mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 fbf59aad17
			
		
	
	
		fbf59aad17
		
	
	
	
	
		
			
			The availability of tb->pc will shortly be conditional. Introduce accessor functions to minimize ifdefs. Pass around a known pc to places like tcg_gen_code, where the caller must already have the value. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			2255 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2255 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU ARM CPU
 | |
|  *
 | |
|  * Copyright (c) 2012 SUSE LINUX Products GmbH
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see
 | |
|  * <http://www.gnu.org/licenses/gpl-2.0.html>
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/qemu-print.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/log.h"
 | |
| #include "exec/page-vary.h"
 | |
| #include "target/arm/idau.h"
 | |
| #include "qemu/module.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "cpu.h"
 | |
| #ifdef CONFIG_TCG
 | |
| #include "hw/core/tcg-cpu-ops.h"
 | |
| #endif /* CONFIG_TCG */
 | |
| #include "internals.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #include "hw/loader.h"
 | |
| #include "hw/boards.h"
 | |
| #endif
 | |
| #include "sysemu/tcg.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "disas/capstone.h"
 | |
| #include "fpu/softfloat.h"
 | |
| #include "cpregs.h"
 | |
| 
 | |
| static void arm_cpu_set_pc(CPUState *cs, vaddr value)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         env->pc = value;
 | |
|         env->thumb = false;
 | |
|     } else {
 | |
|         env->regs[15] = value & ~1;
 | |
|         env->thumb = value & 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static vaddr arm_cpu_get_pc(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         return env->pc;
 | |
|     } else {
 | |
|         return env->regs[15];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| void arm_cpu_synchronize_from_tb(CPUState *cs,
 | |
|                                  const TranslationBlock *tb)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /*
 | |
|      * It's OK to look at env for the current mode here, because it's
 | |
|      * never possible for an AArch64 TB to chain to an AArch32 TB.
 | |
|      */
 | |
|     if (is_a64(env)) {
 | |
|         env->pc = tb_pc(tb);
 | |
|     } else {
 | |
|         env->regs[15] = tb_pc(tb);
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_TCG */
 | |
| 
 | |
| static bool arm_cpu_has_work(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     return (cpu->power_state != PSCI_OFF)
 | |
|         && cs->interrupt_request &
 | |
|         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
 | |
|          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
 | |
|          | CPU_INTERRUPT_EXITTB);
 | |
| }
 | |
| 
 | |
| void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 | |
|                                  void *opaque)
 | |
| {
 | |
|     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 | |
| 
 | |
|     entry->hook = hook;
 | |
|     entry->opaque = opaque;
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
 | |
| }
 | |
| 
 | |
| void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 | |
|                                  void *opaque)
 | |
| {
 | |
|     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 | |
| 
 | |
|     entry->hook = hook;
 | |
|     entry->opaque = opaque;
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 | |
| }
 | |
| 
 | |
| static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 | |
| {
 | |
|     /* Reset a single ARMCPRegInfo register */
 | |
|     ARMCPRegInfo *ri = value;
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ri->resetfn) {
 | |
|         ri->resetfn(&cpu->env, ri);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* A zero offset is never possible as it would be regs[0]
 | |
|      * so we use it to indicate that reset is being handled elsewhere.
 | |
|      * This is basically only used for fields in non-core coprocessors
 | |
|      * (like the pxa2xx ones).
 | |
|      */
 | |
|     if (!ri->fieldoffset) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 | |
|     } else {
 | |
|         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 | |
| {
 | |
|     /* Purely an assertion check: we've already done reset once,
 | |
|      * so now check that running the reset for the cpreg doesn't
 | |
|      * change its value. This traps bugs where two different cpregs
 | |
|      * both try to reset the same state field but to different values.
 | |
|      */
 | |
|     ARMCPRegInfo *ri = value;
 | |
|     ARMCPU *cpu = opaque;
 | |
|     uint64_t oldvalue, newvalue;
 | |
| 
 | |
|     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     oldvalue = read_raw_cp_reg(&cpu->env, ri);
 | |
|     cp_reg_reset(key, value, opaque);
 | |
|     newvalue = read_raw_cp_reg(&cpu->env, ri);
 | |
|     assert(oldvalue == newvalue);
 | |
| }
 | |
| 
 | |
| static void arm_cpu_reset(DeviceState *dev)
 | |
| {
 | |
|     CPUState *s = CPU(dev);
 | |
|     ARMCPU *cpu = ARM_CPU(s);
 | |
|     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     acc->parent_reset(dev);
 | |
| 
 | |
|     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 | |
| 
 | |
|     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 | |
|     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 | |
| 
 | |
|     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 | |
|     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 | |
|     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 | |
|     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 | |
| 
 | |
|     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 | |
|         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|         /* 64 bit CPUs always start in 64 bit mode */
 | |
|         env->aarch64 = true;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         env->pstate = PSTATE_MODE_EL0t;
 | |
|         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 | |
|         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 | |
|         /* Enable all PAC keys.  */
 | |
|         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 | |
|                                   SCTLR_EnDA | SCTLR_EnDB);
 | |
|         /* Trap on btype=3 for PACIxSP. */
 | |
|         env->cp15.sctlr_el[1] |= SCTLR_BT0;
 | |
|         /* and to the FP/Neon instructions */
 | |
|         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 | |
|                                          CPACR_EL1, FPEN, 3);
 | |
|         /* and to the SVE instructions, with default vector length */
 | |
|         if (cpu_isar_feature(aa64_sve, cpu)) {
 | |
|             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 | |
|                                              CPACR_EL1, ZEN, 3);
 | |
|             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
 | |
|         }
 | |
|         /* and for SME instructions, with default vector length, and TPIDR2 */
 | |
|         if (cpu_isar_feature(aa64_sme, cpu)) {
 | |
|             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
 | |
|             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 | |
|                                              CPACR_EL1, SMEN, 3);
 | |
|             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
 | |
|             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
 | |
|                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
 | |
|                                                  SMCR, FA64, 1);
 | |
|             }
 | |
|         }
 | |
|         /*
 | |
|          * Enable 48-bit address space (TODO: take reserved_va into account).
 | |
|          * Enable TBI0 but not TBI1.
 | |
|          * Note that this must match useronly_clean_ptr.
 | |
|          */
 | |
|         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
 | |
| 
 | |
|         /* Enable MTE */
 | |
|         if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|             /* Enable tag access, but leave TCF0 as No Effect (0). */
 | |
|             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 | |
|             /*
 | |
|              * Exclude all tags, so that tag 0 is always used.
 | |
|              * This corresponds to Linux current->thread.gcr_incl = 0.
 | |
|              *
 | |
|              * Set RRND, so that helper_irg() will generate a seed later.
 | |
|              * Here in cpu_reset(), the crypto subsystem has not yet been
 | |
|              * initialized.
 | |
|              */
 | |
|             env->cp15.gcr_el1 = 0x1ffff;
 | |
|         }
 | |
|         /*
 | |
|          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
 | |
|          * This is not yet exposed from the Linux kernel in any way.
 | |
|          */
 | |
|         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
 | |
| #else
 | |
|         /* Reset into the highest available EL */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             env->pstate = PSTATE_MODE_EL3h;
 | |
|         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             env->pstate = PSTATE_MODE_EL2h;
 | |
|         } else {
 | |
|             env->pstate = PSTATE_MODE_EL1h;
 | |
|         }
 | |
| 
 | |
|         /* Sample rvbar at reset.  */
 | |
|         env->cp15.rvbar = cpu->rvbar_prop;
 | |
|         env->pc = env->cp15.rvbar;
 | |
| #endif
 | |
|     } else {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         /* Userspace expects access to cp10 and cp11 for FP/Neon */
 | |
|         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 | |
|                                          CPACR, CP10, 3);
 | |
|         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 | |
|                                          CPACR, CP11, 3);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     env->uncached_cpsr = ARM_CPU_MODE_USR;
 | |
|     /* For user mode we must enable access to coprocessors */
 | |
|     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 | |
|     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 | |
|         env->cp15.c15_cpar = 3;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|         env->cp15.c15_cpar = 1;
 | |
|     }
 | |
| #else
 | |
| 
 | |
|     /*
 | |
|      * If the highest available EL is EL2, AArch32 will start in Hyp
 | |
|      * mode; otherwise it starts in SVC. Note that if we start in
 | |
|      * AArch64 then these values in the uncached_cpsr will be ignored.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         !arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         env->uncached_cpsr = ARM_CPU_MODE_HYP;
 | |
|     } else {
 | |
|         env->uncached_cpsr = ARM_CPU_MODE_SVC;
 | |
|     }
 | |
|     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 | |
| 
 | |
|     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 | |
|      * executing as AArch32 then check if highvecs are enabled and
 | |
|      * adjust the PC accordingly.
