, LBN, 16, 4)
 | |
| FIELD(DBGWCR, WT, 20, 1)
 | |
| FIELD(DBGWCR, MASK, 24, 5)
 | |
| FIELD(DBGWCR, SSCE, 29, 1)
 | |
| 
 | |
| /* We use a few fake FSR values for internal purposes in M profile.
 | |
|  * M profile cores don't have A/R format FSRs, but currently our
 | |
|  * get_phys_addr() code assumes A/R profile and reports failures via
 | |
|  * an A/R format FSR value. We then translate that into the proper
 | |
|  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
 | |
|  * Mostly the FSR values we use for this are those defined for v7PMSA,
 | |
|  * since we share some of that codepath. A few kinds of fault are
 | |
|  * only for M profile and have no A/R equivalent, though, so we have
 | |
|  * to pick a value from the reserved range (which we never otherwise
 | |
|  * generate) to use for these.
 | |
|  * These values will never be visible to the guest.
 | |
|  */
 | |
| #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
 | |
| #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
 | |
| 
 | |
| /**
 | |
|  * raise_exception: Raise the specified exception.
 | |
|  * Raise a guest exception with the specified value, syndrome register
 | |
|  * and target exception level. This should be called from helper functions,
 | |
|  * and never returns because we will longjump back up to the CPU main loop.
 | |
|  */
 | |
| G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
 | |
|                                 uint32_t syndrome, uint32_t target_el);
 | |
| 
 | |
| /*
 | |
|  * Similarly, but also use unwinding to restore cpu state.
 | |
|  */
 | |
| G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
 | |
|                                       uint32_t syndrome, uint32_t target_el,
 | |
|                                       uintptr_t ra);
 | |
| 
 | |
| /*
 | |
|  * For AArch64, map a given EL to an index in the banked_spsr array.
 | |
|  * Note that this mapping and the AArch32 mapping defined in bank_number()
 | |
|  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 | |
|  * mandated mapping between each other.
 | |
|  */
 | |
| static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 | |
| {
 | |
|     static const unsigned int map[4] = {
 | |
|         [1] = BANK_SVC, /* EL1.  */
 | |
|         [2] = BANK_HYP, /* EL2.  */
 | |
|         [3] = BANK_MON, /* EL3.  */
 | |
|     };
 | |
|     assert(el >= 1 && el <= 3);
 | |
|     return map[el];
 | |
| }
 | |
| 
 | |
| /* Map CPU modes onto saved register banks.  */
 | |
| static inline int bank_number(int mode)
 | |
| {
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|         return BANK_USRSYS;
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|         return BANK_SVC;
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|         return BANK_ABT;
 | |
|     case ARM_CPU_MODE_UND:
 | |
|         return BANK_UND;
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|         return BANK_IRQ;
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         return BANK_FIQ;
 | |
|     case ARM_CPU_MODE_HYP:
 | |
|         return BANK_HYP;
 | |
|     case ARM_CPU_MODE_MON:
 | |
|         return BANK_MON;
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * r14_bank_number: Map CPU mode onto register bank for r14
 | |
|  *
 | |
|  * Given an AArch32 CPU mode, return the index into the saved register
 | |
|  * banks to use for the R14 (LR) in that mode. This is the same as
 | |
|  * bank_number(), except for the special case of Hyp mode, where
 | |
|  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 | |
|  * This should be used as the index into env->banked_r14[], and
 | |
|  * bank_number() used for the index into env->banked_r13[] and
 | |
|  * env->banked_spsr[].
 | |
|  */
 | |
| static inline int r14_bank_number(int mode)
 | |
| {
 | |
|     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 | |
| }
 | |
| 
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 | |
| void arm_translate_init(void);
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
 | |
| #endif /* CONFIG_TCG */
 | |
| 
 | |
| enum arm_fprounding {
 | |
|     FPROUNDING_TIEEVEN,
 | |
|     FPROUNDING_POSINF,
 | |
|     FPROUNDING_NEGINF,
 | |
|     FPROUNDING_ZERO,
 | |
|     FPROUNDING_TIEAWAY,
 | |
|     FPROUNDING_ODD
 | |
| };
 | |
| 
 | |
| int arm_rmode_to_sf(int rmode);
 | |
| 
 | |
| static inline void aarch64_save_sp(CPUARMState *env, int el)
 | |
| {
 | |
|     if (env->pstate & PSTATE_SP) {
 | |
|         env->sp_el[el] = env->xregs[31];
 | |
|     } else {
 | |
|         env->sp_el[0] = env->xregs[31];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void aarch64_restore_sp(CPUARMState *env, int el)
 | |
| {
 | |
|     if (env->pstate & PSTATE_SP) {
 | |
|         env->xregs[31] = env->sp_el[el];
 | |
|     } else {
 | |
|         env->xregs[31] = env->sp_el[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void update_spsel(CPUARMState *env, uint32_t imm)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     /* Update PSTATE SPSel bit; this requires us to update the
 | |
|      * working stack pointer in xregs[31].
 | |
|      */
 | |
|     if (!((imm ^ env->pstate) & PSTATE_SP)) {
 | |
|         return;
 | |
|     }
 | |
|     aarch64_save_sp(env, cur_el);
 | |
|     env->pstate = deposit32(env->pstate, 0, 1, imm);
 | |
| 
 | |
|     /* We rely on illegal updates to SPsel from EL0 to get trapped
 | |
|      * at translation time.
