mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 20:44:16 +00:00 
			
		
		
		
	 c19940db0f
			
		
	
	
		c19940db0f
		
	
	
	
	
		
			
			Some functions unrelated to TCG use helper_m{t,f}vscr, so generic versions
of those functions were added to cpu.c, in preparation for compilation
without TCG
Signed-off-by: Bruno Larsen (billionai) <bruno.larsen@eldorado.org.br>
Message-Id: <20210512140813.112884-2-bruno.larsen@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
		
	
			
		
			
				
	
	
		
			2978 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2978 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC integer and vector emulation helpers for QEMU.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "internal.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "qemu/log.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "crypto/aes.h"
 | |
| #include "fpu/softfloat.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/guest-random.h"
 | |
| 
 | |
| #include "helper_regs.h"
 | |
| /*****************************************************************************/
 | |
| /* Fixed point operations helpers */
 | |
| 
 | |
| static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
 | |
| {
 | |
|     if (unlikely(ov)) {
 | |
|         env->so = env->ov = 1;
 | |
|     } else {
 | |
|         env->ov = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
 | |
|                            uint32_t oe)
 | |
| {
 | |
|     uint64_t rt = 0;
 | |
|     int overflow = 0;
 | |
| 
 | |
|     uint64_t dividend = (uint64_t)ra << 32;
 | |
|     uint64_t divisor = (uint32_t)rb;
 | |
| 
 | |
|     if (unlikely(divisor == 0)) {
 | |
|         overflow = 1;
 | |
|     } else {
 | |
|         rt = dividend / divisor;
 | |
|         overflow = rt > UINT32_MAX;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(overflow)) {
 | |
|         rt = 0; /* Undefined */
 | |
|     }
 | |
| 
 | |
|     if (oe) {
 | |
|         helper_update_ov_legacy(env, overflow);
 | |
|     }
 | |
| 
 | |
|     return (target_ulong)rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
 | |
|                           uint32_t oe)
 | |
| {
 | |
|     int64_t rt = 0;
 | |
|     int overflow = 0;
 | |
| 
 | |
|     int64_t dividend = (int64_t)ra << 32;
 | |
|     int64_t divisor = (int64_t)((int32_t)rb);
 | |
| 
 | |
|     if (unlikely((divisor == 0) ||
 | |
|                  ((divisor == -1ull) && (dividend == INT64_MIN)))) {
 | |
|         overflow = 1;
 | |
|     } else {
 | |
|         rt = dividend / divisor;
 | |
|         overflow = rt != (int32_t)rt;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(overflow)) {
 | |
|         rt = 0; /* Undefined */
 | |
|     }
 | |
| 
 | |
|     if (oe) {
 | |
|         helper_update_ov_legacy(env, overflow);
 | |
|     }
 | |
| 
 | |
|     return (target_ulong)rt;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| 
 | |
| uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
 | |
| {
 | |
|     uint64_t rt = 0;
 | |
|     int overflow = 0;
 | |
| 
 | |
|     overflow = divu128(&rt, &ra, rb);
 | |
| 
 | |
|     if (unlikely(overflow)) {
 | |
|         rt = 0; /* Undefined */
 | |
|     }
 | |
| 
 | |
|     if (oe) {
 | |
|         helper_update_ov_legacy(env, overflow);
 | |
|     }
 | |
| 
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
 | |
| {
 | |
|     int64_t rt = 0;
 | |
|     int64_t ra = (int64_t)rau;
 | |
|     int64_t rb = (int64_t)rbu;
 | |
|     int overflow = divs128(&rt, &ra, rb);
 | |
| 
 | |
|     if (unlikely(overflow)) {
 | |
|         rt = 0; /* Undefined */
 | |
|     }
 | |
| 
 | |
|     if (oe) {
 | |
|         helper_update_ov_legacy(env, overflow);
 | |
|     }
 | |
| 
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| /* if x = 0xab, returns 0xababababababababa */
 | |
| #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
 | |
| 
 | |
| /*
 | |
|  * subtract 1 from each byte, and with inverse, check if MSB is set at each
 | |
|  * byte.
 | |
|  * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
 | |
|  *      (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
 | |
|  */
 | |
| #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
 | |
| 
 | |
| /* When you XOR the pattern and there is a match, that byte will be zero */
 | |
| #define hasvalue(x, n)  (haszero((x) ^ pattern(n)))
 | |
| 
 | |
| uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
 | |
| {
 | |
|     return hasvalue(rb, ra) ? CRF_GT : 0;
 | |
| }
 | |
| 
 | |
| #undef pattern
 | |
| #undef haszero
 | |
| #undef hasvalue
 | |
| 
 | |
| /*
 | |
|  * Return a random number.
 | |
|  */
 | |
| uint64_t helper_darn32(void)
 | |
| {
 | |
|     Error *err = NULL;
 | |
|     uint32_t ret;
 | |
| 
 | |
|     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
 | |
|         qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
 | |
|                       error_get_pretty(err));
 | |
|         error_free(err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_darn64(void)
 | |
| {
 | |
|     Error *err = NULL;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
 | |
|         qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
 | |
|                       error_get_pretty(err));
 | |
|         error_free(err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t ra = 0;
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         int index = (rs >> (i * 8)) & 0xFF;
 | |
|         if (index < 64) {
 | |
|             if (rb & PPC_BIT(index)) {
 | |
|                 ra |= 1 << i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return ra;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
 | |
| {
 | |
|     target_ulong mask = 0xff;
 | |
|     target_ulong ra = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < sizeof(target_ulong); i++) {
 | |
|         if ((rs & mask) == (rb & mask)) {
 | |
|             ra |= mask;
 | |
|         }
 | |
|         mask <<= 8;
 | |
|     }
 | |
|     return ra;
 | |
| }
 | |
| 
 | |
| /* shift right arithmetic helper */
 | |
| target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
 | |
|                          target_ulong shift)
 | |
| {
 | |
|     int32_t ret;
 | |
| 
 | |
|     if (likely(!(shift & 0x20))) {
 | |
|         if (likely((uint32_t)shift != 0)) {
 | |
|             shift &= 0x1f;
 | |
|             ret = (int32_t)value >> shift;
 | |
|             if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
 | |
|                 env->ca32 = env->ca = 0;
 | |
|             } else {
 | |
|                 env->ca32 = env->ca = 1;
 | |
|             }
 | |
|         } else {
 | |
|             ret = (int32_t)value;
 | |
|             env->ca32 = env->ca = 0;
 | |
|         }
 | |
|     } else {
 | |
|         ret = (int32_t)value >> 31;
 | |
|         env->ca32 = env->ca = (ret != 0);
 | |
|     }
 | |
|     return (target_long)ret;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_srad(CPUPPCState *env, target_ulong value,
 | |
|                          target_ulong shift)
 | |
| {
 | |
|     int64_t ret;
 | |
| 
 | |
|     if (likely(!(shift & 0x40))) {
 | |
|         if (likely((uint64_t)shift != 0)) {
 | |
|             shift &= 0x3f;
 | |
|             ret = (int64_t)value >> shift;
 | |
|             if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
 | |
|                 env->ca32 = env->ca = 0;
 | |
|             } else {
 | |
|                 env->ca32 = env->ca = 1;
 | |
|             }
 | |
|         } else {
 | |
|             ret = (int64_t)value;
 | |
|             env->ca32 = env->ca = 0;
 | |
|         }
 | |
|     } else {
 | |
|         ret = (int64_t)value >> 63;
 | |
|         env->ca32 = env->ca = (ret != 0);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_popcntb(target_ulong val)
 | |
| {
 | |
|     /* Note that we don't fold past bytes */
 | |
|     val = (val & 0x5555555555555555ULL) + ((val >>  1) &
 | |
|                                            0x5555555555555555ULL);
 | |
|     val = (val & 0x3333333333333333ULL) + ((val >>  2) &
 | |
|                                            0x3333333333333333ULL);
 | |
|     val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) &
 | |
|                                            0x0f0f0f0f0f0f0f0fULL);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| target_ulong helper_popcntw(target_ulong val)
 | |
| {
 | |
|     /* Note that we don't fold past words.  */
 | |
|     val = (val & 0x5555555555555555ULL) + ((val >>  1) &
 | |
|                                            0x5555555555555555ULL);
 | |
|     val = (val & 0x3333333333333333ULL) + ((val >>  2) &
 | |
|                                            0x3333333333333333ULL);
 | |
|     val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) &
 | |
|                                            0x0f0f0f0f0f0f0f0fULL);
 | |
|     val = (val & 0x00ff00ff00ff00ffULL) + ((val >>  8) &
 | |
|                                            0x00ff00ff00ff00ffULL);
 | |
|     val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
 | |
|                                            0x0000ffff0000ffffULL);
 | |
|     return val;
 | |
| }
 | |
| #else
 | |
| target_ulong helper_popcntb(target_ulong val)
 | |
| {
 | |
|     /* Note that we don't fold past bytes */
 | |
|     val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
 | |
|     val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
 | |