 | |
|      */
 | |
|     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 | |
|         env->regs[15] = 0xFFFF0000;
 | |
|     }
 | |
| 
 | |
|     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 | |
| #endif
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         uint32_t initial_msp; /* Loaded from 0x0 */
 | |
|         uint32_t initial_pc; /* Loaded from 0x4 */
 | |
|         uint8_t *rom;
 | |
|         uint32_t vecbase;
 | |
| #endif
 | |
| 
 | |
|         if (cpu_isar_feature(aa32_lob, cpu)) {
 | |
|             /*
 | |
|              * LTPSIZE is constant 4 if MVE not implemented, and resets
 | |
|              * to an UNKNOWN value if MVE is implemented. We choose to
 | |
|              * always reset to 4.
 | |
|              */
 | |
|             env->v7m.ltpsize = 4;
 | |
|             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 | |
|             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 | |
|             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 | |
|         }
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|             env->v7m.secure = true;
 | |
|         } else {
 | |
|             /* This bit resets to 0 if security is supported, but 1 if
 | |
|              * it is not. The bit is not present in v7M, but we set it
 | |
|              * here so we can avoid having to make checks on it conditional
 | |
|              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 | |
|              */
 | |
|             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 | |
|             /*
 | |
|              * Set NSACR to indicate "NS access permitted to everything";
 | |
|              * this avoids having to have all the tests of it being
 | |
|              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 | |
|              * v8.1M the guest-visible value of NSACR in a CPU without the
 | |
|              * Security Extension is 0xcff.
 | |
|              */
 | |
|             env->v7m.nsacr = 0xcff;
 | |
|         }
 | |
| 
 | |
|         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 | |
|          * that it resets to 1, so QEMU always does that rather than making
 | |
|          * it dependent on CPU model. In v8M it is RES1.
 | |
|          */
 | |
|         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 | |
|         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 | |
|             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 | |
|             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 | |
|         }
 | |
|         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 | |
|             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 | |
|             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 | |
|         }
 | |
| 
 | |
|         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 | |
|             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 | |
|             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 | |
|                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 | |
|         }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         /* Unlike A/R profile, M profile defines the reset LR value */
 | |
|         env->regs[14] = 0xffffffff;
 | |
| 
 | |
|         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 | |
|         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 | |
| 
 | |
|         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 | |
|         vecbase = env->v7m.vecbase[env->v7m.secure];
 | |
|         rom = rom_ptr_for_as(s->as, vecbase, 8);
 | |
|         if (rom) {
 | |
|             /* Address zero is covered by ROM which hasn't yet been
 | |
|              * copied into physical memory.
 | |
|              */
 | |
|             initial_msp = ldl_p(rom);
 | |
|             initial_pc = ldl_p(rom + 4);
 | |
|         } else {
 | |
|             /* Address zero not covered by a ROM blob, or the ROM blob
 | |
|              * is in non-modifiable memory and this is a second reset after
 | |
|              * it got copied into memory. In the latter case, rom_ptr
 | |
|              * will return a NULL pointer and we should use ldl_phys instead.
 | |
|              */
 | |
|             initial_msp = ldl_phys(s->as, vecbase);
 | |
|             initial_pc = ldl_phys(s->as, vecbase + 4);
 | |
|         }
 | |
| 
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
 | |
|                       initial_msp, initial_pc);
 | |
| 
 | |
|         env->regs[13] = initial_msp & 0xFFFFFFFC;
 | |
|         env->regs[15] = initial_pc & ~1;
 | |
|         env->thumb = initial_pc & 1;
 | |
| #else
 | |
|         /*
 | |
|          * For user mode we run non-secure and with access to the FPU.
 | |
|          * The FPU context is active (ie does not need further setup)
 | |
|          * and is owned by non-secure.
 | |
|          */
 | |
|         env->v7m.secure = false;
 | |
|         env->v7m.nsacr = 0xcff;
 | |
|         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 | |
|         env->v7m.fpccr[M_REG_S] &=
 | |
|             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 | |
|         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* M profile requires that reset clears the exclusive monitor;
 | |
|      * A profile does not, but clearing it makes more sense than having it
 | |
|      * set with an exclusive access on address zero.
 | |
|      */
 | |
|     arm_clear_exclusive(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|         if (cpu->pmsav7_dregion > 0) {
 | |
|             if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|                 memset(env->pmsav8.rbar[M_REG_NS], 0,
 | |
|                        sizeof(*env->pmsav8.rbar[M_REG_NS])
 | |
|                        * cpu->pmsav7_dregion);
 | |
|                 memset(env->pmsav8.rlar[M_REG_NS], 0,
 | |
|                        sizeof(*env->pmsav8.rlar[M_REG_NS])
 | |
|                        * cpu->pmsav7_dregion);
 | |
|                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|                     memset(env->pmsav8.rbar[M_REG_S], 0,
 | |
|                            sizeof(*env->pmsav8.rbar[M_REG_S])
 | |
|                            * cpu->pmsav7_dregion);
 | |
|                     memset(env->pmsav8.rlar[M_REG_S], 0,
 | |
|                            sizeof(*env->pmsav8.rlar[M_REG_S])
 | |
|                            * cpu->pmsav7_dregion);
 | |
|                 }
 | |
|             } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                 memset(env->pmsav7.drbar, 0,
 | |
|                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 | |
|                 memset(env->pmsav7.drsr, 0,
 | |
|                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 | |
|                 memset(env->pmsav7.dracr, 0,
 | |
|                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 | |
|             }
 | |
|         }
 | |
|         env->pmsav7.rnr[M_REG_NS] = 0;
 | |
|         env->pmsav7.rnr[M_REG_S] = 0;
 | |
|         env->pmsav8.mair0[M_REG_NS] = 0;
 | |
|         env->pmsav8.mair0[M_REG_S] = 0;
 | |
|         env->pmsav8.mair1[M_REG_NS] = 0;
 | |
|         env->pmsav8.mair1[M_REG_S] = 0;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|         if (cpu->sau_sregion > 0) {
 | |
|             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 | |
|             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 | |
|         }
 | |
|         env->sau.rnr = 0;
 | |
|         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 | |
|          * the Cortex-M33 does.
 | |
|          */
 | |
|         env->sau.ctrl = 0;
 | |
|     }
 | |
| 
 | |
|     set_flush_to_zero(1, &env->vfp.standard_fp_status);
 | |
|     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 | |
|     set_default_nan_mode(1, &env->vfp.standard_fp_status);
 | |
|     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.fp_status);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.standard_fp_status);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.fp_status_f16);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.standard_fp_status_f16);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (kvm_enabled()) {
 | |
|         kvm_arm_reset_vcpu(cpu);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     hw_breakpoint_update_all(cpu);
 | |
|     hw_watchpoint_update_all(cpu);
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 | |
|                                      unsigned int target_el,
 | |
|                                      unsigned int cur_el, bool secure,
 | |
|                                      uint64_t hcr_el2)
 | |
| {
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     bool pstate_unmasked;
 | |
|     bool unmasked = false;
 | |
| 
 | |
|     /*
 | |
|      * Don't take exceptions if they target a lower EL.
 | |
|      * This check should catch any exceptions that would not be taken
 | |
|      * but left pending.
 | |
|      */
 | |
|     if (cur_el > target_el) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     switch (excp_idx) {
 | |
|     case EXCP_FIQ:
 | |
|         pstate_unmasked = !(env->daif & PSTATE_F);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_IRQ:
 | |
|         pstate_unmasked = !(env->daif & PSTATE_I);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_VFIQ:
 | |
|         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 | |
|             /* VFIQs are only taken when hypervized.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_F);
 | |
|     case EXCP_VIRQ:
 | |
|         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 | |
|             /* VIRQs are only taken when hypervized.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_I);
 | |
|     case EXCP_VSERR:
 | |
|         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
 | |
|             /* VIRQs are only taken when hypervized.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_A);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Use the target EL, current execution state and SCR/HCR settings to
 | |
|      * determine whether the corresponding CPSR bit is used to mask the
 | |
|      * interrupt.