 | |
|      */
 | |
|     assert(cur_el >= 1 && cur_el <= 3);
 | |
|     aarch64_restore_sp(env, cur_el);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * arm_pamax
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * Returns the implementation defined bit-width of physical addresses.
 | |
|  * The ARMv8 reference manuals refer to this as PAMax().
 | |
|  */
 | |
| unsigned int arm_pamax(ARMCPU *cpu);
 | |
| 
 | |
| /* Return true if extended addresses are enabled.
 | |
|  * This is always the case if our translation regime is 64 bit,
 | |
|  * but depends on TTBCR.EAE for 32 bit.
 | |
|  */
 | |
| static inline bool extended_addresses_enabled(CPUARMState *env)
 | |
| {
 | |
|     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 | |
|     return arm_el_is_aa64(env, 1) ||
 | |
|            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
 | |
| }
 | |
| 
 | |
| /* Update a QEMU watchpoint based on the information the guest has set in the
 | |
|  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 | |
|  */
 | |
| void hw_watchpoint_update(ARMCPU *cpu, int n);
 | |
| /* Update the QEMU watchpoints for every guest watchpoint. This does a
 | |
|  * complete delete-and-reinstate of the QEMU watchpoint list and so is
 | |
|  * suitable for use after migration or on reset.
 | |
|  */
 | |
| void hw_watchpoint_update_all(ARMCPU *cpu);
 | |
| /* Update a QEMU breakpoint based on the information the guest has set in the
 | |
|  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 | |
|  */
 | |
| void hw_breakpoint_update(ARMCPU *cpu, int n);
 | |
| /* Update the QEMU breakpoints for every guest breakpoint. This does a
 | |
|  * complete delete-and-reinstate of the QEMU breakpoint list and so is
 | |
|  * suitable for use after migration or on reset.
 | |
|  */
 | |
| void hw_breakpoint_update_all(ARMCPU *cpu);
 | |
| 
 | |
| /* Callback function for checking if a breakpoint should trigger. */
 | |
| bool arm_debug_check_breakpoint(CPUState *cs);
 | |
| 
 | |
| /* Callback function for checking if a watchpoint should trigger. */
 | |
| bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 | |
| 
 | |
| /* Adjust addresses (in BE32 mode) before testing against watchpoint
 | |
|  * addresses.
 | |
|  */
 | |
| vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 | |
| 
 | |
| /* Callback function for when a watchpoint or breakpoint triggers. */
 | |
| void arm_debug_excp_handler(CPUState *cs);
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 | |
| static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| static inline void arm_handle_psci_call(ARMCPU *cpu)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| #else
 | |
| /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 | |
| bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 | |
| /* Actually handle a PSCI call */
 | |
| void arm_handle_psci_call(ARMCPU *cpu);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * arm_clear_exclusive: clear the exclusive monitor
 | |
|  * @env: CPU env
 | |
|  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 | |
|  */
 | |
| static inline void arm_clear_exclusive(CPUARMState *env)
 | |
| {
 | |
|     env->exclusive_addr = -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ARMFaultType: type of an ARM MMU fault
 | |
|  * This corresponds to the v8A pseudocode's Fault enumeration,
 | |
|  * with extensions for QEMU internal conditions.
 | |
|  */
 | |
| typedef enum ARMFaultType {
 | |
|     ARMFault_None,
 | |
|     ARMFault_AccessFlag,
 | |
|     ARMFault_Alignment,
 | |
|     ARMFault_Background,
 | |
|     ARMFault_Domain,
 | |
|     ARMFault_Permission,
 | |
|     ARMFault_Translation,
 | |
|     ARMFault_AddressSize,
 | |
|     ARMFault_SyncExternal,
 | |
|     ARMFault_SyncExternalOnWalk,
 | |
|     ARMFault_SyncParity,
 | |
|     ARMFault_SyncParityOnWalk,
 | |
|     ARMFault_AsyncParity,
 | |
|     ARMFault_AsyncExternal,
 | |
|     ARMFault_Debug,
 | |
|     ARMFault_TLBConflict,
 | |
|     ARMFault_Lockdown,
 | |
|     ARMFault_Exclusive,
 | |
|     ARMFault_ICacheMaint,
 | |
|     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 | |
|     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 | |
| } ARMFaultType;
 | |
| 
 | |
| /**
 | |
|  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 | |
|  * @type: Type of fault
 | |
|  * @level: Table walk level (for translation, access flag and permission faults)
 | |
|  * @domain: Domain of the fault address (for non-LPAE CPUs only)
 | |
|  * @s2addr: Address that caused a fault at stage 2
 | |
|  * @stage2: True if we faulted at stage 2
 | |
|  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 | |
|  * @s1ns: True if we faulted on a non-secure IPA while in secure state
 | |
|  * @ea: True if we should set the EA (external abort type) bit in syndrome
 | |
|  */
 | |
| typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 | |
| struct ARMMMUFaultInfo {
 | |
|     ARMFaultType type;
 | |
|     target_ulong s2addr;
 | |
|     int level;
 | |
|     int domain;
 | |
|     bool stage2;
 | |
|     bool s1ptw;
 | |
|     bool s1ns;
 | |
|     bool ea;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 | |
|  * Compare pseudocode EncodeSDFSC(), though unlike that function
 | |
|  * we set up a whole FSR-format code including domain field and
 | |
|  * putting the high bit of the FSC into bit 10.