|     val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
 | |
|     return val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* PowerPC 601 specific instructions (POWER bridge) */
 | |
| target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
 | |
| 
 | |
|     if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = tmp % arg2;
 | |
|         return  tmp / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
 | |
|                          target_ulong arg2)
 | |
| {
 | |
|     uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
 | |
| 
 | |
|     if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->so = env->ov = 1;
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = tmp % arg2;
 | |
|         tmp /= (int32_t)arg2;
 | |
|         if ((int32_t)tmp != tmp) {
 | |
|             env->so = env->ov = 1;
 | |
|         } else {
 | |
|             env->ov = 0;
 | |
|         }
 | |
|         return tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
 | |
|                          target_ulong arg2)
 | |
| {
 | |
|     if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
 | |
|         return (int32_t)arg1 / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
 | |
|                           target_ulong arg2)
 | |
| {
 | |
|     if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->so = env->ov = 1;
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->ov = 0;
 | |
|         env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
 | |
|         return (int32_t)arg1 / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* 602 specific instructions */
 | |
| /* mfrom is the most crazy instruction ever seen, imho ! */
 | |
| /* Real implementation uses a ROM table. Do the same */
 | |
| /*
 | |
|  * Extremely decomposed:
 | |
|  *                      -arg / 256
 | |
|  * return 256 * log10(10           + 1.0) + 0.5
 | |
|  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| target_ulong helper_602_mfrom(target_ulong arg)
 | |
| {
 | |
|     if (likely(arg < 602)) {
 | |
| #include "mfrom_table.c.inc"
 | |
|         return mfrom_ROM_table[arg];
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Altivec extension helpers */
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VECTOR_FOR_INORDER_I(index, element)                    \
 | |
|     for (index = 0; index < ARRAY_SIZE(r->element); index++)
 | |
| #else
 | |
| #define VECTOR_FOR_INORDER_I(index, element)                    \
 | |
|     for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
 | |
| #endif
 | |
| 
 | |
| /* Saturating arithmetic helpers.  */
 | |
| #define SATCVT(from, to, from_type, to_type, min, max)          \
 | |
|     static inline to_type cvt##from##to(from_type x, int *sat)  \
 | |
|     {                                                           \
 | |
|         to_type r;                                              \
 | |
|                                                                 \
 | |
|         if (x < (from_type)min) {                               \
 | |
|             r = min;                                            \
 | |
|             *sat = 1;                                           \
 | |
|         } else if (x > (from_type)max) {                        \
 | |
|             r = max;                                            \
 | |
|             *sat = 1;                                           \
 | |
|         } else {                                                \
 | |
|             r = x;                                              \
 | |
|         }                                                       \
 | |
|         return r;                                               \
 | |
|     }
 | |
| #define SATCVTU(from, to, from_type, to_type, min, max)         \
 | |
|     static inline to_type cvt##from##to(from_type x, int *sat)  \
 | |
|     {                                                           \
 | |
|         to_type r;                                              \
 | |
|                                                                 \
 | |
|         if (x > (from_type)max) {                               \
 | |
|             r = max;                                            \
 | |
|             *sat = 1;                                           \
 | |
|         } else {                                                \
 | |
|             r = x;                                              \
 | |
|         }                                                       \
 | |
|         return r;                                               \
 | |
|     }
 | |
| SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
 | |
| SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
 | |
| SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
 | |
| 
 | |
| SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
 | |
| SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
 | |
| SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
 | |
| SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
 | |
| SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
 | |
| SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
 | |
| #undef SATCVT
 | |
| #undef SATCVTU
 | |
| 
 | |
| void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
 | |
| {
 | |
|     ppc_store_vscr(env, vscr);
 | |
| }
 | |
| 
 | |
| uint32_t helper_mfvscr(CPUPPCState *env)
 | |
| {
 | |
|     return ppc_get_vscr(env);
 | |
| }
 | |
| 
 | |
| static inline void set_vscr_sat(CPUPPCState *env)
 | |
| {
 | |
|     /* The choice of non-zero value is arbitrary.  */
 | |
|     env->vscr_sat.u32[0] = 1;
 | |
| }
 | |
| 
 | |
| void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         r->u32[i] = ~a->u32[i] < b->u32[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* vprtybw */
 | |
| void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         uint64_t res = b->u32[i] ^ (b->u32[i] >> 16);
 | |
|         res ^= res >> 8;
 | |
|         r->u32[i] = res & 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* vprtybd */
 | |
| void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
 | |
|         uint64_t res = b->u64[i] ^ (b->u64[i] >> 32);
 | |
|         res ^= res >> 16;
 | |
|         res ^= res >> 8;
 | |
|         r->u64[i] = res & 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* vprtybq */
 | |
| void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     uint64_t res = b->u64[0] ^ b->u64[1];
 | |
|     res ^= res >> 32;
 | |
|     res ^= res >> 16;
 | |
|     res ^= res >> 8;
 | |
|     r->VsrD(1) = res & 1;
 | |
|     r->VsrD(0) = 0;
 | |
| }
 | |
| 
 | |
| #define VARITHFP(suffix, func)                                          \
 | |
|     void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
 | |
|                           ppc_avr_t *b)                                 \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {                      \
 | |
|             r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status);   \
 | |
|         }                                                               \
 | |
|     }
 | |
| VARITHFP(addfp, float32_add)
 | |
| VARITHFP(subfp, float32_sub)
 | |
| VARITHFP(minfp, float32_min)
 | |
| VARITHFP(maxfp, float32_max)
 | |
| #undef VARITHFP
 | |
| 
 | |
| #define VARITHFPFMA(suffix, type)                                       \
 | |
|     void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
 | |
|                            ppc_avr_t *b, ppc_avr_t *c)                  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {                      \
 | |
|             r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
 | |
|                                        type, &env->vec_status);         \
 | |
|         }                                                               \
 | |
|     }
 | |
| VARITHFPFMA(maddfp, 0);
 | |
| VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
 | |
| #undef VARITHFPFMA
 | |
| 
 | |
| #define VARITHSAT_CASE(type, op, cvt, element)                          \
 | |
|     {                                                                   \
 | |
|         type result = (type)a->element[i] op (type)b->element[i];       \
 | |
|         r->element[i] = cvt(result, &sat);                              \
 | |
|     }
 | |
| 
 | |
| #define VARITHSAT_DO(name, op, optype, cvt, element)                    \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat,              \
 | |
|                         ppc_avr_t *a, ppc_avr_t *b, uint32_t desc)      \
 | |
|     {                                                                   \
 | |
|         int sat = 0;                                                    \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             VARITHSAT_CASE(optype, op, cvt, element);                   \
 | |
|         }                                                               \
 | |
|         if (sat) {                                                      \
 | |
|             vscr_sat->u32[0] = 1;                                       \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VARITHSAT_SIGNED(suffix, element, optype, cvt)          \
 | |
|     VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element)      \
 | |
|     VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
 | |
| #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt)        \
 | |
|     VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element)      \