 | |
|      */
 | |
|     if ((target_el > cur_el) && (target_el != 1)) {
 | |
|         /* Exceptions targeting a higher EL may not be maskable */
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             /*
 | |
|              * 64-bit masking rules are simple: exceptions to EL3
 | |
|              * can't be masked, and exceptions to EL2 can only be
 | |
|              * masked from Secure state. The HCR and SCR settings
 | |
|              * don't affect the masking logic, only the interrupt routing.
 | |
|              */
 | |
|             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 | |
|                 unmasked = true;
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * The old 32-bit-only environment has a more complicated
 | |
|              * masking setup. HCR and SCR bits not only affect interrupt
 | |
|              * routing but also change the behaviour of masking.
 | |
|              */
 | |
|             bool hcr, scr;
 | |
| 
 | |
|             switch (excp_idx) {
 | |
|             case EXCP_FIQ:
 | |
|                 /*
 | |
|                  * If FIQs are routed to EL3 or EL2 then there are cases where
 | |
|                  * we override the CPSR.F in determining if the exception is
 | |
|                  * masked or not. If neither of these are set then we fall back
 | |
|                  * to the CPSR.F setting otherwise we further assess the state
 | |
|                  * below.
 | |
|                  */
 | |
|                 hcr = hcr_el2 & HCR_FMO;
 | |
|                 scr = (env->cp15.scr_el3 & SCR_FIQ);
 | |
| 
 | |
|                 /*
 | |
|                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
 | |
|                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
 | |
|                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 | |
|                  * when non-secure but only when FIQs are only routed to EL3.
 | |
|                  */
 | |
|                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 | |
|                 break;
 | |
|             case EXCP_IRQ:
 | |
|                 /*
 | |
|                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
 | |
|                  * we may override the CPSR.I masking when in non-secure state.
 | |
|                  * The SCR.IRQ setting has already been taken into consideration
 | |
|                  * when setting the target EL, so it does not have a further
 | |
|                  * affect here.
 | |
|                  */
 | |
|                 hcr = hcr_el2 & HCR_IMO;
 | |
|                 scr = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 g_assert_not_reached();
 | |
|             }
 | |
| 
 | |
|             if ((scr || hcr) && !secure) {
 | |
|                 unmasked = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The PSTATE bits only mask the interrupt if we have not overriden the
 | |
|      * ability above.
 | |
|      */
 | |
|     return unmasked || pstate_unmasked;
 | |
| }
 | |
| 
 | |
| static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cs);
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     uint32_t cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 | |
|     uint32_t target_el;
 | |
|     uint32_t excp_idx;
 | |
| 
 | |
|     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 | |
| 
 | |
|     if (interrupt_request & CPU_INTERRUPT_FIQ) {
 | |
|         excp_idx = EXCP_FIQ;
 | |
|         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 | |
|         if (arm_excp_unmasked(cs, excp_idx, target_el,
 | |
|                               cur_el, secure, hcr_el2)) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|         excp_idx = EXCP_IRQ;
 | |
|         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 | |
|         if (arm_excp_unmasked(cs, excp_idx, target_el,
 | |
|                               cur_el, secure, hcr_el2)) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 | |
|         excp_idx = EXCP_VIRQ;
 | |
|         target_el = 1;
 | |
|         if (arm_excp_unmasked(cs, excp_idx, target_el,
 | |
|                               cur_el, secure, hcr_el2)) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 | |
|         excp_idx = EXCP_VFIQ;
 | |
|         target_el = 1;
 | |
|         if (arm_excp_unmasked(cs, excp_idx, target_el,
 | |
|                               cur_el, secure, hcr_el2)) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     if (interrupt_request & CPU_INTERRUPT_VSERR) {
 | |
|         excp_idx = EXCP_VSERR;
 | |
|         target_el = 1;
 | |
|         if (arm_excp_unmasked(cs, excp_idx, target_el,
 | |
|                               cur_el, secure, hcr_el2)) {
 | |
|             /* Taking a virtual abort clears HCR_EL2.VSE */
 | |
|             env->cp15.hcr_el2 &= ~HCR_VSE;
 | |
|             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|  found:
 | |
|     cs->exception_index = excp_idx;
 | |
|     env->exception.target_el = target_el;
 | |
|     cc->tcg_ops->do_interrupt(cs);
 | |
|     return true;
 | |
| }
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| void arm_cpu_update_virq(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * Update the interrupt level for VIRQ, which is the logical OR of
 | |
|      * the HCR_EL2.VI bit and the input line level from the GIC.
 | |
|      */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 | |
|         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 | |
| 
 | |
|     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 | |
|         if (new_state) {
 | |
|             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 | |
|         } else {
 | |
|             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void arm_cpu_update_vfiq(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * Update the interrupt level for VFIQ, which is the logical OR of
 | |
|      * the HCR_EL2.VF bit and the input line level from the GIC.
 | |
|      */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 | |
|         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 | |
| 
 | |
|     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 | |
|         if (new_state) {
 | |
|             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 | |
|         } else {
 | |
|             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void arm_cpu_update_vserr(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
 | |
|      */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
 | |
| 
 | |
|     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
 | |
|         if (new_state) {
 | |
|             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
 | |
|         } else {
 | |
|             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static void arm_cpu_set_irq(void *opaque, int irq, int level)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     static const int mask[] = {
 | |
|         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 | |
|         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 | |
|         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 | |
|         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 | |
|     };
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
 | |
|         /*
 | |
|          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
 | |
|          * have EL2 support we don't care. (Unless the guest is doing something
 | |
|          * silly this will only be calls saying "level is still 0".)
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (level) {
 | |
|         env->irq_line_state |= mask[irq];
 | |
|     } else {
 | |
|         env->irq_line_state &= ~mask[irq];
 | |
|     }
 | |
| 
 | |
|     switch (irq) {
 | |
|     case ARM_CPU_VIRQ:
 | |
|         arm_cpu_update_virq(cpu);
 | |
|         break;
 | |
|     case ARM_CPU_VFIQ:
 | |
|         arm_cpu_update_vfiq(cpu);
 | |
|         break;
 | |
|     case ARM_CPU_IRQ:
 | |
|     case ARM_CPU_FIQ:
 | |
|         if (level) {
 | |
|             cpu_interrupt(cs, mask[irq]);
 | |
|         } else {
 | |
|             cpu_reset_interrupt(cs, mask[irq]);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 | |
| {
 | |
| #ifdef CONFIG_KVM
 | |
|     ARMCPU *cpu = opaque;
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint32_t linestate_bit;
 | |
|     int irq_id;
 | |
| 
 | |
|     switch (irq) {
 | |
|     case ARM_CPU_IRQ:
 | |
|         irq_id = KVM_ARM_IRQ_CPU_IRQ;
 | |
|         linestate_bit = CPU_INTERRUPT_HARD;
 | |
|         break;
 | |
|     case ARM_CPU_FIQ:
 | |
|         irq_id = KVM_ARM_IRQ_CPU_FIQ;
 | |
|         linestate_bit = CPU_INTERRUPT_FIQ;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     if (level) {
 | |
|         env->irq_line_state |= linestate_bit;
 | |
|     } else {
 | |
|         env->irq_line_state &= ~linestate_bit;
 | |
|     }
 | |
|     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     cpu_synchronize_state(cs);
 | |
|     return arm_cpu_data_is_big_endian(env);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 | |
| {
 | |
|     ARMCPU *ac = ARM_CPU(cpu);
 | |
|     CPUARMState *env = &ac->env;
 | |
|     bool sctlr_b;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         info->cap_arch = CS_ARCH_ARM64;
 | |
|         info->cap_insn_unit = 4;
 | |
|         info->cap_insn_split = 4;
 | |
|     } else {
 | |
|         int cap_mode;
 | |
|         if (env->thumb) {
 | |
|             info->cap_insn_unit = 2;
 | |
|             info->cap_insn_split = 4;
 | |
|             cap_mode = CS_MODE_THUMB;
 | |
|         } else {
 | |
|             info->cap_insn_unit = 4;
 | |
|             info->cap_insn_split = 4;
 | |
|             cap_mode = CS_MODE_ARM;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             cap_mode |= CS_MODE_V8;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             cap_mode |= CS_MODE_MCLASS;