 | |
|  */
 | |
| static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     uint32_t fsc;
 | |
| 
 | |
|     switch (fi->type) {
 | |
|     case ARMFault_None:
 | |
|         return 0;
 | |
|     case ARMFault_AccessFlag:
 | |
|         fsc = fi->level == 1 ? 0x3 : 0x6;
 | |
|         break;
 | |
|     case ARMFault_Alignment:
 | |
|         fsc = 0x1;
 | |
|         break;
 | |
|     case ARMFault_Permission:
 | |
|         fsc = fi->level == 1 ? 0xd : 0xf;
 | |
|         break;
 | |
|     case ARMFault_Domain:
 | |
|         fsc = fi->level == 1 ? 0x9 : 0xb;
 | |
|         break;
 | |
|     case ARMFault_Translation:
 | |
|         fsc = fi->level == 1 ? 0x5 : 0x7;
 | |
|         break;
 | |
|     case ARMFault_SyncExternal:
 | |
|         fsc = 0x8 | (fi->ea << 12);
 | |
|         break;
 | |
|     case ARMFault_SyncExternalOnWalk:
 | |
|         fsc = fi->level == 1 ? 0xc : 0xe;
 | |
|         fsc |= (fi->ea << 12);
 | |
|         break;
 | |
|     case ARMFault_SyncParity:
 | |
|         fsc = 0x409;
 | |
|         break;
 | |
|     case ARMFault_SyncParityOnWalk:
 | |
|         fsc = fi->level == 1 ? 0x40c : 0x40e;
 | |
|         break;
 | |
|     case ARMFault_AsyncParity:
 | |
|         fsc = 0x408;
 | |
|         break;
 | |
|     case ARMFault_AsyncExternal:
 | |
|         fsc = 0x406 | (fi->ea << 12);
 | |
|         break;
 | |
|     case ARMFault_Debug:
 | |
|         fsc = 0x2;
 | |
|         break;
 | |
|     case ARMFault_TLBConflict:
 | |
|         fsc = 0x400;
 | |
|         break;
 | |
|     case ARMFault_Lockdown:
 | |
|         fsc = 0x404;
 | |
|         break;
 | |
|     case ARMFault_Exclusive:
 | |
|         fsc = 0x405;
 | |
|         break;
 | |
|     case ARMFault_ICacheMaint:
 | |
|         fsc = 0x4;
 | |
|         break;
 | |
|     case ARMFault_Background:
 | |
|         fsc = 0x0;
 | |
|         break;
 | |
|     case ARMFault_QEMU_NSCExec:
 | |
|         fsc = M_FAKE_FSR_NSC_EXEC;
 | |
|         break;
 | |
|     case ARMFault_QEMU_SFault:
 | |
|         fsc = M_FAKE_FSR_SFAULT;
 | |
|         break;
 | |
|     default:
 | |
|         /* Other faults can't occur in a context that requires a
 | |
|          * short-format status code.
 | |
|          */
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     fsc |= (fi->domain << 4);
 | |
|     return fsc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 | |
|  * Compare pseudocode EncodeLDFSC(), though unlike that function
 | |
|  * we fill in also the LPAE bit 9 of a DFSR format.
 | |
|  */
 | |
| static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     uint32_t fsc;
 | |
| 
 | |
|     switch (fi->type) {
 | |
|     case ARMFault_None:
 | |
|         return 0;
 | |
|     case ARMFault_AddressSize:
 | |
|         assert(fi->level >= -1 && fi->level <= 3);
 | |
|         if (fi->level < 0) {
 | |
|             fsc = 0b101001;
 | |
|         } else {
 | |
|             fsc = fi->level;
 | |
|         }
 | |
|         break;
 | |
|     case ARMFault_AccessFlag:
 | |
|         assert(fi->level >= 0 && fi->level <= 3);
 | |
|         fsc = 0b001000 | fi->level;
 | |
|         break;
 | |
|     case ARMFault_Permission:
 | |
|         assert(fi->level >= 0 && fi->level <= 3);
 | |
|         fsc = 0b001100 | fi->level;
 | |
|         break;
 | |
|     case ARMFault_Translation:
 | |
|         assert(fi->level >= -1 && fi->level <= 3);
 | |
|         if (fi->level < 0) {
 | |
|             fsc = 0b101011;
 | |
|         } else {
 | |
|             fsc = 0b000100 | fi->level;
 | |
|         }
 | |
|         break;
 | |
|     case ARMFault_SyncExternal:
 | |
|         fsc = 0x10 | (fi->ea << 12);
 | |
|         break;
 | |
|     case ARMFault_SyncExternalOnWalk:
 | |
|         assert(fi->level >= -1 && fi->level <= 3);
 | |
|         if (fi->level < 0) {
 | |
|             fsc = 0b010011;
 | |
|         } else {
 | |
|             fsc = 0b010100 | fi->level;
 | |
|         }
 | |
|         fsc |= fi->ea << 12;
 | |
|         break;
 | |
|     case ARMFault_SyncParity:
 | |
|         fsc = 0x18;
 | |
|         break;
 | |
|     case ARMFault_SyncParityOnWalk:
 | |
|         assert(fi->level >= -1 && fi->level <= 3);
 | |
|         if (fi->level < 0) {
 | |
|             fsc = 0b011011;
 | |
|         } else {
 | |
|             fsc = 0b011100 | fi->level;
 | |
|         }
 | |
|         break;
 | |
|     case ARMFault_AsyncParity:
 | |
|         fsc = 0x19;
 | |
|         break;
 | |
|     case ARMFault_AsyncExternal:
 | |
|         fsc = 0x11 | (fi->ea << 12);
 | |
|         break;
 | |
|     case ARMFault_Alignment:
 | |
|         fsc = 0x21;
 | |
|         break;
 | |
|     case ARMFault_Debug:
 | |
|         fsc = 0x22;
 | |
|         break;
 | |
|     case ARMFault_TLBConflict:
 | |
|         fsc = 0x30;
 | |
|         break;
 | |
|     case ARMFault_Lockdown:
 | |
|         fsc = 0x34;
 | |
|         break;
 | |
|     case ARMFault_Exclusive:
 | |
|         fsc = 0x35;
 | |
|         break;
 | |
|     default:
 | |
|         /* Other faults can't occur in a context that requires a
 | |
|          * long-format status code.