 | |
|     VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
 | |
| VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
 | |
| VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
 | |
| VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
 | |
| VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
 | |
| VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
 | |
| VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
 | |
| #undef VARITHSAT_CASE
 | |
| #undef VARITHSAT_DO
 | |
| #undef VARITHSAT_SIGNED
 | |
| #undef VARITHSAT_UNSIGNED
 | |
| 
 | |
| #define VAVG_DO(name, element, etype)                                   \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
 | |
|             r->element[i] = x >> 1;                                     \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| #define VAVG(type, signed_element, signed_type, unsigned_element,       \
 | |
|              unsigned_type)                                             \
 | |
|     VAVG_DO(avgs##type, signed_element, signed_type)                    \
 | |
|     VAVG_DO(avgu##type, unsigned_element, unsigned_type)
 | |
| VAVG(b, s8, int16_t, u8, uint16_t)
 | |
| VAVG(h, s16, int32_t, u16, uint32_t)
 | |
| VAVG(w, s32, int64_t, u32, uint64_t)
 | |
| #undef VAVG_DO
 | |
| #undef VAVG
 | |
| 
 | |
| #define VABSDU_DO(name, element)                                        \
 | |
| void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)           \
 | |
| {                                                                       \
 | |
|     int i;                                                              \
 | |
|                                                                         \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
 | |
|         r->element[i] = (a->element[i] > b->element[i]) ?               \
 | |
|             (a->element[i] - b->element[i]) :                           \
 | |
|             (b->element[i] - a->element[i]);                            \
 | |
|     }                                                                   \
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VABSDU - Vector absolute difference unsigned
 | |
|  *   name    - instruction mnemonic suffix (b: byte, h: halfword, w: word)
 | |
|  *   element - element type to access from vector
 | |
|  */
 | |
| #define VABSDU(type, element)                   \
 | |
|     VABSDU_DO(absdu##type, element)
 | |
| VABSDU(b, u8)
 | |
| VABSDU(h, u16)
 | |
| VABSDU(w, u32)
 | |
| #undef VABSDU_DO
 | |
| #undef VABSDU
 | |
| 
 | |
| #define VCF(suffix, cvt, element)                                       \
 | |
|     void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r,             \
 | |
|                             ppc_avr_t *b, uint32_t uim)                 \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {                      \
 | |
|             float32 t = cvt(b->element[i], &env->vec_status);           \
 | |
|             r->f32[i] = float32_scalbn(t, -uim, &env->vec_status);      \
 | |
|         }                                                               \
 | |
|     }
 | |
| VCF(ux, uint32_to_float32, u32)
 | |
| VCF(sx, int32_to_float32, s32)
 | |
| #undef VCF
 | |
| 
 | |
| #define VCMP_DO(suffix, compare, element, record)                       \
 | |
|     void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \
 | |
|                              ppc_avr_t *a, ppc_avr_t *b)                \
 | |
|     {                                                                   \
 | |
|         uint64_t ones = (uint64_t)-1;                                   \
 | |
|         uint64_t all = ones;                                            \
 | |
|         uint64_t none = 0;                                              \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             uint64_t result = (a->element[i] compare b->element[i] ?    \
 | |
|                                ones : 0x0);                             \
 | |
|             switch (sizeof(a->element[0])) {                            \
 | |
|             case 8:                                                     \
 | |
|                 r->u64[i] = result;                                     \
 | |
|                 break;                                                  \
 | |
|             case 4:                                                     \
 | |
|                 r->u32[i] = result;                                     \
 | |
|                 break;                                                  \
 | |
|             case 2:                                                     \
 | |
|                 r->u16[i] = result;                                     \
 | |
|                 break;                                                  \
 | |
|             case 1:                                                     \
 | |
|                 r->u8[i] = result;                                      \
 | |
|                 break;                                                  \
 | |
|             }                                                           \
 | |
|             all &= result;                                              \
 | |
|             none |= result;                                             \
 | |
|         }                                                               \
 | |
|         if (record) {                                                   \
 | |
|             env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VCMP(suffix, compare, element)          \
 | |
|     VCMP_DO(suffix, compare, element, 0)        \
 | |
|     VCMP_DO(suffix##_dot, compare, element, 1)
 | |
| VCMP(equb, ==, u8)
 | |
| VCMP(equh, ==, u16)
 | |
| VCMP(equw, ==, u32)
 | |
| VCMP(equd, ==, u64)
 | |
| VCMP(gtub, >, u8)
 | |
| VCMP(gtuh, >, u16)
 | |
| VCMP(gtuw, >, u32)
 | |
| VCMP(gtud, >, u64)
 | |
| VCMP(gtsb, >, s8)
 | |
| VCMP(gtsh, >, s16)
 | |
| VCMP(gtsw, >, s32)
 | |
| VCMP(gtsd, >, s64)
 | |
| #undef VCMP_DO
 | |
| #undef VCMP
 | |
| 
 | |
| #define VCMPNE_DO(suffix, element, etype, cmpzero, record)              \
 | |
| void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r,              \
 | |
|                             ppc_avr_t *a, ppc_avr_t *b)                 \
 | |
| {                                                                       \
 | |
|     etype ones = (etype)-1;                                             \
 | |
|     etype all = ones;                                                   \
 | |
|     etype result, none = 0;                                             \
 | |
|     int i;                                                              \
 | |
|                                                                         \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
 | |
|         if (cmpzero) {                                                  \
 | |
|             result = ((a->element[i] == 0)                              \
 | |
|                            || (b->element[i] == 0)                      \
 | |
|                            || (a->element[i] != b->element[i]) ?        \
 | |
|                            ones : 0x0);                                 \
 | |
|         } else {                                                        \
 | |
|             result = (a->element[i] != b->element[i]) ? ones : 0x0;     \
 | |
|         }                                                               \
 | |
|         r->element[i] = result;                                         \
 | |
|         all &= result;                                                  \
 | |
|         none |= result;                                                 \
 | |
|     }                                                                   \
 | |
|     if (record) {                                                       \
 | |
|         env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);           \
 | |
|     }                                                                   \
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VCMPNEZ - Vector compare not equal to zero
 | |
|  *   suffix  - instruction mnemonic suffix (b: byte, h: halfword, w: word)
 | |
|  *   element - element type to access from vector
 | |
|  */
 | |
| #define VCMPNE(suffix, element, etype, cmpzero)         \
 | |
|     VCMPNE_DO(suffix, element, etype, cmpzero, 0)       \
 | |
|     VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
 | |
| VCMPNE(zb, u8, uint8_t, 1)
 | |
| VCMPNE(zh, u16, uint16_t, 1)
 | |
| VCMPNE(zw, u32, uint32_t, 1)
 | |
| VCMPNE(b, u8, uint8_t, 0)
 | |
| VCMPNE(h, u16, uint16_t, 0)
 | |
| VCMPNE(w, u32, uint32_t, 0)
 | |
| #undef VCMPNE_DO
 | |
| #undef VCMPNE
 | |
| 
 | |
| #define VCMPFP_DO(suffix, compare, order, record)                       \
 | |
|     void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \
 | |
|                              ppc_avr_t *a, ppc_avr_t *b)                \
 | |
|     {                                                                   \
 | |
|         uint32_t ones = (uint32_t)-1;                                   \
 | |
|         uint32_t all = ones;                                            \
 | |
|         uint32_t none = 0;                                              \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {                      \