 | |
|         }
 | |
|         info->cap_arch = CS_ARCH_ARM;
 | |
|         info->cap_mode = cap_mode;
 | |
|     }
 | |
| 
 | |
|     sctlr_b = arm_sctlr_b(env);
 | |
|     if (bswap_code(sctlr_b)) {
 | |
| #if TARGET_BIG_ENDIAN
 | |
|         info->endian = BFD_ENDIAN_LITTLE;
 | |
| #else
 | |
|         info->endian = BFD_ENDIAN_BIG;
 | |
| #endif
 | |
|     }
 | |
|     info->flags &= ~INSN_ARM_BE32;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (sctlr_b) {
 | |
|         info->flags |= INSN_ARM_BE32;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| 
 | |
| static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint32_t psr = pstate_read(env);
 | |
|     int i;
 | |
|     int el = arm_current_el(env);
 | |
|     const char *ns_status;
 | |
|     bool sve;
 | |
| 
 | |
|     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         if (i == 31) {
 | |
|             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 | |
|         } else {
 | |
|             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 | |
|                          (i + 2) % 3 ? " " : "\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 | |
|         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 | |
|     } else {
 | |
|         ns_status = "";
 | |
|     }
 | |
|     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 | |
|                  psr,
 | |
|                  psr & PSTATE_N ? 'N' : '-',
 | |
|                  psr & PSTATE_Z ? 'Z' : '-',
 | |
|                  psr & PSTATE_C ? 'C' : '-',
 | |
|                  psr & PSTATE_V ? 'V' : '-',
 | |
|                  ns_status,
 | |
|                  el,
 | |
|                  psr & PSTATE_SP ? 'h' : 't');
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_sme, cpu)) {
 | |
|         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
 | |
|                      env->svcr,
 | |
|                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
 | |
|                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
 | |
|     }
 | |
|     if (cpu_isar_feature(aa64_bti, cpu)) {
 | |
|         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 | |
|     }
 | |
|     if (!(flags & CPU_DUMP_FPU)) {
 | |
|         qemu_fprintf(f, "\n");
 | |
|         return;
 | |
|     }
 | |
|     if (fp_exception_el(env, el) != 0) {
 | |
|         qemu_fprintf(f, "    FPU disabled\n");
 | |
|         return;
 | |
|     }
 | |
|     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 | |
|                  vfp_get_fpcr(env), vfp_get_fpsr(env));
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
 | |
|         sve = sme_exception_el(env, el) == 0;
 | |
|     } else if (cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         sve = sve_exception_el(env, el) == 0;
 | |
|     } else {
 | |
|         sve = false;
 | |
|     }
 | |
| 
 | |
|     if (sve) {
 | |
|         int j, zcr_len = sve_vqm1_for_el(env, el);
 | |
| 
 | |
|         for (i = 0; i <= FFR_PRED_NUM; i++) {
 | |
|             bool eol;
 | |
|             if (i == FFR_PRED_NUM) {
 | |
|                 qemu_fprintf(f, "FFR=");
 | |
|                 /* It's last, so end the line.  */
 | |
|                 eol = true;
 | |
|             } else {
 | |
|                 qemu_fprintf(f, "P%02d=", i);
 | |
|                 switch (zcr_len) {
 | |
|                 case 0:
 | |
|                     eol = i % 8 == 7;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     eol = i % 6 == 5;
 | |
|                     break;
 | |
|                 case 2:
 | |
|                 case 3:
 | |
|                     eol = i % 3 == 2;
 | |
|                     break;
 | |
|                 default:
 | |
|                     /* More than one quadword per predicate.  */
 | |
|                     eol = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             for (j = zcr_len / 4; j >= 0; j--) {
 | |
|                 int digits;
 | |
|                 if (j * 4 + 4 <= zcr_len + 1) {
 | |
|                     digits = 16;
 | |
|                 } else {
 | |
|                     digits = (zcr_len % 4 + 1) * 4;
 | |
|                 }
 | |
|                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 | |
|                              env->vfp.pregs[i].p[j],
 | |
|                              j ? ":" : eol ? "\n" : " ");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             if (zcr_len == 0) {
 | |
|                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 | |
|                              i, env->vfp.zregs[i].d[1],
 | |
|                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 | |
|             } else if (zcr_len == 1) {
 | |
|                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 | |
|                              ":%016" PRIx64 ":%016" PRIx64 "\n",
 | |
|                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 | |
|                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 | |
|             } else {
 | |
|                 for (j = zcr_len; j >= 0; j--) {
 | |
|                     bool odd = (zcr_len - j) % 2 != 0;
 | |
|                     if (j == zcr_len) {
 | |
|                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 | |
|                     } else if (!odd) {
 | |
|                         if (j > 0) {
 | |
|                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 | |
|                         } else {
 | |
|                             qemu_fprintf(f, "     [%x]=", j);
 | |
|                         }
 | |
|                     }
 | |
|                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 | |
|                                  env->vfp.zregs[i].d[j * 2 + 1],
 | |
|                                  env->vfp.zregs[i].d[j * 2],
 | |
|                                  odd || j == 0 ? "\n" : ":");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 0; i < 32; i++) {
 | |
|             uint64_t *q = aa64_vfp_qreg(env, i);
 | |
|             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 | |
|                          i, q[1], q[0], (i & 1 ? "\n" : " "));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int i;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         aarch64_cpu_dump_state(cs, f, flags);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 | |
|         if ((i % 4) == 3) {
 | |
|             qemu_fprintf(f, "\n");
 | |
|         } else {
 | |
|             qemu_fprintf(f, " ");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         uint32_t xpsr = xpsr_read(env);
 | |
|         const char *mode;
 | |
|         const char *ns_status = "";
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|             ns_status = env->v7m.secure ? "S " : "NS ";
 | |
|         }
 | |
| 
 | |
|         if (xpsr & XPSR_EXCP) {
 | |
|             mode = "handler";
 | |
|         } else {
 | |
|             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
 | |
|                 mode = "unpriv-thread";
 | |
|             } else {
 | |
|                 mode = "priv-thread";
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
 | |
|                      xpsr,
 | |
|                      xpsr & XPSR_N ? 'N' : '-',
 | |
|                      xpsr & XPSR_Z ? 'Z' : '-',
 | |
|                      xpsr & XPSR_C ? 'C' : '-',
 | |
|                      xpsr & XPSR_V ? 'V' : '-',
 | |
|                      xpsr & XPSR_T ? 'T' : 'A',
 | |
|                      ns_status,
 | |
|                      mode);
 | |
|     } else {
 | |
|         uint32_t psr = cpsr_read(env);
 | |
|         const char *ns_status = "";
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
 | |
|             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 | |
|         }
 | |
| 
 | |
|         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
 | |
|                      psr,
 | |
|                      psr & CPSR_N ? 'N' : '-',
 | |
|                      psr & CPSR_Z ? 'Z' : '-',
 | |
|                      psr & CPSR_C ? 'C' : '-',
 | |
|                      psr & CPSR_V ? 'V' : '-',
 | |
|                      psr & CPSR_T ? 'T' : 'A',
 | |
|                      ns_status,
 | |
|                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
 | |
|     }
 | |
| 
 | |
|     if (flags & CPU_DUMP_FPU) {
 | |
|         int numvfpregs = 0;
 | |
|         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 | |
|             numvfpregs = 32;
 | |
|         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 | |
|             numvfpregs = 16;
 | |
|         }
 | |
|         for (i = 0; i < numvfpregs; i++) {
 | |
|             uint64_t v = *aa32_vfp_dreg(env, i);
 | |
|             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
 | |
|                          i * 2, (uint32_t)v,
 | |
|                          i * 2 + 1, (uint32_t)(v >> 32),
 | |
|                          i, v);
 | |
|         }
 | |
|         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
 | |
|         if (cpu_isar_feature(aa32_mve, cpu)) {
 | |
|             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
 | |
| {
 | |
|     uint32_t Aff1 = idx / clustersz;
 | |
|     uint32_t Aff0 = idx % clustersz;
 | |
|     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
 | |
| }
 | |
| 
 | |
| static void arm_cpu_initfn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     cpu_set_cpustate_pointers(cpu);
 | |
|     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
 | |
|                                          NULL, g_free);
 | |
| 
 | |
|     QLIST_INIT(&cpu->pre_el_change_hooks);
 | |
|     QLIST_INIT(&cpu->el_change_hooks);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| # ifdef TARGET_AARCH64
 | |
|     /*
 | |
|      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
 | |
|      * These values were chosen to fit within the default signal frame.