 | |
|          */
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     fsc |= 1 << 9;
 | |
|     return fsc;
 | |
| }
 | |
| 
 | |
| static inline bool arm_extabort_type(MemTxResult result)
 | |
| {
 | |
|     /* The EA bit in syndromes and fault status registers is an
 | |
|      * IMPDEF classification of external aborts. ARM implementations
 | |
|      * usually use this to indicate AXI bus Decode error (0) or
 | |
|      * Slave error (1); in QEMU we follow that.
 | |
|      */
 | |
|     return result != MEMTX_DECODE_ERROR;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
 | |
|                             MMUAccessType access_type,
 | |
|                             bool maperr, uintptr_t ra);
 | |
| void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
 | |
|                            MMUAccessType access_type, uintptr_t ra);
 | |
| #else
 | |
| bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 | |
|                       MMUAccessType access_type, int mmu_idx,
 | |
|                       bool probe, uintptr_t retaddr);
 | |
| #endif
 | |
| 
 | |
| static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 | |
| }
 | |
| 
 | |
| static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return mmu_idx | ARM_MMU_IDX_M;
 | |
|     } else {
 | |
|         return mmu_idx | ARM_MMU_IDX_A;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 | |
| {
 | |
|     /* AArch64 is always a-profile. */
 | |
|     return mmu_idx | ARM_MMU_IDX_A;
 | |
| }
 | |
| 
 | |
| int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 | |
| 
 | |
| /*
 | |
|  * Return the MMU index for a v7M CPU with all relevant information
 | |
|  * manually specified.
 | |
|  */
 | |
| ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
 | |
|                               bool secstate, bool priv, bool negpri);
 | |
| 
 | |
| /*
 | |
|  * Return the MMU index for a v7M CPU in the specified security and
 | |
|  * privilege state.
 | |
|  */
 | |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 | |
|                                                 bool secstate, bool priv);
 | |
| 
 | |
| /* Return the MMU index for a v7M CPU in the specified security state */
 | |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 | |
| 
 | |
| /* Return true if the translation regime is using LPAE format page tables */
 | |
| bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 | |
| 
 | |
| /*
 | |
|  * Return true if the stage 1 translation regime is using LPAE
 | |
|  * format page tables
 | |
|  */
 | |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 | |
| 
 | |
| /* Raise a data fault alignment exception for the specified virtual address */
 | |
| G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 | |
|                                             MMUAccessType access_type,
 | |
|                                             int mmu_idx, uintptr_t retaddr);
 | |
| 
 | |
| /* arm_cpu_do_transaction_failed: handle a memory system error response
 | |
|  * (eg "no device/memory present at address") by raising an external abort
 | |
|  * exception
 | |
|  */
 | |
| void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 | |
|                                    vaddr addr, unsigned size,
 | |
|                                    MMUAccessType access_type,
 | |
|                                    int mmu_idx, MemTxAttrs attrs,
 | |
|                                    MemTxResult response, uintptr_t retaddr);
 | |
| 
 | |
| /* Call any registered EL change hooks */
 | |
| static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 | |
| {
 | |
|     ARMELChangeHook *hook, *next;
 | |
|     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 | |
|         hook->hook(cpu, hook->opaque);
 | |
|     }
 | |
| }
 | |
| static inline void arm_call_el_change_hook(ARMCPU *cpu)
 | |
| {
 | |
|     ARMELChangeHook *hook, *next;
 | |
|     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 | |
|         hook->hook(cpu, hook->opaque);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if this address translation regime has two ranges.  */
 | |
| static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_Stage1_E0:
 | |
|     case ARMMMUIdx_Stage1_E1:
 | |
|     case ARMMMUIdx_Stage1_E1_PAN:
 | |
|     case ARMMMUIdx_Stage1_SE0:
 | |
|     case ARMMMUIdx_Stage1_SE1:
 | |
|     case ARMMMUIdx_Stage1_SE1_PAN:
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E10_1:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|     case ARMMMUIdx_SE10_0:
 | |
|     case ARMMMUIdx_SE10_1:
 | |
|     case ARMMMUIdx_SE10_1_PAN:
 | |
|     case ARMMMUIdx_SE20_0:
 | |
|     case ARMMMUIdx_SE20_2:
 | |
|     case ARMMMUIdx_SE20_2_PAN:
 | |
|         return true;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if this address translation regime is secure */
 | |
| static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E10_1:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|     case ARMMMUIdx_Stage1_E0:
 | |
|     case ARMMMUIdx_Stage1_E1:
 | |
|     case ARMMMUIdx_Stage1_E1_PAN:
 | |
|     case ARMMMUIdx_E2:
 | |
|     case ARMMMUIdx_Stage2:
 | |
|     case ARMMMUIdx_MPrivNegPri:
 | |