 | |
|             uint32_t result;                                            \
 | |
|             FloatRelation rel =                                         \
 | |
|                 float32_compare_quiet(a->f32[i], b->f32[i],             \
 | |
|                                       &env->vec_status);                \
 | |
|             if (rel == float_relation_unordered) {                      \
 | |
|                 result = 0;                                             \
 | |
|             } else if (rel compare order) {                             \
 | |
|                 result = ones;                                          \
 | |
|             } else {                                                    \
 | |
|                 result = 0;                                             \
 | |
|             }                                                           \
 | |
|             r->u32[i] = result;                                         \
 | |
|             all &= result;                                              \
 | |
|             none |= result;                                             \
 | |
|         }                                                               \
 | |
|         if (record) {                                                   \
 | |
|             env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VCMPFP(suffix, compare, order)          \
 | |
|     VCMPFP_DO(suffix, compare, order, 0)        \
 | |
|     VCMPFP_DO(suffix##_dot, compare, order, 1)
 | |
| VCMPFP(eqfp, ==, float_relation_equal)
 | |
| VCMPFP(gefp, !=, float_relation_less)
 | |
| VCMPFP(gtfp, ==, float_relation_greater)
 | |
| #undef VCMPFP_DO
 | |
| #undef VCMPFP
 | |
| 
 | |
| static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
 | |
|                                     ppc_avr_t *a, ppc_avr_t *b, int record)
 | |
| {
 | |
|     int i;
 | |
|     int all_in = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
 | |
|         FloatRelation le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
 | |
|                                                      &env->vec_status);
 | |
|         if (le_rel == float_relation_unordered) {
 | |
|             r->u32[i] = 0xc0000000;
 | |
|             all_in = 1;
 | |
|         } else {
 | |
|             float32 bneg = float32_chs(b->f32[i]);
 | |
|             FloatRelation ge_rel = float32_compare_quiet(a->f32[i], bneg,
 | |
|                                                          &env->vec_status);
 | |
|             int le = le_rel != float_relation_greater;
 | |
|             int ge = ge_rel != float_relation_less;
 | |
| 
 | |
|             r->u32[i] = ((!le) << 31) | ((!ge) << 30);
 | |
|             all_in |= (!le | !ge);
 | |
|         }
 | |
|     }
 | |
|     if (record) {
 | |
|         env->crf[6] = (all_in == 0) << 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     vcmpbfp_internal(env, r, a, b, 0);
 | |
| }
 | |
| 
 | |
| void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                         ppc_avr_t *b)
 | |
| {
 | |
|     vcmpbfp_internal(env, r, a, b, 1);
 | |
| }
 | |
| 
 | |
| #define VCT(suffix, satcvt, element)                                    \
 | |
|     void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r,             \
 | |
|                             ppc_avr_t *b, uint32_t uim)                 \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         int sat = 0;                                                    \
 | |
|         float_status s = env->vec_status;                               \
 | |
|                                                                         \
 | |
|         set_float_rounding_mode(float_round_to_zero, &s);               \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {                      \
 | |
|             if (float32_is_any_nan(b->f32[i])) {                        \
 | |
|                 r->element[i] = 0;                                      \
 | |
|             } else {                                                    \
 | |
|                 float64 t = float32_to_float64(b->f32[i], &s);          \
 | |
|                 int64_t j;                                              \
 | |
|                                                                         \
 | |
|                 t = float64_scalbn(t, uim, &s);                         \
 | |
|                 j = float64_to_int64(t, &s);                            \
 | |
|                 r->element[i] = satcvt(j, &sat);                        \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         if (sat) {                                                      \
 | |
|             set_vscr_sat(env);                                          \
 | |
|         }                                                               \
 | |
|     }
 | |
| VCT(uxs, cvtsduw, u32)
 | |
| VCT(sxs, cvtsdsw, s32)
 | |
| #undef VCT
 | |
| 
 | |
| target_ulong helper_vclzlsbb(ppc_avr_t *r)
 | |
| {
 | |
|     target_ulong count = 0;
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         if (r->VsrB(i) & 0x01) {
 | |
|             break;
 | |
|         }
 | |
|         count++;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| target_ulong helper_vctzlsbb(ppc_avr_t *r)
 | |
| {
 | |
|     target_ulong count = 0;
 | |
|     int i;
 | |
|     for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
 | |
|         if (r->VsrB(i) & 0x01) {
 | |
|             break;
 | |
|         }
 | |
|         count++;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                       ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i];
 | |
|         int32_t t = (int32_t)c->s16[i] + (prod >> 15);
 | |
| 
 | |
|         r->s16[i] = cvtswsh(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                        ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
 | |
|         int32_t t = (int32_t)c->s16[i] + (prod >> 15);
 | |
|         r->s16[i] = cvtswsh(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i];
 | |
|         r->s16[i] = (int16_t) (prod + c->s16[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMRG_DO(name, element, access, ofs)                                  \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)            \
 | |
|     {                                                                        \
 | |
|         ppc_avr_t result;                                                    \
 | |
|         int i, half = ARRAY_SIZE(r->element) / 2;                            \
 | |
|                                                                              \
 | |
|         for (i = 0; i < half; i++) {                                         \
 | |
|             result.access(i * 2 + 0) = a->access(i + ofs);                   \
 | |
|             result.access(i * 2 + 1) = b->access(i + ofs);                   \
 | |
|         }                                                                    \
 | |
|         *r = result;                                                         \
 | |
|     }
 | |
| 
 | |
| #define VMRG(suffix, element, access)          \
 | |
|     VMRG_DO(mrgl##suffix, element, access, half)   \
 | |
|     VMRG_DO(mrgh##suffix, element, access, 0)
 | |
| VMRG(b, u8, VsrB)
 | |
| VMRG(h, u16, VsrH)
 | |
| VMRG(w, u32, VsrW)
 | |
| #undef VMRG_DO
 | |
| #undef VMRG
 | |
| 
 | |
| void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[16];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
 | |
|         prod[i] = (int32_t)a->s8[i] * b->u8[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
 | |
|             prod[4 * i + 2] + prod[4 * i + 3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[8];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         prod[i] = a->s16[i] * b->s16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[8];
 | |
|     int i;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         prod[i] = (int32_t)a->s16[i] * b->s16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
 | |
| 
 | |
|         r->u32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint16_t prod[16];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         prod[i] = a->u8[i] * b->u8[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
 | |
|             prod[4 * i + 2] + prod[4 * i + 3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint32_t prod[8];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
 | |
|         prod[i] = a->u16[i] * b->u16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
 | |
|                      ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint32_t prod[8];
 | |
|     int i;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
 | |
|         prod[i] = a->u16[i] * b->u16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
 | |
| 
 | |
|         r->u32[i] = cvtuduw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast)   \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) {           \
 | |
|             r->prod_access(i >> 1) = (cast)a->mul_access(i) *           \
 | |
|                                      (cast)b->mul_access(i);            \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast)   \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) {           \
 | |
|             r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) *       \
 | |