 | |
|      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
 | |
|      * and our corresponding cpu property.
 | |
|      */
 | |
|     cpu->sve_default_vq = 4;
 | |
|     cpu->sme_default_vq = 2;
 | |
| # endif
 | |
| #else
 | |
|     /* Our inbound IRQ and FIQ lines */
 | |
|     if (kvm_enabled()) {
 | |
|         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
 | |
|          * the same interface as non-KVM CPUs.
 | |
|          */
 | |
|         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
 | |
|     } else {
 | |
|         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
 | |
|     }
 | |
| 
 | |
|     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
 | |
|                        ARRAY_SIZE(cpu->gt_timer_outputs));
 | |
| 
 | |
|     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
 | |
|                              "gicv3-maintenance-interrupt", 1);
 | |
|     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
 | |
|                              "pmu-interrupt", 1);
 | |
| #endif
 | |
| 
 | |
|     /* DTB consumers generally don't in fact care what the 'compatible'
 | |
|      * string is, so always provide some string and trust that a hypothetical
 | |
|      * picky DTB consumer will also provide a helpful error message.
 | |
|      */
 | |
|     cpu->dtb_compatible = "qemu,unknown";
 | |
|     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
 | |
|     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 | |
| 
 | |
|     if (tcg_enabled() || hvf_enabled()) {
 | |
|         /* TCG and HVF implement PSCI 1.1 */
 | |
|         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Property arm_cpu_gt_cntfrq_property =
 | |
|             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
 | |
|                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
 | |
| 
 | |
| static Property arm_cpu_reset_cbar_property =
 | |
|             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
 | |
| 
 | |
| static Property arm_cpu_reset_hivecs_property =
 | |
|             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static Property arm_cpu_has_el2_property =
 | |
|             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
 | |
| 
 | |
| static Property arm_cpu_has_el3_property =
 | |
|             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
 | |
| #endif
 | |
| 
 | |
| static Property arm_cpu_cfgend_property =
 | |
|             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
 | |
| 
 | |
| static Property arm_cpu_has_vfp_property =
 | |
|             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
 | |
| 
 | |
| static Property arm_cpu_has_neon_property =
 | |
|             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
 | |
| 
 | |
| static Property arm_cpu_has_dsp_property =
 | |
|             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
 | |
| 
 | |
| static Property arm_cpu_has_mpu_property =
 | |
|             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
 | |
| 
 | |
| /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
 | |
|  * because the CPU initfn will have already set cpu->pmsav7_dregion to
 | |
|  * the right value for that particular CPU type, and we don't want
 | |
|  * to override that with an incorrect constant value.
 | |
|  */
 | |
| static Property arm_cpu_pmsav7_dregion_property =
 | |
|             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
 | |
|                                            pmsav7_dregion,
 | |
|                                            qdev_prop_uint32, uint32_t);
 | |
| 
 | |
| static bool arm_get_pmu(Object *obj, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     return cpu->has_pmu;
 | |
| }
 | |
| 
 | |
| static void arm_set_pmu(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     if (value) {
 | |
|         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
 | |
|             error_setg(errp, "'pmu' feature not supported by KVM on this host");
 | |
|             return;
 | |
|         }
 | |
|         set_feature(&cpu->env, ARM_FEATURE_PMU);
 | |
|     } else {
 | |
|         unset_feature(&cpu->env, ARM_FEATURE_PMU);
 | |
|     }
 | |
|     cpu->has_pmu = value;
 | |
| }
 | |
| 
 | |
| unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * The exact approach to calculating guest ticks is:
 | |
|      *
 | |
|      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
 | |
|      *              NANOSECONDS_PER_SECOND);
 | |
|      *
 | |
|      * We don't do that. Rather we intentionally use integer division
 | |
|      * truncation below and in the caller for the conversion of host monotonic
 | |
|      * time to guest ticks to provide the exact inverse for the semantics of
 | |
|      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
 | |
|      * it loses precision when representing frequencies where
 | |
|      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
 | |
|      * provide an exact inverse leads to scheduling timers with negative
 | |
|      * periods, which in turn leads to sticky behaviour in the guest.
 | |
|      *
 | |
|      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
 | |
|      * cannot become zero.
 | |
|      */
 | |
|     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
 | |
|       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
 | |
| }
 | |
| 
 | |
| void arm_cpu_post_init(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     /* M profile implies PMSA. We have to do this here rather than
 | |
|      * in realize with the other feature-implication checks because
 | |
|      * we look at the PMSA bit to see if we should add some properties.
 | |
|      */
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 | |
|         set_feature(&cpu->env, ARM_FEATURE_PMSA);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
 | |
|         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         object_property_add_uint64_ptr(obj, "rvbar",
 | |
|                                        &cpu->rvbar_prop,
 | |
|                                        OBJ_PROP_FLAG_READWRITE);
 | |
|     }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 | |
|         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
 | |
|          * prevent "has_el3" from existing on CPUs which cannot support EL3.
 | |
|          */
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
 | |
| 
 | |
|         object_property_add_link(obj, "secure-memory",
 | |
|                                  TYPE_MEMORY_REGION,
 | |
|                                  (Object **)&cpu->secure_memory,
 | |
|                                  qdev_prop_allow_set_link_before_realize,
 | |
|                                  OBJ_PROP_LINK_STRONG);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
 | |
|         cpu->has_pmu = true;
 | |
|         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Allow user to turn off VFP and Neon support, but only for TCG --
 | |
|      * KVM does not currently allow us to lie to the guest about its
 | |
|      * ID/feature registers, so the guest always sees what the host has.
 | |
|      */
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
 | |
|         ? cpu_isar_feature(aa64_fp_simd, cpu)
 | |
|         : cpu_isar_feature(aa32_vfp, cpu)) {
 | |
|         cpu->has_vfp = true;
 | |
|         if (!kvm_enabled()) {
 | |
|             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
 | |
|         cpu->has_neon = true;
 | |
|         if (!kvm_enabled()) {
 | |
|             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
 | |
|         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
 | |
|         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
 | |
|         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 | |
|             qdev_property_add_static(DEVICE(obj),
 | |
|                                      &arm_cpu_pmsav7_dregion_property);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
 | |
|         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
 | |
|                                  qdev_prop_allow_set_link_before_realize,
 | |
|                                  OBJ_PROP_LINK_STRONG);
 | |
|         /*
 | |
|          * M profile: initial value of the Secure VTOR. We can't just use
 | |
|          * a simple DEFINE_PROP_UINT32 for this because we want to permit
 | |
|          * the property to be set after realize.
 | |
|          */
 | |
|         object_property_add_uint32_ptr(obj, "init-svtor",
 | |
|                                        &cpu->init_svtor,
 | |
|                                        OBJ_PROP_FLAG_READWRITE);
 | |
|     }
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 | |
|         /*
 | |
|          * Initial value of the NS VTOR (for cores without the Security
 | |
|          * extension, this is the only VTOR)
 | |
|          */
 | |
|         object_property_add_uint32_ptr(obj, "init-nsvtor",
 | |
|                                        &cpu->init_nsvtor,
 | |
|                                        OBJ_PROP_FLAG_READWRITE);
 | |
|     }
 | |
| 
 | |
|     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
 | |
|     object_property_add_uint32_ptr(obj, "psci-conduit",
 | |
|                                    &cpu->psci_conduit,
 | |
|                                    OBJ_PROP_FLAG_READWRITE);
 | |
| 
 | |
|     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
 | |
|         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         kvm_arm_add_vcpu_properties(obj);
 | |
|     }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
 | |
|         cpu_isar_feature(aa64_mte, cpu)) {
 | |
|         object_property_add_link(obj, "tag-memory",
 | |
|                                  TYPE_MEMORY_REGION,
 | |
|                                  (Object **)&cpu->tag_memory,
 | |
|                                  qdev_prop_allow_set_link_before_realize,
 | |
|                                  OBJ_PROP_LINK_STRONG);
 | |
| 
 | |
|         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 | |
|             object_property_add_link(obj, "secure-tag-memory",
 | |
|                                      TYPE_MEMORY_REGION,
 | |
|                                      (Object **)&cpu->secure_tag_memory,
 | |
|                                      qdev_prop_allow_set_link_before_realize,
 | |
|                                      OBJ_PROP_LINK_STRONG);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void arm_cpu_finalizefn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     ARMELChangeHook *hook, *next;
 | |
| 
 | |
|     g_hash_table_destroy(cpu->cp_regs);
 | |
| 
 | |
|     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 | |
|         QLIST_REMOVE(hook, node);
 | |
|         g_free(hook);
 | |
|     }
 | |
|     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 | |
|         QLIST_REMOVE(hook, node);
 | |
|         g_free(hook);
 | |
|     }
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (cpu->pmu_timer) {
 | |
|         timer_free(cpu->pmu_timer);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         arm_cpu_sve_finalize(cpu, &local_err);
 | |
|         if (local_err != NULL) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         arm_cpu_sme_finalize(cpu, &local_err);
 | |
|         if (local_err != NULL) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         arm_cpu_pauth_finalize(cpu, &local_err);
 | |
|         if (local_err != NULL) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         arm_cpu_lpa2_finalize(cpu, &local_err);
 | |
|         if (local_err != NULL) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         kvm_arm_steal_time_finalize(cpu, &local_err);
 | |
|         if (local_err != NULL) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     CPUState *cs = CPU(dev);
 | |
|     ARMCPU *cpu = ARM_CPU(dev);
 | |
|     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int pagebits;
 | |
|     Error *local_err = NULL;
 | |
|     bool no_aa32 = false;
 | |
| 
 | |
|     /* If we needed to query the host kernel for the CPU features
 | |
|      * then it's possible that might have failed in the initfn, but
 | |
|      * this is the first point where we can report it.