|     case ARMMMUIdx_MUserNegPri:
 | |
|     case ARMMMUIdx_MPriv:
 | |
|     case ARMMMUIdx_MUser:
 | |
|         return false;
 | |
|     case ARMMMUIdx_SE3:
 | |
|     case ARMMMUIdx_SE10_0:
 | |
|     case ARMMMUIdx_SE10_1:
 | |
|     case ARMMMUIdx_SE10_1_PAN:
 | |
|     case ARMMMUIdx_SE20_0:
 | |
|     case ARMMMUIdx_SE20_2:
 | |
|     case ARMMMUIdx_SE20_2_PAN:
 | |
|     case ARMMMUIdx_Stage1_SE0:
 | |
|     case ARMMMUIdx_Stage1_SE1:
 | |
|     case ARMMMUIdx_Stage1_SE1_PAN:
 | |
|     case ARMMMUIdx_SE2:
 | |
|     case ARMMMUIdx_Stage2_S:
 | |
|     case ARMMMUIdx_MSPrivNegPri:
 | |
|     case ARMMMUIdx_MSUserNegPri:
 | |
|     case ARMMMUIdx_MSPriv:
 | |
|     case ARMMMUIdx_MSUser:
 | |
|         return true;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_Stage1_E1_PAN:
 | |
|     case ARMMMUIdx_Stage1_SE1_PAN:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|     case ARMMMUIdx_SE10_1_PAN:
 | |
|     case ARMMMUIdx_SE20_2_PAN:
 | |
|         return true;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the exception level which controls this address translation regime */
 | |
| static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_SE20_0:
 | |
|     case ARMMMUIdx_SE20_2:
 | |
|     case ARMMMUIdx_SE20_2_PAN:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|     case ARMMMUIdx_Stage2:
 | |
|     case ARMMMUIdx_Stage2_S:
 | |
|     case ARMMMUIdx_SE2:
 | |
|     case ARMMMUIdx_E2:
 | |
|         return 2;
 | |
|     case ARMMMUIdx_SE3:
 | |
|         return 3;
 | |
|     case ARMMMUIdx_SE10_0:
 | |
|     case ARMMMUIdx_Stage1_SE0:
 | |
|         return arm_el_is_aa64(env, 3) ? 1 : 3;
 | |
|     case ARMMMUIdx_SE10_1:
 | |
|     case ARMMMUIdx_SE10_1_PAN:
 | |
|     case ARMMMUIdx_Stage1_E0:
 | |
|     case ARMMMUIdx_Stage1_E1:
 | |
|     case ARMMMUIdx_Stage1_E1_PAN:
 | |
|     case ARMMMUIdx_Stage1_SE1:
 | |
|     case ARMMMUIdx_Stage1_SE1_PAN:
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E10_1:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|     case ARMMMUIdx_MPrivNegPri:
 | |
|     case ARMMMUIdx_MUserNegPri:
 | |
|     case ARMMMUIdx_MPriv:
 | |
|     case ARMMMUIdx_MUser:
 | |
|     case ARMMMUIdx_MSPrivNegPri:
 | |
|     case ARMMMUIdx_MSUserNegPri:
 | |
|     case ARMMMUIdx_MSPriv:
 | |
|     case ARMMMUIdx_MSUser:
 | |
|         return 1;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the SCTLR value which controls this address translation regime */
 | |
| static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
 | |
|  * and the Non-Secure stage 2 translation regimes (and hence which are
 | |
|  * not present in VSTCR_EL2).
 | |
|  */
 | |
| #define VTCR_SHARED_FIELD_MASK \
 | |
|     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
 | |
|      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
 | |
|      R_VTCR_DS_MASK)
 | |
| 
 | |
| /* Return the value of the TCR controlling this translation regime */
 | |
| static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         return env->cp15.vtcr_el2;
 | |
|     }
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2_S) {
 | |
|         /*
 | |
|          * Secure stage 2 shares fields from VTCR_EL2. We merge those
 | |
|          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
 | |
|          * value so the callers don't need to special case this.
 | |
|          *
 | |
|          * If a future architecture change defines bits in VSTCR_EL2 that
 | |
|          * overlap with these VTCR_EL2 fields we may need to revisit this.
 | |
|          */
 | |
|         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
 | |
|         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
 | |
|         return v;
 | |
|     }
 | |
|     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_num_brps: Return number of implemented breakpoints.
 | |
|  * Note that the ID register BRPS field is "number of bps - 1",
 | |
|  * and we return the actual number of breakpoints.
 | |
|  */
 | |
| static inline int arm_num_brps(ARMCPU *cpu)
 | |
| {
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 | |
|     } else {
 | |
|         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_num_wrps: Return number of implemented watchpoints.
 | |
|  * Note that the ID register WRPS field is "number of wps - 1",
 | |
|  * and we return the actual number of watchpoints.
 | |
|  */
 | |
| static inline int arm_num_wrps(ARMCPU *cpu)
 | |
| {
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
 | |
|     } else {
 | |
|         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_num_ctx_cmps: Return number of implemented context comparators.
 | |
|  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
 | |
|  * and we return the actual number of comparators.
 | |
|  */
 | |
| static inline int arm_num_ctx_cmps(ARMCPU *cpu)
 | |
| {
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
 | |
|     } else {
 | |
|         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * v7m_using_psp: Return true if using process stack pointer
 | |
|  * Return true if the CPU is currently using the process stack
 | |
|  * pointer, or false if it is using the main stack pointer.