|                                      (cast)b->mul_access(i + 1);        \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| #define VMUL(suffix, mul_element, mul_access, prod_access, cast)       \
 | |
|     VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast)  \
 | |
|     VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
 | |
| VMUL(sb, s8, VsrSB, VsrSH, int16_t)
 | |
| VMUL(sh, s16, VsrSH, VsrSW, int32_t)
 | |
| VMUL(sw, s32, VsrSW, VsrSD, int64_t)
 | |
| VMUL(ub, u8, VsrB, VsrH, uint16_t)
 | |
| VMUL(uh, u16, VsrH, VsrW, uint32_t)
 | |
| VMUL(uw, u32, VsrW, VsrD, uint64_t)
 | |
| #undef VMUL_DO_EVN
 | |
| #undef VMUL_DO_ODD
 | |
| #undef VMUL
 | |
| 
 | |
| void helper_vmulhsw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         r->s32[i] = (int32_t)(((int64_t)a->s32[i] * (int64_t)b->s32[i]) >> 32);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmulhuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         r->u32[i] = (uint32_t)(((uint64_t)a->u32[i] *
 | |
|                                (uint64_t)b->u32[i]) >> 32);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmulhsd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     uint64_t discard;
 | |
| 
 | |
|     muls64(&discard, &r->u64[0], a->s64[0], b->s64[0]);
 | |
|     muls64(&discard, &r->u64[1], a->s64[1], b->s64[1]);
 | |
| }
 | |
| 
 | |
| void helper_vmulhud(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     uint64_t discard;
 | |
| 
 | |
|     mulu64(&discard, &r->u64[0], a->u64[0], b->u64[0]);
 | |
|     mulu64(&discard, &r->u64[1], a->u64[1], b->u64[1]);
 | |
| }
 | |
| 
 | |
| void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
 | |
|                   ppc_avr_t *c)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int s = c->VsrB(i) & 0x1f;
 | |
|         int index = s & 0xf;
 | |
| 
 | |
|         if (s & 0x10) {
 | |
|             result.VsrB(i) = b->VsrB(index);
 | |
|         } else {
 | |
|             result.VsrB(i) = a->VsrB(index);
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
 | |
|                   ppc_avr_t *c)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int s = c->VsrB(i) & 0x1f;
 | |
|         int index = 15 - (s & 0xf);
 | |
| 
 | |
|         if (s & 0x10) {
 | |
|             result.VsrB(i) = a->VsrB(index);
 | |
|         } else {
 | |
|             result.VsrB(i) = b->VsrB(index);
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
 | |
| #define VBPERMD_INDEX(i) (i)
 | |
| #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
 | |
| #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
 | |
| #else
 | |
| #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
 | |
| #define VBPERMD_INDEX(i) (1 - i)
 | |
| #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
 | |
| #define EXTRACT_BIT(avr, i, index) \
 | |
|         (extract64((avr)->u64[1 - i], 63 - index, 1))
 | |
| #endif
 | |
| 
 | |
| void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     ppc_avr_t result = { .u64 = { 0, 0 } };
 | |
|     VECTOR_FOR_INORDER_I(i, u64) {
 | |
|         for (j = 0; j < 8; j++) {
 | |
|             int index = VBPERMQ_INDEX(b, (i * 8) + j);
 | |
|             if (index < 64 && EXTRACT_BIT(a, i, index)) {
 | |
|                 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t perm = 0;
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u8) {
 | |
|         int index = VBPERMQ_INDEX(b, i);
 | |
| 
 | |
|         if (index < 128) {
 | |
|             uint64_t mask = (1ull << (63 - (index & 0x3F)));
 | |
|             if (a->u64[VBPERMQ_DW(index)] & mask) {
 | |
|                 perm |= (0x8000 >> i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     r->VsrD(0) = perm;
 | |
|     r->VsrD(1) = 0;
 | |
| }
 | |
| 
 | |
| #undef VBPERMQ_INDEX
 | |
| #undef VBPERMQ_DW
 | |
| 
 | |
| #define PMSUM(name, srcfld, trgfld, trgtyp)                   \
 | |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
 | |
| {                                                             \
 | |
|     int i, j;                                                 \
 | |
|     trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])];    \
 | |
|                                                               \
 | |
|     VECTOR_FOR_INORDER_I(i, srcfld) {                         \
 | |
|         prod[i] = 0;                                          \
 | |
|         for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) {      \
 | |
|             if (a->srcfld[i] & (1ull << j)) {                 \
 | |
|                 prod[i] ^= ((trgtyp)b->srcfld[i] << j);       \
 | |
|             }                                                 \
 | |
|         }                                                     \
 | |
|     }                                                         \
 | |
|                                                               \
 | |
|     VECTOR_FOR_INORDER_I(i, trgfld) {                         \
 | |
|         r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1];         \
 | |
|     }                                                         \
 | |
| }
 | |
| 
 | |
| PMSUM(vpmsumb, u8, u16, uint16_t)
 | |
| PMSUM(vpmsumh, u16, u32, uint32_t)
 | |
| PMSUM(vpmsumw, u32, u64, uint64_t)
 | |
| 
 | |
| void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
| 
 | |
| #ifdef CONFIG_INT128
 | |
|     int i, j;
 | |
|     __uint128_t prod[2];
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u64) {
 | |
|         prod[i] = 0;
 | |
|         for (j = 0; j < 64; j++) {
 | |
|             if (a->u64[i] & (1ull << j)) {
 | |
|                 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     r->u128 = prod[0] ^ prod[1];
 | |
| 
 | |
| #else
 | |
|     int i, j;
 | |
|     ppc_avr_t prod[2];
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u64) {
 | |
|         prod[i].VsrD(1) = prod[i].VsrD(0) = 0;
 | |
|         for (j = 0; j < 64; j++) {
 | |
|             if (a->u64[i] & (1ull << j)) {
 | |
|                 ppc_avr_t bshift;
 | |
|                 if (j == 0) {
 | |
|                     bshift.VsrD(0) = 0;
 | |
|                     bshift.VsrD(1) = b->u64[i];
 | |
|                 } else {
 | |
|                     bshift.VsrD(0) = b->u64[i] >> (64 - j);
 | |
|                     bshift.VsrD(1) = b->u64[i] << j;
 | |
|                 }
 | |
|                 prod[i].VsrD(1) ^= bshift.VsrD(1);
 | |
|                 prod[i].VsrD(0) ^= bshift.VsrD(0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1);
 | |
|     r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define PKBIG 1
 | |
| #else
 | |
| #define PKBIG 0
 | |
| #endif
 | |
| void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     ppc_avr_t result;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     const ppc_avr_t *x[2] = { a, b };
 | |
| #else
 | |
|     const ppc_avr_t *x[2] = { b, a };
 | |
| #endif
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u64) {
 | |
|         VECTOR_FOR_INORDER_I(j, u32) {
 | |
|             uint32_t e = x[i]->u32[j];
 | |
| 
 | |
|             result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
 | |
|                                      ((e >> 6) & 0x3e0) |
 | |
|                                      ((e >> 3) & 0x1f));
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| #define VPK(suffix, from, to, cvt, dosat)                               \
 | |
|     void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r,             \
 | |
|                             ppc_avr_t *a, ppc_avr_t *b)                 \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         int sat = 0;                                                    \
 | |
|         ppc_avr_t result;                                               \
 | |
|         ppc_avr_t *a0 = PKBIG ? a : b;                                  \
 | |
|         ppc_avr_t *a1 = PKBIG ? b : a;                                  \
 | |
|                                                                         \
 | |
|         VECTOR_FOR_INORDER_I(i, from) {                                 \
 | |
|             result.to[i] = cvt(a0->from[i], &sat);                      \
 | |
|             result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|         if (dosat && sat) {                                             \
 | |
|             set_vscr_sat(env);                                          \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define I(x, y) (x)
 | |
| VPK(shss, s16, s8, cvtshsb, 1)
 | |
| VPK(shus, s16, u8, cvtshub, 1)
 | |
| VPK(swss, s32, s16, cvtswsh, 1)
 | |
| VPK(swus, s32, u16, cvtswuh, 1)
 | |
| VPK(sdss, s64, s32, cvtsdsw, 1)
 | |
| VPK(sdus, s64, u32, cvtsduw, 1)
 | |
| VPK(uhus, u16, u8, cvtuhub, 1)
 | |
| VPK(uwus, u32, u16, cvtuwuh, 1)
 | |
| VPK(udus, u64, u32, cvtuduw, 1)
 | |
| VPK(uhum, u16, u8, I, 0)
 | |
| VPK(uwum, u32, u16, I, 0)
 | |
| VPK(udum, u64, u32, I, 0)
 | |
| #undef I
 | |
| #undef VPK
 | |
| #undef PKBIG
 | |
| 
 | |
| void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
 | |
|         r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VRFI(suffix, rounding)                                  \
 | |
|     void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r,    \
 | |
|                              ppc_avr_t *b)                      \
 | |
|     {                                                           \
 | |
|         int i;                                                  \
 | |