 | |
|      */
 | |
|     if (cpu->host_cpu_probe_failed) {
 | |
|         if (!kvm_enabled() && !hvf_enabled()) {
 | |
|             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
 | |
|         } else {
 | |
|             error_setg(errp, "Failed to retrieve host CPU features");
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* The NVIC and M-profile CPU are two halves of a single piece of
 | |
|      * hardware; trying to use one without the other is a command line
 | |
|      * error and will result in segfaults if not caught here.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         if (!env->nvic) {
 | |
|             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
 | |
|             return;
 | |
|         }
 | |
|     } else {
 | |
|         if (env->nvic) {
 | |
|             error_setg(errp, "This board can only be used with Cortex-M CPUs");
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!tcg_enabled() && !qtest_enabled()) {
 | |
|         /*
 | |
|          * We assume that no accelerator except TCG (and the "not really an
 | |
|          * accelerator" qtest) can handle these features, because Arm hardware
 | |
|          * virtualization can't virtualize them.
 | |
|          *
 | |
|          * Catch all the cases which might cause us to create more than one
 | |
|          * address space for the CPU (otherwise we will assert() later in
 | |
|          * cpu_address_space_init()).
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             error_setg(errp,
 | |
|                        "Cannot enable %s when using an M-profile guest CPU",
 | |
|                        current_accel_name());
 | |
|             return;
 | |
|         }
 | |
|         if (cpu->has_el3) {
 | |
|             error_setg(errp,
 | |
|                        "Cannot enable %s when guest CPU has EL3 enabled",
 | |
|                        current_accel_name());
 | |
|             return;
 | |
|         }
 | |
|         if (cpu->tag_memory) {
 | |
|             error_setg(errp,
 | |
|                        "Cannot enable %s when guest CPUs has MTE enabled",
 | |
|                        current_accel_name());
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         uint64_t scale;
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 | |
|             if (!cpu->gt_cntfrq_hz) {
 | |
|                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
 | |
|                            cpu->gt_cntfrq_hz);
 | |
|                 return;
 | |
|             }
 | |
|             scale = gt_cntfrq_period_ns(cpu);
 | |
|         } else {
 | |
|             scale = GTIMER_SCALE;
 | |
|         }
 | |
| 
 | |
|         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
 | |
|                                                arm_gt_ptimer_cb, cpu);
 | |
|         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
 | |
|                                                arm_gt_vtimer_cb, cpu);
 | |
|         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
 | |
|                                               arm_gt_htimer_cb, cpu);
 | |
|         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
 | |
|                                               arm_gt_stimer_cb, cpu);
 | |
|         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
 | |
|                                                   arm_gt_hvtimer_cb, cpu);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     cpu_exec_realizefn(cs, &local_err);
 | |
|     if (local_err != NULL) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     arm_cpu_finalize_features(cpu, &local_err);
 | |
|     if (local_err != NULL) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
 | |
|         cpu->has_vfp != cpu->has_neon) {
 | |
|         /*
 | |
|          * This is an architectural requirement for AArch64; AArch32 is
 | |
|          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
 | |
|          */
 | |
|         error_setg(errp,
 | |
|                    "AArch64 CPUs must have both VFP and Neon or neither");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!cpu->has_vfp) {
 | |
|         uint64_t t;
 | |
|         uint32_t u;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar1;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
 | |
|         cpu->isar.id_aa64isar1 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64pfr0;
 | |
|         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
 | |
|         cpu->isar.id_aa64pfr0 = t;
 | |
| 
 | |
|         u = cpu->isar.id_isar6;
 | |
|         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
 | |
|         cpu->isar.id_isar6 = u;
 | |
| 
 | |
|         u = cpu->isar.mvfr0;
 | |
|         u = FIELD_DP32(u, MVFR0, FPSP, 0);
 | |
|         u = FIELD_DP32(u, MVFR0, FPDP, 0);
 | |
|         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
 | |
|         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
 | |
|         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
 | |
|         if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
 | |
|             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
 | |
|         }
 | |
|         cpu->isar.mvfr0 = u;
 | |
| 
 | |
|         u = cpu->isar.mvfr1;
 | |
|         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
 | |
|         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
 | |
|         u = FIELD_DP32(u, MVFR1, FPHP, 0);
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             u = FIELD_DP32(u, MVFR1, FP16, 0);
 | |
|         }
 | |
|         cpu->isar.mvfr1 = u;
 | |
| 
 | |
|         u = cpu->isar.mvfr2;
 | |
|         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
 | |
|         cpu->isar.mvfr2 = u;
 | |
|     }
 | |
| 
 | |
|     if (!cpu->has_neon) {
 | |
|         uint64_t t;
 | |
|         uint32_t u;
 | |
| 
 | |
|         unset_feature(env, ARM_FEATURE_NEON);
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar0;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
 | |
|         cpu->isar.id_aa64isar0 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar1;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
 | |
|         cpu->isar.id_aa64isar1 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64pfr0;
 | |
|         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
 | |
|         cpu->isar.id_aa64pfr0 = t;
 | |
| 
 | |
|         u = cpu->isar.id_isar5;
 | |
|         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
 | |
|         cpu->isar.id_isar5 = u;
 | |
| 
 | |
|         u = cpu->isar.id_isar6;
 | |
|         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
 | |
|         cpu->isar.id_isar6 = u;
 | |
| 
 | |
|         if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|             u = cpu->isar.mvfr1;
 | |
|             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
 | |
|             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
 | |
|             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
 | |
|             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
 | |
|             cpu->isar.mvfr1 = u;
 | |
| 
 | |
|             u = cpu->isar.mvfr2;
 | |
|             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
 | |
|             cpu->isar.mvfr2 = u;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!cpu->has_neon && !cpu->has_vfp) {
 | |
|         uint64_t t;
 | |
|         uint32_t u;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar0;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
 | |
|         cpu->isar.id_aa64isar0 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar1;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
 | |
|         cpu->isar.id_aa64isar1 = t;
 | |
| 
 | |
|         u = cpu->isar.mvfr0;
 | |
|         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
 | |
|         cpu->isar.mvfr0 = u;
 | |
| 
 | |
|         /* Despite the name, this field covers both VFP and Neon */
 | |
|         u = cpu->isar.mvfr1;
 | |
|         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
 | |
|         cpu->isar.mvfr1 = u;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
 | |
|         uint32_t u;
 | |
| 
 | |
|         unset_feature(env, ARM_FEATURE_THUMB_DSP);
 | |
| 
 | |
|         u = cpu->isar.id_isar1;
 | |
|         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
 | |
|         cpu->isar.id_isar1 = u;
 | |
| 
 | |
|         u = cpu->isar.id_isar2;
 | |
|         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
 | |
|         cpu->isar.id_isar2 = u;
 | |
| 
 | |
|         u = cpu->isar.id_isar3;
 | |
|         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
 | |
|         cpu->isar.id_isar3 = u;
 | |
|     }
 | |
| 
 | |
|     /* Some features automatically imply others: */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             set_feature(env, ARM_FEATURE_V7);
 | |
|         } else {
 | |
|             set_feature(env, ARM_FEATURE_V7VE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * There exist AArch64 cpus without AArch32 support.  When KVM
 | |
|      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
 | |
|      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
 | |
|      * As a general principle, we also do not make ID register
 | |
|      * consistency checks anywhere unless using TCG, because only
 | |
|      * for TCG would a consistency-check failure be a QEMU bug.