 | |
|  */
 | |
| static inline bool v7m_using_psp(CPUARMState *env)
 | |
| {
 | |
|     /* Handler mode always uses the main stack; for thread mode
 | |
|      * the CONTROL.SPSEL bit determines the answer.
 | |
|      * Note that in v7M it is not possible to be in Handler mode with
 | |
|      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 | |
|      */
 | |
|     return !arm_v7m_is_handler_mode(env) &&
 | |
|         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * v7m_sp_limit: Return SP limit for current CPU state
 | |
|  * Return the SP limit value for the current CPU security state
 | |
|  * and stack pointer.
 | |
|  */
 | |
| static inline uint32_t v7m_sp_limit(CPUARMState *env)
 | |
| {
 | |
|     if (v7m_using_psp(env)) {
 | |
|         return env->v7m.psplim[env->v7m.secure];
 | |
|     } else {
 | |
|         return env->v7m.msplim[env->v7m.secure];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * v7m_cpacr_pass:
 | |
|  * Return true if the v7M CPACR permits access to the FPU for the specified
 | |
|  * security state and privilege level.
 | |
|  */
 | |
| static inline bool v7m_cpacr_pass(CPUARMState *env,
 | |
|                                   bool is_secure, bool is_priv)
 | |
| {
 | |
|     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
 | |
|     case 0:
 | |
|     case 2: /* UNPREDICTABLE: we treat like 0 */
 | |
|         return false;
 | |
|     case 1:
 | |
|         return is_priv;
 | |
|     case 3:
 | |
|         return true;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * aarch32_mode_name(): Return name of the AArch32 CPU mode
 | |
|  * @psr: Program Status Register indicating CPU mode
 | |
|  *
 | |
|  * Returns, for debug logging purposes, a printable representation
 | |
|  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 | |
|  * the low bits of the specified PSR.
 | |
|  */
 | |
| static inline const char *aarch32_mode_name(uint32_t psr)
 | |
| {
 | |
|     static const char cpu_mode_names[16][4] = {
 | |
|         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 | |
|         "???", "???", "hyp", "und", "???", "???", "???", "sys"
 | |
|     };
 | |
| 
 | |
|     return cpu_mode_names[psr & 0xf];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 | |
|  *
 | |
|  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 | |
|  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 | |
|  * Must be called with the iothread lock held.
 | |
|  */
 | |
| void arm_cpu_update_virq(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 | |
|  *
 | |
|  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 | |
|  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 | |
|  * Must be called with the iothread lock held.
 | |
|  */
 | |
| void arm_cpu_update_vfiq(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
 | |
|  *
 | |
|  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
 | |
|  * following a change to the HCR_EL2.VSE bit.
 | |
|  */
 | |
| void arm_cpu_update_vserr(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * arm_mmu_idx_el:
 | |
|  * @env: The cpu environment
 | |
|  * @el: The EL to use.
 | |
|  *
 | |
|  * Return the full ARMMMUIdx for the translation regime for EL.
 | |
|  */
 | |
| ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
 | |
| 
 | |
| /**
 | |
|  * arm_mmu_idx:
 | |
|  * @env: The cpu environment
 | |
|  *
 | |
|  * Return the full ARMMMUIdx for the current translation regime.
 | |
|  */
 | |
| ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 | |
| 
 | |
| /**
 | |
|  * arm_stage1_mmu_idx:
 | |
|  * @env: The cpu environment
 | |
|  *
 | |
|  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 | |
|  */
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return ARMMMUIdx_Stage1_E0;
 | |
| }
 | |
| static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 | |
| {
 | |
|     return ARMMMUIdx_Stage1_E0;
 | |
| }
 | |
| #else
 | |
| ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
 | |
| ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * arm_mmu_idx_is_stage1_of_2:
 | |
|  * @mmu_idx: The ARMMMUIdx to test
 | |
|  *
 | |
|  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
 | |
|  * first stage of a two stage regime.
 | |
|  */
 | |
| static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_Stage1_E0:
 | |
|     case ARMMMUIdx_Stage1_E1:
 | |
|     case ARMMMUIdx_Stage1_E1_PAN:
 | |
|     case ARMMMUIdx_Stage1_SE0:
 | |
|     case ARMMMUIdx_Stage1_SE1:
 | |
|     case ARMMMUIdx_Stage1_SE1_PAN:
 | |
|         return true;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
 | |
|                                                const ARMISARegisters *id)
 | |
| {
 | |
|     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
 | |
| 
 | |
|     if ((features >> ARM_FEATURE_V4T) & 1) {
 | |
|         valid |= CPSR_T;
 | |
|     }
 | |
|     if ((features >> ARM_FEATURE_V5) & 1) {
 | |
|         valid |= CPSR_Q; /* V5TE in reality*/
 | |
|     }
 | |
|     if ((features >> ARM_FEATURE_V6) & 1) {
 | |
|         valid |= CPSR_E | CPSR_GE;
 | |
|     }
 | |
|     if ((features >> ARM_FEATURE_THUMB2) & 1) {
 | |
|         valid |= CPSR_IT;
 | |
|     }
 | |
|     if (isar_feature_aa32_jazelle(id)) {
 | |
|         valid |= CPSR_J;
 | |
|     }
 | |
|     if (isar_feature_aa32_pan(id)) {
 | |
|         valid |= CPSR_PAN;
 | |
|     }
 | |
|     if (isar_feature_aa32_dit(id)) {
 | |
|         valid |= CPSR_DIT;
 | |
|     }
 | |
|     if (isar_feature_aa32_ssbs(id)) {
 | |
|         valid |= CPSR_SSBS;
 | |
|     }
 | |
| 
 | |
|     return valid;
 | |
| }
 | |
| 
 | |
| static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
 | |
| {
 | |
|     uint32_t valid;
 | |
| 
 | |
|     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
 | |
|     if (isar_feature_aa64_bti(id)) {
 | |
|         valid |= PSTATE_BTYPE;
 | |
|     }
 | |
|     if (isar_feature_aa64_pan(id)) {
 | |
|         valid |= PSTATE_PAN;
 | |
|     }
 | |
|     if (isar_feature_aa64_uao(id)) {
 | |
|         valid |= PSTATE_UAO;
 | |
|     }
 | |
|     if (isar_feature_aa64_dit(id)) {
 | |
|         valid |= PSTATE_DIT;
 | |
|     }
 | |
|     if (isar_feature_aa64_ssbs(id)) {
 | |
|         valid |= PSTATE_SSBS;
 | |
|     }
 | |
|     if (isar_feature_aa64_mte(id)) {
 | |
|         valid |= PSTATE_TCO;
 | |
|     }
 | |
| 
 | |
|     return valid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parameters of a given virtual address, as extracted from the
 | |
|  * translation control register (TCR) for a given regime.