|         float_status s = env->vec_status;                       \
 | |
|                                                                 \
 | |
|         set_float_rounding_mode(rounding, &s);                  \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f32); i++) {              \
 | |
|             r->f32[i] = float32_round_to_int (b->f32[i], &s);   \
 | |
|         }                                                       \
 | |
|     }
 | |
| VRFI(n, float_round_nearest_even)
 | |
| VRFI(m, float_round_down)
 | |
| VRFI(p, float_round_up)
 | |
| VRFI(z, float_round_to_zero)
 | |
| #undef VRFI
 | |
| 
 | |
| void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
 | |
|         float32 t = float32_sqrt(b->f32[i], &env->vec_status);
 | |
| 
 | |
|         r->f32[i] = float32_div(float32_one, t, &env->vec_status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VRLMI(name, size, element, insert)                            \
 | |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)          \
 | |
| {                                                                     \
 | |
|     int i;                                                            \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                    \
 | |
|         uint##size##_t src1 = a->element[i];                          \
 | |
|         uint##size##_t src2 = b->element[i];                          \
 | |
|         uint##size##_t src3 = r->element[i];                          \
 | |
|         uint##size##_t begin, end, shift, mask, rot_val;              \
 | |
|                                                                       \
 | |
|         shift = extract##size(src2, 0, 6);                            \
 | |
|         end   = extract##size(src2, 8, 6);                            \
 | |
|         begin = extract##size(src2, 16, 6);                           \
 | |
|         rot_val = rol##size(src1, shift);                             \
 | |
|         mask = mask_u##size(begin, end);                              \
 | |
|         if (insert) {                                                 \
 | |
|             r->element[i] = (rot_val & mask) | (src3 & ~mask);        \
 | |
|         } else {                                                      \
 | |
|             r->element[i] = (rot_val & mask);                         \
 | |
|         }                                                             \
 | |
|     }                                                                 \
 | |
| }
 | |
| 
 | |
| VRLMI(vrldmi, 64, u64, 1);
 | |
| VRLMI(vrlwmi, 32, u32, 1);
 | |
| VRLMI(vrldnm, 64, u64, 0);
 | |
| VRLMI(vrlwnm, 32, u32, 0);
 | |
| 
 | |
| void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
 | |
|                  ppc_avr_t *c)
 | |
| {
 | |
|     r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
 | |
|     r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
 | |
| }
 | |
| 
 | |
| void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
 | |
|         r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
 | |
|         r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VEXTU_X_DO(name, size, left)                                \
 | |
|     target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b)  \
 | |
|     {                                                               \
 | |
|         int index;                                                  \
 | |
|         if (left) {                                                 \
 | |
|             index = (a & 0xf) * 8;                                  \
 | |
|         } else {                                                    \
 | |
|             index = ((15 - (a & 0xf) + 1) * 8) - size;              \
 | |
|         }                                                           \
 | |
|         return int128_getlo(int128_rshift(b->s128, index)) &        \
 | |
|             MAKE_64BIT_MASK(0, size);                               \
 | |
|     }
 | |
| #else
 | |
| #define VEXTU_X_DO(name, size, left)                                \
 | |
|     target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b)  \
 | |
|     {                                                               \
 | |
|         int index;                                                  \
 | |
|         if (left) {                                                 \
 | |
|             index = ((15 - (a & 0xf) + 1) * 8) - size;              \
 | |
|         } else {                                                    \
 | |
|             index = (a & 0xf) * 8;                                  \
 | |
|         }                                                           \
 | |
|         return int128_getlo(int128_rshift(b->s128, index)) &        \
 | |
|             MAKE_64BIT_MASK(0, size);                               \
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| VEXTU_X_DO(vextublx,  8, 1)
 | |
| VEXTU_X_DO(vextuhlx, 16, 1)
 | |
| VEXTU_X_DO(vextuwlx, 32, 1)
 | |
| VEXTU_X_DO(vextubrx,  8, 0)
 | |
| VEXTU_X_DO(vextuhrx, 16, 0)
 | |
| VEXTU_X_DO(vextuwrx, 32, 0)
 | |
| #undef VEXTU_X_DO
 | |
| 
 | |
| void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     unsigned int shift, bytes, size;
 | |
| 
 | |
|     size = ARRAY_SIZE(r->u8);
 | |
|     for (i = 0; i < size; i++) {
 | |
|         shift = b->VsrB(i) & 0x7;             /* extract shift value */
 | |
|         bytes = (a->VsrB(i) << 8) +           /* extract adjacent bytes */
 | |
|             (((i + 1) < size) ? a->VsrB(i + 1) : 0);
 | |
|         r->VsrB(i) = (bytes << shift) >> 8;   /* shift and store result */
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     unsigned int shift, bytes;
 | |
| 
 | |
|     /*
 | |
|      * Use reverse order, as destination and source register can be
 | |
|      * same. Its being modified in place saving temporary, reverse
 | |
|      * order will guarantee that computed result is not fed back.
 | |
|      */
 | |
|     for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
 | |
|         shift = b->VsrB(i) & 0x7;               /* extract shift value */
 | |
|         bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
 | |
|                                                 /* extract adjacent bytes */
 | |
|         r->VsrB(i) = (bytes >> shift) & 0xFF;   /* shift and store result */
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
 | |
| {
 | |
|     int sh = shift & 0xf;
 | |
|     int i;
 | |
|     ppc_avr_t result;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int index = sh + i;
 | |
|         if (index > 0xf) {
 | |
|             result.VsrB(i) = b->VsrB(index - 0x10);
 | |
|         } else {
 | |
|             result.VsrB(i) = a->VsrB(index);
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int sh = (b->VsrB(0xf) >> 3) & 0xf;
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     memmove(&r->u8[0], &a->u8[sh], 16 - sh);
 | |
|     memset(&r->u8[16 - sh], 0, sh);
 | |
| #else
 | |
|     memmove(&r->u8[sh], &a->u8[0], 16 - sh);
 | |
|     memset(&r->u8[0], 0, sh);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VINSERT(suffix, element)                                            \
 | |
|     void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
 | |
|     {                                                                       \
 | |
|         memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])],           \
 | |
|                sizeof(r->element[0]));                                      \
 | |
|     }
 | |
| #else
 | |
| #define VINSERT(suffix, element)                                            \
 | |
|     void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
 | |
|     {                                                                       \
 | |
|         uint32_t d = (16 - index) - sizeof(r->element[0]);                  \
 | |
|         memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0]));               \
 | |
|     }
 | |
| #endif
 | |
| VINSERT(b, u8)
 | |
| VINSERT(h, u16)
 | |
| VINSERT(w, u32)
 | |
| VINSERT(d, u64)
 | |
| #undef VINSERT
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VEXTRACT(suffix, element)                                            \
 | |
|     void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
 | |
|     {                                                                        \
 | |
|         uint32_t es = sizeof(r->element[0]);                                 \
 | |
|         memmove(&r->u8[8 - es], &b->u8[index], es);                          \
 | |
|         memset(&r->u8[8], 0, 8);                                             \
 | |
|         memset(&r->u8[0], 0, 8 - es);                                        \
 | |
|     }
 | |
| #else
 | |
| #define VEXTRACT(suffix, element)                                            \
 | |
|     void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
 | |
|     {                                                                        \
 | |
|         uint32_t es = sizeof(r->element[0]);                                 \
 | |
|         uint32_t s = (16 - index) - es;                                      \
 | |
|         memmove(&r->u8[8], &b->u8[s], es);                                   \
 | |
|         memset(&r->u8[0], 0, 8);                                             \
 | |
|         memset(&r->u8[8 + es], 0, 8 - es);                                   \