 | |
|      */
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V7VE)) {
 | |
|         /* v7 Virtualization Extensions. In real hardware this implies
 | |
|          * EL2 and also the presence of the Security Extensions.
 | |
|          * For QEMU, for backwards-compatibility we implement some
 | |
|          * CPUs or CPU configs which have no actual EL2 or EL3 but do
 | |
|          * include the various other features that V7VE implies.
 | |
|          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
 | |
|          * Security Extensions is ARM_FEATURE_EL3.
 | |
|          */
 | |
|         assert(!tcg_enabled() || no_aa32 ||
 | |
|                cpu_isar_feature(aa32_arm_div, cpu));
 | |
|         set_feature(env, ARM_FEATURE_LPAE);
 | |
|         set_feature(env, ARM_FEATURE_V7);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         set_feature(env, ARM_FEATURE_VAPA);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2);
 | |
|         set_feature(env, ARM_FEATURE_MPIDR);
 | |
|         if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|             set_feature(env, ARM_FEATURE_V6K);
 | |
|         } else {
 | |
|             set_feature(env, ARM_FEATURE_V6);
 | |
|         }
 | |
| 
 | |
|         /* Always define VBAR for V7 CPUs even if it doesn't exist in
 | |
|          * non-EL3 configs. This is needed by some legacy boards.
 | |
|          */
 | |
|         set_feature(env, ARM_FEATURE_VBAR);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_MVFR);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|             assert(!tcg_enabled() || no_aa32 ||
 | |
|                    cpu_isar_feature(aa32_jazelle, cpu));
 | |
|             set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         }
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V5)) {
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         set_feature(env, ARM_FEATURE_V7MP);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 | |
|         set_feature(env, ARM_FEATURE_CBAR);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
 | |
|         !arm_feature(env, ARM_FEATURE_M)) {
 | |
|         set_feature(env, ARM_FEATURE_THUMB_DSP);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We rely on no XScale CPU having VFP so we can use the same bits in the
 | |
|      * TB flags field for VECSTRIDE and XSCALE_CPAR.
 | |
|      */
 | |
|     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
 | |
|            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
 | |
|            !arm_feature(env, ARM_FEATURE_XSCALE));
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V7) &&
 | |
|         !arm_feature(env, ARM_FEATURE_M) &&
 | |
|         !arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
 | |
|          * can use 4K pages.
 | |
|          */
 | |
|         pagebits = 12;
 | |
|     } else {
 | |
|         /* For CPUs which might have tiny 1K pages, or which have an
 | |
|          * MPU and might have small region sizes, stick with 1K pages.
 | |
|          */
 | |
|         pagebits = 10;
 | |
|     }
 | |
|     if (!set_preferred_target_page_bits(pagebits)) {
 | |
|         /* This can only ever happen for hotplugging a CPU, or if
 | |
|          * the board code incorrectly creates a CPU which it has
 | |
|          * promised via minimum_page_size that it will not.
 | |
|          */
 | |
|         error_setg(errp, "This CPU requires a smaller page size than the "
 | |
|                    "system is using");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
 | |
|      * We don't support setting cluster ID ([16..23]) (known as Aff2
 | |
|      * in later ARM ARM versions), or any of the higher affinity level fields,
 | |
|      * so these bits always RAZ.
 | |
|      */
 | |
|     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
 | |
|         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
 | |
|                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
 | |
|     }
 | |
| 
 | |
|     if (cpu->reset_hivecs) {
 | |
|             cpu->reset_sctlr |= (1 << 13);
 | |
|     }
 | |
| 
 | |
|     if (cpu->cfgend) {
 | |
|         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 | |
|             cpu->reset_sctlr |= SCTLR_EE;
 | |
|         } else {
 | |
|             cpu->reset_sctlr |= SCTLR_B;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
 | |
|         /* If the has_el3 CPU property is disabled then we need to disable the
 | |
|          * feature.
 | |
|          */
 | |
|         unset_feature(env, ARM_FEATURE_EL3);
 | |
| 
 | |
|         /*
 | |
|          * Disable the security extension feature bits in the processor
 | |
|          * feature registers as well.
 | |
|          */
 | |
|         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
 | |
|         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
 | |
|         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
 | |
|                                            ID_AA64PFR0, EL3, 0);
 | |
|     }
 | |
| 
 | |
|     if (!cpu->has_el2) {
 | |
|         unset_feature(env, ARM_FEATURE_EL2);
 | |
|     }
 | |
| 
 | |
|     if (!cpu->has_pmu) {
 | |
|         unset_feature(env, ARM_FEATURE_PMU);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_PMU)) {
 | |
|         pmu_init(cpu);
 | |
| 
 | |
|         if (!kvm_enabled()) {
 | |
|             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
 | |
|             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
 | |
|         }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
 | |
|                 cpu);
 | |
| #endif
 | |
|     } else {
 | |
|         cpu->isar.id_aa64dfr0 =
 | |
|             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
 | |
|         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
 | |
|         cpu->pmceid0 = 0;
 | |
|         cpu->pmceid1 = 0;
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         /*
 | |
|          * Disable the hypervisor feature bits in the processor feature
 | |
|          * registers if we don't have EL2.
 | |
|          */
 | |
|         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
 | |
|                                            ID_AA64PFR0, EL2, 0);
 | |
|         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
 | |
|                                        ID_PFR1, VIRTUALIZATION, 0);
 | |
|     }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
 | |
|         /*
 | |
|          * Disable the MTE feature bits if we do not have tag-memory
 | |
|          * provided by the machine.
 | |
|          */
 | |
|         cpu->isar.id_aa64pfr1 =
 | |
|             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (tcg_enabled()) {
 | |
|         /*
 | |
|          * Don't report the Statistical Profiling Extension in the ID
 | |
|          * registers, because TCG doesn't implement it yet (not even a
 | |
|          * minimal stub version) and guests will fall over when they
 | |
|          * try to access the non-existent system registers for it.
 | |
|          */
 | |
|         cpu->isar.id_aa64dfr0 =
 | |
|             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
 | |
|     }
 | |
| 
 | |
|     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
 | |
|      * to false or by setting pmsav7-dregion to 0.
 | |
|      */
 | |
|     if (!cpu->has_mpu) {
 | |
|         cpu->pmsav7_dregion = 0;
 | |
|     }
 | |
|     if (cpu->pmsav7_dregion == 0) {
 | |
|         cpu->has_mpu = false;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_PMSA) &&
 | |
|         arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         uint32_t nr = cpu->pmsav7_dregion;
 | |
| 
 | |
|         if (nr > 0xff) {
 | |
|             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (nr) {
 | |
|             if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|                 /* PMSAv8 */
 | |
|                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
 | |
|                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
 | |
|                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
 | |
|                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
 | |
|                 }
 | |
|             } else {
 | |
|                 env->pmsav7.drbar = g_new0(uint32_t, nr);
 | |
|                 env->pmsav7.drsr = g_new0(uint32_t, nr);
 | |
|                 env->pmsav7.dracr = g_new0(uint32_t, nr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|         uint32_t nr = cpu->sau_sregion;
 | |
| 
 | |
|         if (nr > 0xff) {
 | |
|             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (nr) {
 | |
|             env->sau.rbar = g_new0(uint32_t, nr);
 | |
|             env->sau.rlar = g_new0(uint32_t, nr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         set_feature(env, ARM_FEATURE_VBAR);
 | |
|     }
 | |
| 
 | |
|     register_cp_regs_for_features(cpu);
 | |
|     arm_cpu_register_gdb_regs_for_features(cpu);
 | |
| 
 | |
|     init_cpreg_list(cpu);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     MachineState *ms = MACHINE(qdev_get_machine());
 | |
|     unsigned int smp_cpus = ms->smp.cpus;
 | |
|     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
 | |
| 
 | |
|     /*
 | |
|      * We must set cs->num_ases to the final value before
 | |
|      * the first call to cpu_address_space_init.