 | |
|  */
 | |
| typedef struct ARMVAParameters {
 | |
|     unsigned tsz    : 8;
 | |
|     unsigned ps     : 3;
 | |
|     unsigned sh     : 2;
 | |
|     unsigned select : 1;
 | |
|     bool tbi        : 1;
 | |
|     bool epd        : 1;
 | |
|     bool hpd        : 1;
 | |
|     bool using16k   : 1;
 | |
|     bool using64k   : 1;
 | |
|     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
 | |
|     bool ds         : 1;
 | |
| } ARMVAParameters;
 | |
| 
 | |
| ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
 | |
|                                    ARMMMUIdx mmu_idx, bool data);
 | |
| 
 | |
| int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
 | |
| int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
 | |
| 
 | |
| /* Determine if allocation tags are available.  */
 | |
| static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
 | |
|                                                  uint64_t sctlr)
 | |
| {
 | |
|     if (el < 3
 | |
|         && arm_feature(env, ARM_FEATURE_EL3)
 | |
|         && !(env->cp15.scr_el3 & SCR_ATA)) {
 | |
|         return false;
 | |
|     }
 | |
|     if (el < 2 && arm_is_el2_enabled(env)) {
 | |
|         uint64_t hcr = arm_hcr_el2_eff(env);
 | |
|         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
 | |
|     return sctlr != 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| /* Security attributes for an address, as returned by v8m_security_lookup. */
 | |
| typedef struct V8M_SAttributes {
 | |
|     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
 | |
|     bool ns;
 | |
|     bool nsc;
 | |
|     uint8_t sregion;
 | |
|     bool srvalid;
 | |
|     uint8_t iregion;
 | |
|     bool irvalid;
 | |
| } V8M_SAttributes;
 | |
| 
 | |
| void v8m_security_lookup(CPUARMState *env, uint32_t address,
 | |
|                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                          bool secure, V8M_SAttributes *sattrs);
 | |
| 
 | |
| /* Cacheability and shareability attributes for a memory access */
 | |
| typedef struct ARMCacheAttrs {
 | |
|     /*
 | |
|      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
 | |
|      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
 | |
|      */
 | |
|     unsigned int attrs:8;
 | |
|     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
 | |
|     bool is_s2_format:1;
 | |
| } ARMCacheAttrs;
 | |
| 
 | |
| /* Fields that are valid upon success. */
 | |
| typedef struct GetPhysAddrResult {
 | |
|     hwaddr phys;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     MemTxAttrs attrs;
 | |
|     ARMCacheAttrs cacheattrs;
 | |
| } GetPhysAddrResult;
 | |
| 
 | |
| bool get_phys_addr(CPUARMState *env, target_ulong address,
 | |
|                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
 | |
|     __attribute__((nonnull));
 | |
| 
 | |
| bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
 | |
|                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                        bool is_secure, GetPhysAddrResult *result,
 | |
|                        ARMMMUFaultInfo *fi, uint32_t *mregion);
 | |
| 
 | |
| void arm_log_exception(CPUState *cs);
 | |
| 
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| /*
 | |
|  * The log2 of the words in the tag block, for GMID_EL1.BS.
 | |
|  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
 | |
|  */
 | |
| #define GMID_EL1_BS  6
 | |
| 
 | |
| /* We associate one allocation tag per 16 bytes, the minimum.  */
 | |
| #define LOG2_TAG_GRANULE 4
 | |
| #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
 | |
| 
 | |
| /*
 | |
|  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
 | |
|  * the same simd_desc() encoding due to restrictions on size.
 | |
|  * Use these instead.
 | |
|  */
 | |
| FIELD(PREDDESC, OPRSZ, 0, 6)
 | |
| FIELD(PREDDESC, ESZ, 6, 2)
 | |
| FIELD(PREDDESC, DATA, 8, 24)
 | |
| 
 | |
| /*
 | |
|  * The SVE simd_data field, for memory ops, contains either
 | |
|  * rd (5 bits) or a shift count (2 bits).