 | |
|     }
 | |
| #endif
 | |
| VEXTRACT(ub, u8)
 | |
| VEXTRACT(uh, u16)
 | |
| VEXTRACT(uw, u32)
 | |
| VEXTRACT(d, u64)
 | |
| #undef VEXTRACT
 | |
| 
 | |
| void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt,
 | |
|                         ppc_vsr_t *xb, uint32_t index)
 | |
| {
 | |
|     ppc_vsr_t t = { };
 | |
|     size_t es = sizeof(uint32_t);
 | |
|     uint32_t ext_index;
 | |
|     int i;
 | |
| 
 | |
|     ext_index = index;
 | |
|     for (i = 0; i < es; i++, ext_index++) {
 | |
|         t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
 | |
|     }
 | |
| 
 | |
|     *xt = t;
 | |
| }
 | |
| 
 | |
| void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt,
 | |
|                       ppc_vsr_t *xb, uint32_t index)
 | |
| {
 | |
|     ppc_vsr_t t = *xt;
 | |
|     size_t es = sizeof(uint32_t);
 | |
|     int ins_index, i = 0;
 | |
| 
 | |
|     ins_index = index;
 | |
|     for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
 | |
|         t.VsrB(ins_index) = xb->VsrB(8 - es + i);
 | |
|     }
 | |
| 
 | |
|     *xt = t;
 | |
| }
 | |
| 
 | |
| #define VEXT_SIGNED(name, element, cast)                            \
 | |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *b)                      \
 | |
| {                                                                   \
 | |
|     int i;                                                          \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|         r->element[i] = (cast)b->element[i];                        \
 | |
|     }                                                               \
 | |
| }
 | |
| VEXT_SIGNED(vextsb2w, s32, int8_t)
 | |
| VEXT_SIGNED(vextsb2d, s64, int8_t)
 | |
| VEXT_SIGNED(vextsh2w, s32, int16_t)
 | |
| VEXT_SIGNED(vextsh2d, s64, int16_t)
 | |
| VEXT_SIGNED(vextsw2d, s64, int32_t)
 | |
| #undef VEXT_SIGNED
 | |
| 
 | |
| #define VNEG(name, element)                                         \
 | |
| void helper_##name(ppc_avr_t *r, ppc_avr_t *b)                      \
 | |
| {                                                                   \
 | |
|     int i;                                                          \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|         r->element[i] = -b->element[i];                             \
 | |
|     }                                                               \
 | |
| }
 | |
| VNEG(vnegw, s32)
 | |
| VNEG(vnegd, s64)
 | |
| #undef VNEG
 | |
| 
 | |
| void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int sh = (b->VsrB(0xf) >> 3) & 0xf;
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     memmove(&r->u8[sh], &a->u8[0], 16 - sh);
 | |
|     memset(&r->u8[0], 0, sh);
 | |
| #else
 | |
|     memmove(&r->u8[0], &a->u8[sh], 16 - sh);
 | |
|     memset(&r->u8[16 - sh], 0, sh);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         r->u32[i] = a->u32[i] >= b->u32[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int64_t t;
 | |
|     int i, upper;
 | |
|     ppc_avr_t result;
 | |
|     int sat = 0;
 | |
| 
 | |
|     upper = ARRAY_SIZE(r->s32) - 1;
 | |
|     t = (int64_t)b->VsrSW(upper);
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         t += a->VsrSW(i);
 | |
|         result.VsrSW(i) = 0;
 | |
|     }
 | |
|     result.VsrSW(upper) = cvtsdsw(t, &sat);
 | |
|     *r = result;
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j, upper;
 | |
|     ppc_avr_t result;
 | |
|     int sat = 0;
 | |
| 
 | |
|     upper = 1;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
 | |
|         int64_t t = (int64_t)b->VsrSW(upper + i * 2);
 | |
| 
 | |
|         result.VsrD(i) = 0;
 | |
|         for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
 | |
|             t += a->VsrSW(2 * i + j);
 | |
|         }
 | |
|         result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     *r = result;
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         int64_t t = (int64_t)b->s32[i];
 | |
| 
 | |
|         for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
 | |
|             t += a->s8[4 * i + j];
 | |
|         }
 | |
|         r->s32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         int64_t t = (int64_t)b->s32[i];
 | |
| 
 | |
|         t += a->s16[2 * i] + a->s16[2 * i + 1];
 | |
|         r->s32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         uint64_t t = (uint64_t)b->u32[i];
 | |
| 
 | |
|         for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
 | |
|             t += a->u8[4 * i + j];
 | |
|         }
 | |
|         r->u32[i] = cvtuduw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         set_vscr_sat(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define UPKHI 1
 | |
| #define UPKLO 0
 | |
| #else
 | |
| #define UPKHI 0
 | |
| #define UPKLO 1
 | |
| #endif
 | |
| #define VUPKPX(suffix, hi)                                              \
 | |
|     void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         ppc_avr_t result;                                               \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->u32); i++) {                      \
 | |
|             uint16_t e = b->u16[hi ? i : i + 4];                        \
 | |
|             uint8_t a = (e >> 15) ? 0xff : 0;                           \
 | |
|             uint8_t r = (e >> 10) & 0x1f;                               \
 | |
|             uint8_t g = (e >> 5) & 0x1f;                                \
 | |
|             uint8_t b = e & 0x1f;                                       \
 | |
|                                                                         \
 | |
|             result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|     }
 | |
| VUPKPX(lpx, UPKLO)
 | |
| VUPKPX(hpx, UPKHI)
 | |
| #undef VUPKPX
 | |
| 
 | |
| #define VUPK(suffix, unpacked, packee, hi)                              \
 | |
|     void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         ppc_avr_t result;                                               \
 | |
|                                                                         \
 | |
|         if (hi) {                                                       \
 | |
|             for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
 | |
|                 result.unpacked[i] = b->packee[i];                      \
 | |
|             }                                                           \
 | |
|         } else {                                                        \
 | |
|             for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
 | |
|                  i++) {                                                 \
 | |
|                 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|     }
 | |
| VUPK(hsb, s16, s8, UPKHI)
 | |
| VUPK(hsh, s32, s16, UPKHI)
 | |
| VUPK(hsw, s64, s32, UPKHI)
 | |
| VUPK(lsb, s16, s8, UPKLO)
 | |
| VUPK(lsh, s32, s16, UPKLO)
 | |
| VUPK(lsw, s64, s32, UPKLO)
 | |
| #undef VUPK
 | |
| #undef UPKHI
 | |
| #undef UPKLO
 | |
| 
 | |
| #define VGENERIC_DO(name, element)                                      \
 | |
|     void helper_v##name(ppc_avr_t *r, ppc_avr_t *b)                     \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|                                                                         \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             r->element[i] = name(b->element[i]);                        \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
 | |
| #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
 | |
| 
 | |
| VGENERIC_DO(clzb, u8)
 | |
| VGENERIC_DO(clzh, u16)
 | |
| 
 | |
| #undef clzb
 | |
| #undef clzh
 | |
| 
 | |
| #define ctzb(v) ((v) ? ctz32(v) : 8)
 | |
| #define ctzh(v) ((v) ? ctz32(v) : 16)
 | |
| #define ctzw(v) ctz32((v))
 | |
| #define ctzd(v) ctz64((v))
 | |
| 
 | |
| VGENERIC_DO(ctzb, u8)
 | |
| VGENERIC_DO(ctzh, u16)
 | |
| VGENERIC_DO(ctzw, u32)
 | |
| VGENERIC_DO(ctzd, u64)
 | |
| 
 | |
| #undef ctzb
 | |
| #undef ctzh
 | |
| #undef ctzw
 | |
| #undef ctzd
 | |
| 
 | |
| #define popcntb(v) ctpop8(v)
 | |
| #define popcnth(v) ctpop16(v)
 | |
| #define popcntw(v) ctpop32(v)
 | |
| #define popcntd(v) ctpop64(v)
 | |
| 
 | |
| VGENERIC_DO(popcntb, u8)
 | |
| VGENERIC_DO(popcnth, u16)
 | |
| VGENERIC_DO(popcntw, u32)
 | |
| VGENERIC_DO(popcntd, u64)
 | |
| 
 | |
| #undef popcntb
 | |
| #undef popcnth
 | |
| #undef popcntw
 | |
| #undef popcntd
 | |
| 
 | |
| #undef VGENERIC_DO
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define QW_ONE { .u64 = { 0, 1 } }
 | |
| #else
 | |
| #define QW_ONE { .u64 = { 1, 0 } }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_INT128
 | |
| 
 | |
| static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
 | |
| {
 | |
|     t->u64[0] = ~a.u64[0];
 | |
|     t->u64[1] = ~a.u64[1];
 | |
| }
 | |
| 
 | |
| static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
 | |
| {
 | |
|     if (a.VsrD(0) < b.VsrD(0)) {
 | |
|         return -1;
 | |
|     } else if (a.VsrD(0) > b.VsrD(0)) {
 | |
|         return 1;
 | |
|     } else if (a.VsrD(1) < b.VsrD(1)) {
 | |
|         return -1;
 | |
|     } else if (a.VsrD(1) > b.VsrD(1)) {
 | |
|         return 1;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
 | |
| {
 | |
|     t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
 | |
|     t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
 | |
|                      (~a.VsrD(1) < b.VsrD(1));
 | |
| }