 | |
|      */
 | |
|     if (cpu->tag_memory != NULL) {
 | |
|         cs->num_ases = 3 + has_secure;
 | |
|     } else {
 | |
|         cs->num_ases = 1 + has_secure;
 | |
|     }
 | |
| 
 | |
|     if (has_secure) {
 | |
|         if (!cpu->secure_memory) {
 | |
|             cpu->secure_memory = cs->memory;
 | |
|         }
 | |
|         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
 | |
|                                cpu->secure_memory);
 | |
|     }
 | |
| 
 | |
|     if (cpu->tag_memory != NULL) {
 | |
|         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
 | |
|                                cpu->tag_memory);
 | |
|         if (has_secure) {
 | |
|             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
 | |
|                                    cpu->secure_tag_memory);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
 | |
| 
 | |
|     /* No core_count specified, default to smp_cpus. */
 | |
|     if (cpu->core_count == -1) {
 | |
|         cpu->core_count = smp_cpus;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (tcg_enabled()) {
 | |
|         int dcz_blocklen = 4 << cpu->dcz_blocksize;
 | |
| 
 | |
|         /*
 | |
|          * We only support DCZ blocklen that fits on one page.
 | |
|          *
 | |
|          * Architectually this is always true.  However TARGET_PAGE_SIZE
 | |
|          * is variable and, for compatibility with -machine virt-2.7,
 | |
|          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
 | |
|          * But even then, while the largest architectural DCZ blocklen
 | |
|          * is 2KiB, no cpu actually uses such a large blocklen.
 | |
|          */
 | |
|         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
 | |
| 
 | |
|         /*
 | |
|          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
 | |
|          * both nibbles of each byte storing tag data may be written at once.
 | |
|          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
 | |
|          */
 | |
|         if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|             assert(dcz_blocklen >= 2 * TAG_GRANULE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_init_vcpu(cs);
 | |
|     cpu_reset(cs);
 | |
| 
 | |
|     acc->parent_realize(dev, errp);
 | |
| }
 | |
| 
 | |
| static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
 | |
| {
 | |
|     ObjectClass *oc;
 | |
|     char *typename;
 | |
|     char **cpuname;
 | |
|     const char *cpunamestr;
 | |
| 
 | |
|     cpuname = g_strsplit(cpu_model, ",", 1);
 | |
|     cpunamestr = cpuname[0];
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     /* For backwards compatibility usermode emulation allows "-cpu any",
 | |
|      * which has the same semantics as "-cpu max".
 | |
|      */
 | |
|     if (!strcmp(cpunamestr, "any")) {
 | |
|         cpunamestr = "max";
 | |
|     }
 | |
| #endif
 | |
|     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
 | |
|     oc = object_class_by_name(typename);
 | |
|     g_strfreev(cpuname);
 | |
|     g_free(typename);
 | |
|     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
 | |
|         object_class_is_abstract(oc)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return oc;
 | |
| }
 | |
| 
 | |
| static Property arm_cpu_properties[] = {
 | |
|     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
 | |
|     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
 | |
|                         mp_affinity, ARM64_AFFINITY_INVALID),
 | |
|     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
 | |
|     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
 | |
|     DEFINE_PROP_END_OF_LIST()
 | |
| };
 | |
| 
 | |
| static gchar *arm_gdb_arch_name(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 | |
|         return g_strdup("iwmmxt");
 | |
|     }
 | |
|     return g_strdup("arm");
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| #include "hw/core/sysemu-cpu-ops.h"
 | |
| 
 | |
| static const struct SysemuCPUOps arm_sysemu_ops = {
 | |
|     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
 | |
|     .asidx_from_attrs = arm_asidx_from_attrs,
 | |
|     .write_elf32_note = arm_cpu_write_elf32_note,
 | |
|     .write_elf64_note = arm_cpu_write_elf64_note,
 | |
|     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
 | |
|     .legacy_vmsd = &vmstate_arm_cpu,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| static const struct TCGCPUOps arm_tcg_ops = {
 | |
|     .initialize = arm_translate_init,
 | |
|     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
 | |
|     .debug_excp_handler = arm_debug_excp_handler,
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     .record_sigsegv = arm_cpu_record_sigsegv,
 | |
|     .record_sigbus = arm_cpu_record_sigbus,
 | |
| #else
 | |
|     .tlb_fill = arm_cpu_tlb_fill,
 | |
|     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
 | |
|     .do_interrupt = arm_cpu_do_interrupt,
 | |
|     .do_transaction_failed = arm_cpu_do_transaction_failed,
 | |
|     .do_unaligned_access = arm_cpu_do_unaligned_access,
 | |
|     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
 | |
|     .debug_check_watchpoint = arm_debug_check_watchpoint,
 | |
|     .debug_check_breakpoint = arm_debug_check_breakpoint,
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| };
 | |
| #endif /* CONFIG_TCG */
 | |
| 
 | |
| static void arm_cpu_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
 | |
|     CPUClass *cc = CPU_CLASS(acc);
 | |
|     DeviceClass *dc = DEVICE_CLASS(oc);
 | |
| 
 | |
|     device_class_set_parent_realize(dc, arm_cpu_realizefn,
 | |
|                                     &acc->parent_realize);
 | |
| 
 | |
|     device_class_set_props(dc, arm_cpu_properties);
 | |
|     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
 | |
| 
 | |
|     cc->class_by_name = arm_cpu_class_by_name;
 | |
|     cc->has_work = arm_cpu_has_work;
 | |
|     cc->dump_state = arm_cpu_dump_state;
 | |
|     cc->set_pc = arm_cpu_set_pc;
 | |
|     cc->get_pc = arm_cpu_get_pc;
 | |
|     cc->gdb_read_register = arm_cpu_gdb_read_register;
 | |
|     cc->gdb_write_register = arm_cpu_gdb_write_register;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     cc->sysemu_ops = &arm_sysemu_ops;
 | |
| #endif
 | |
|     cc->gdb_num_core_regs = 26;
 | |
|     cc->gdb_core_xml_file = "arm-core.xml";
 | |
|     cc->gdb_arch_name = arm_gdb_arch_name;
 | |
|     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
 | |
|     cc->gdb_stop_before_watchpoint = true;
 | |
|     cc->disas_set_info = arm_disas_set_info;
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
|     cc->tcg_ops = &arm_tcg_ops;
 | |
| #endif /* CONFIG_TCG */
 | |
| }
 | |
| 
 | |
| static void arm_cpu_instance_init(Object *obj)
 | |
| {
 | |
|     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
 | |
| 
 | |
|     acc->info->initfn(obj);
 | |
|     arm_cpu_post_init(obj);
 | |
| }
 | |
| 
 | |
| static void cpu_register_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
 | |
| 
 | |
|     acc->info = data;
 | |
| }
 | |
| 
 | |
| void arm_cpu_register(const ARMCPUInfo *info)
 | |
| {
 | |
|     TypeInfo type_info = {
 | |
|         .parent = TYPE_ARM_CPU,
 | |
|         .instance_size = sizeof(ARMCPU),
 | |
|         .instance_align = __alignof__(ARMCPU),
 | |
|         .instance_init = arm_cpu_instance_init,
 | |
|         .class_size = sizeof(ARMCPUClass),
 | |
|         .class_init = info->class_init ?: cpu_register_class_init,
 | |
|         .class_data = (void *)info,
 | |
|     };
 | |
| 
 | |
|     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
 | |
|     type_register(&type_info);
 | |
|     g_free((void *)type_info.name);
 | |
| }
 | |
| 
 | |
| static const TypeInfo arm_cpu_type_info = {
 | |
|     .name = TYPE_ARM_CPU,
 | |
|     .parent = TYPE_CPU,
 | |
|     .instance_size = sizeof(ARMCPU),
 | |
|     .instance_align = __alignof__(ARMCPU),
 | |
|     .instance_init = arm_cpu_initfn,
 | |
|     .instance_finalize = arm_cpu_finalizefn,
 | |
|     .abstract = true,
 | |
|     .class_size = sizeof(ARMCPUClass),
 | |
|     .class_init = arm_cpu_class_init,
 | |
| };
 | |
| 
 | |
| static void arm_cpu_register_types(void)
 | |
| {
 | |
|     type_register_static(&arm_cpu_type_info);
 | |
| }
 | |
| 
 | |
| type_init(arm_cpu_register_types)
 |