 | |
|  */
 | |
| #define SVE_MTEDESC_SHIFT 5
 | |
| 
 | |
| /* Bits within a descriptor passed to the helper_mte_check* functions. */
 | |
| FIELD(MTEDESC, MIDX,  0, 4)
 | |
| FIELD(MTEDESC, TBI,   4, 2)
 | |
| FIELD(MTEDESC, TCMA,  6, 2)
 | |
| FIELD(MTEDESC, WRITE, 8, 1)
 | |
| FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
 | |
| 
 | |
| bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
 | |
| uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
 | |
| 
 | |
| static inline int allocation_tag_from_addr(uint64_t ptr)
 | |
| {
 | |
|     return extract64(ptr, 56, 4);
 | |
| }
 | |
| 
 | |
| static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
 | |
| {
 | |
|     return deposit64(ptr, 56, 4, rtag);
 | |
| }
 | |
| 
 | |
| /* Return true if tbi bits mean that the access is checked.  */
 | |
| static inline bool tbi_check(uint32_t desc, int bit55)
 | |
| {
 | |
|     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
 | |
| }
 | |
| 
 | |
| /* Return true if tcma bits mean that the access is unchecked.  */
 | |
| static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
 | |
| {
 | |
|     /*
 | |
|      * We had extracted bit55 and ptr_tag for other reasons, so fold
 | |
|      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
 | |
|      */
 | |
|     bool match = ((ptr_tag + bit55) & 0xf) == 0;
 | |
|     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
 | |
|     return tcma && match;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
 | |
|  * for the tag to be present in the FAR_ELx register.  But for user-only
 | |
|  * mode, we do not have a TLB with which to implement this, so we must
 | |
|  * remove the top byte.
 | |
|  */
 | |
| static inline uint64_t useronly_clean_ptr(uint64_t ptr)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     /* TBI0 is known to be enabled, while TBI1 is disabled. */
 | |
|     ptr &= sextract64(ptr, 0, 56);
 | |
| #endif
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     int64_t clean_ptr = sextract64(ptr, 0, 56);
 | |
|     if (tbi_check(desc, clean_ptr < 0)) {
 | |
|         ptr = clean_ptr;
 | |
|     }
 | |
| #endif
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* Values for M-profile PSR.ECI for MVE insns */
 | |
| enum MVEECIState {
 | |
|     ECI_NONE = 0, /* No completed beats */
 | |
|     ECI_A0 = 1, /* Completed: A0 */
 | |
|     ECI_A0A1 = 2, /* Completed: A0, A1 */
 | |
|     /* 3 is reserved */
 | |
|     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
 | |
|     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
 | |
|     /* All other values reserved */
 | |
| };
 | |
| 
 | |
| /* Definitions for the PMU registers */
 | |
| #define PMCRN_MASK  0xf800
 | |
| #define PMCRN_SHIFT 11
 | |
| #define PMCRLP  0x80
 | |
| #define PMCRLC  0x40
 | |
| #define PMCRDP  0x20
 | |
| #define PMCRX   0x10
 | |
| #define PMCRD   0x8
 | |
| #define PMCRC   0x4
 | |
| #define PMCRP   0x2
 | |
| #define PMCRE   0x1
 | |
| /*
 | |
|  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
 | |
|  * which can be written as 1 to trigger behaviour but which stay RAZ).
 | |
|  */
 | |
| #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
 | |
| 
 | |
| #define PMXEVTYPER_P          0x80000000
 | |
| #define PMXEVTYPER_U          0x40000000
 | |
| #define PMXEVTYPER_NSK        0x20000000
 | |
| #define PMXEVTYPER_NSU        0x10000000
 | |
| #define PMXEVTYPER_NSH        0x08000000
 | |
| #define PMXEVTYPER_M          0x04000000
 | |
| #define PMXEVTYPER_MT         0x02000000
 | |
| #define PMXEVTYPER_EVTCOUNT   0x0000ffff
 | |
| #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
 | |
|                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
 | |
|                                PMXEVTYPER_M | PMXEVTYPER_MT | \
 | |
|                                PMXEVTYPER_EVTCOUNT)
 | |
| 
 | |
| #define PMCCFILTR             0xf8000000
 | |
| #define PMCCFILTR_M           PMXEVTYPER_M
 | |
| #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
 | |
| 
 | |
| static inline uint32_t pmu_num_counters(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
 | |
| static inline uint64_t pmu_counter_mask(CPUARMState *env)
 | |
| {
 | |
|   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
 | |
| int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
 | |
| int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
 | |
| int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
 | |
| void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 | |
| void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
 | |
| void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
 | |
| void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
 | |
| #else
 | |
| void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
 | |
| #endif
 | |
| 
 | |
| bool el_is_in_host(CPUARMState *env, int el);
 | |
| 
 | |
| void aa32_max_features(ARMCPU *cpu);
 | |
| int exception_target_el(CPUARMState *env);
 | |
| bool arm_singlestep_active(CPUARMState *env);
 | |
| bool arm_generate_debug_exceptions(CPUARMState *env);
 | |
| 
 | |
| /* Add the cpreg definitions for debug related system registers */
 | |
| void define_debug_regs(ARMCPU *cpu);
 | |
| 
 | |
| /* Effective value of MDCR_EL2 */
 | |
| static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
 | |
| {
 | |
|     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
 | |
| }
 | |
| 
 | |
| /* Powers of 2 for sve_vq_map et al. */
 | |
| #define SVE_VQ_POW2_MAP                                 \
 | |
|     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
 | |
|      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
 | |
| 
 | |
| #endif
 |