 | |
| 
 | |
| static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
 | |
| {
 | |
|     ppc_avr_t not_a;
 | |
|     t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
 | |
|     t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
 | |
|                      (~a.VsrD(1) < b.VsrD(1));
 | |
|     avr_qw_not(¬_a, a);
 | |
|     return avr_qw_cmpu(not_a, b) < 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = a->u128 + b->u128;
 | |
| #else
 | |
|     avr_qw_add(r, *a, *b);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = a->u128 + b->u128 + (c->u128 & 1);
 | |
| #else
 | |
| 
 | |
|     if (c->VsrD(1) & 1) {
 | |
|         ppc_avr_t tmp;
 | |
| 
 | |
|         tmp.VsrD(0) = 0;
 | |
|         tmp.VsrD(1) = c->VsrD(1) & 1;
 | |
|         avr_qw_add(&tmp, *a, tmp);
 | |
|         avr_qw_add(r, tmp, *b);
 | |
|     } else {
 | |
|         avr_qw_add(r, *a, *b);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = (~a->u128 < b->u128);
 | |
| #else
 | |
|     ppc_avr_t not_a;
 | |
| 
 | |
|     avr_qw_not(¬_a, *a);
 | |
| 
 | |
|     r->VsrD(0) = 0;
 | |
|     r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     int carry_out = (~a->u128 < b->u128);
 | |
|     if (!carry_out && (c->u128 & 1)) {
 | |
|         carry_out = ((a->u128 + b->u128 + 1) == 0) &&
 | |
|                     ((a->u128 != 0) || (b->u128 != 0));
 | |
|     }
 | |
|     r->u128 = carry_out;
 | |
| #else
 | |
| 
 | |
|     int carry_in = c->VsrD(1) & 1;
 | |
|     int carry_out = 0;
 | |
|     ppc_avr_t tmp;
 | |
| 
 | |
|     carry_out = avr_qw_addc(&tmp, *a, *b);
 | |
| 
 | |
|     if (!carry_out && carry_in) {
 | |
|         ppc_avr_t one = QW_ONE;
 | |
|         carry_out = avr_qw_addc(&tmp, tmp, one);
 | |
|     }
 | |
|     r->VsrD(0) = 0;
 | |
|     r->VsrD(1) = carry_out;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = a->u128 - b->u128;
 | |
| #else
 | |
|     ppc_avr_t tmp;
 | |
|     ppc_avr_t one = QW_ONE;
 | |
| 
 | |
|     avr_qw_not(&tmp, *b);
 | |
|     avr_qw_add(&tmp, *a, tmp);
 | |
|     avr_qw_add(r, tmp, one);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
 | |
| #else
 | |
|     ppc_avr_t tmp, sum;
 | |
| 
 | |
|     avr_qw_not(&tmp, *b);
 | |
|     avr_qw_add(&sum, *a, tmp);
 | |
| 
 | |
|     tmp.VsrD(0) = 0;
 | |
|     tmp.VsrD(1) = c->VsrD(1) & 1;
 | |
|     avr_qw_add(r, sum, tmp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 = (~a->u128 < ~b->u128) ||
 | |
|                  (a->u128 + ~b->u128 == (__uint128_t)-1);
 | |
| #else
 | |
|     int carry = (avr_qw_cmpu(*a, *b) > 0);
 | |
|     if (!carry) {
 | |
|         ppc_avr_t tmp;
 | |
|         avr_qw_not(&tmp, *b);
 | |
|         avr_qw_add(&tmp, *a, tmp);
 | |
|         carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull));
 | |
|     }
 | |
|     r->VsrD(0) = 0;
 | |
|     r->VsrD(1) = carry;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
| #ifdef CONFIG_INT128
 | |
|     r->u128 =
 | |
|         (~a->u128 < ~b->u128) ||
 | |
|         ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
 | |
| #else
 | |
|     int carry_in = c->VsrD(1) & 1;
 | |
|     int carry_out = (avr_qw_cmpu(*a, *b) > 0);
 | |
|     if (!carry_out && carry_in) {
 | |
|         ppc_avr_t tmp;
 | |
|         avr_qw_not(&tmp, *b);
 | |
|         avr_qw_add(&tmp, *a, tmp);
 | |
|         carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull));
 | |
|     }
 | |
| 
 | |
|     r->VsrD(0) = 0;
 | |
|     r->VsrD(1) = carry_out;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define BCD_PLUS_PREF_1 0xC
 | |
| #define BCD_PLUS_PREF_2 0xF
 | |
| #define BCD_PLUS_ALT_1  0xA
 | |
| #define BCD_NEG_PREF    0xD
 | |
| #define BCD_NEG_ALT     0xB
 | |
| #define BCD_PLUS_ALT_2  0xE
 | |
| #define NATIONAL_PLUS   0x2B
 | |
| #define NATIONAL_NEG    0x2D
 | |
| 
 | |
| #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
 | |
| 
 | |
| static int bcd_get_sgn(ppc_avr_t *bcd)
 | |
| {
 | |
|     switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
 | |
|     case BCD_PLUS_PREF_1:
 | |
|     case BCD_PLUS_PREF_2:
 | |
|     case BCD_PLUS_ALT_1:
 | |
|     case BCD_PLUS_ALT_2:
 | |
|     {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     case BCD_NEG_PREF:
 | |
|     case BCD_NEG_ALT:
 | |
|     {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|     {
 | |
|         return 0;
 | |
|     }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int bcd_preferred_sgn(int sgn, int ps)
 | |
| {
 | |
|     if (sgn >= 0) {
 | |
|         return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
 | |
|     } else {
 | |
|         return BCD_NEG_PREF;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
 | |
| {
 | |
|     uint8_t result;
 | |
|     if (n & 1) {
 | |
|         result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
 | |
|     } else {
 | |
|        result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(result > 9)) {
 | |
|         *invalid = true;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
 | |
| {
 | |
|     if (n & 1) {
 | |
|         bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
 | |
|         bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
 | |
|     } else {
 | |
|         bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
 | |
|         bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool bcd_is_valid(ppc_avr_t *bcd)
 | |
| {
 | |
|     int i;
 | |
|     int invalid = 0;
 | |
| 
 | |
|     if (bcd_get_sgn(bcd) == 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < 32; i++) {
 | |
|         bcd_get_digit(bcd, i, &invalid);
 | |
|         if (unlikely(invalid)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static int bcd_cmp_zero(ppc_avr_t *bcd)
 | |
| {
 | |
|     if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
 | |
|         return CRF_EQ;
 | |
|     } else {
 | |
|         return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t get_national_digit(ppc_avr_t *reg, int n)
 | |
| {
 | |
|     return reg->VsrH(7 - n);
 | |
| }
 | |
| 
 | |
| static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
 | |
| {
 | |
|     reg->VsrH(7 - n) = val;
 | |
| }
 | |
| 
 | |
| static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     int invalid = 0;
 | |
|     for (i = 31; i > 0; i--) {
 | |
|         uint8_t dig_a = bcd_get_digit(a, i, &invalid);
 | |
|         uint8_t dig_b = bcd_get_digit(b, i, &invalid);
 | |
|         if (unlikely(invalid)) {
 | |
|             return 0; /* doesn't matter */
 | |
|         } else if (dig_a > dig_b) {
 | |
|             return 1;
 | |
|         } else if (dig_a < dig_b) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
 | |
|                        int *overflow)
 | |
| {
 | |
|     int carry = 0;
 | |
|     int i;
 | |
|     int is_zero = 1;
 | |
| 
 | |
|     for (i = 1; i <= 31; i++) {
 | |
|         uint8_t digit = bcd_get_digit(a, i, invalid) +
 | |
|                         bcd_get_digit(b, i, invalid) + carry;
 | |
|         is_zero &= (digit == 0);
 | |
|         if (digit > 9) {
 | |
|             carry = 1;
 | |
|             digit -= 10;
 | |
|         } else {
 | |
|             carry = 0;
 | |
|         }
 | |
| 
 | |
|         bcd_put_digit(t, digit, i);
 | |
|     }
 | |
| 
 | |
|     *overflow = carry;
 | |
|     return is_zero;
 | |
| }
 | |
| 
 | |
| static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
 | |
|                        int *overflow)
 | |
| {
 | |
|     int carry = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 1; i <= 31; i++) {
 | |
|         uint8_t digit = bcd_get_digit(a, i, invalid) -
 | |
|                         bcd_get_digit(b, i, invalid) + carry;
 | |
|         if (digit & 0x80) {
 | |
|             carry = -1;
 | |
|             digit += 10;
 | |
|         } else {
 | |
|             carry = 0;
 | |
|         }
 | |
| 
 | |
|         bcd_put_digit(t, digit, i);
 | |
|     }
 | |
| 
 | |
|     *overflow = carry;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdadd(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
| 
 | |
|     int sgna = bcd_get_sgn(a);
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     int invalid = (sgna == 0) || (sgnb == 0);
 | |
|     int overflow = 0;
 | |
|     int zero = 0;
 | |
|     uint32_t cr = 0;
 | |
|     ppc_avr_t result = { .u64 = { 0, 0 } };
 | |
| 
 | |
|     if (!invalid) {
 | |
|         if (sgna == sgnb) {
 | |
|             result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
 | |
|             zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
 | |
|             cr = (sgna > 0) ? CRF_GT : CRF_LT;
 | |
|         } else {
 | |
|             int magnitude = bcd_cmp_mag(a, b);
 | |
|             if (magnitude > 0) {
 | |
|                 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
 | |
|                 bcd_sub_mag(&result, a, b, &invalid, &overflow);
 | |
|                 cr = (sgna > 0) ? CRF_GT : CRF_LT;
 | |
|             } else if (magnitude < 0) {
 | |
|                 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
 | |
|                 bcd_sub_mag(&result, b, a, &invalid, &overflow);
 | |
|                 cr = (sgnb > 0) ? CRF_GT : CRF_LT;
 | |
|             } else {
 | |
|                 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
 | |
|                 cr = CRF_EQ;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         result.VsrD(0) = result.VsrD(1) = -1;
 | |
|         cr = CRF_SO;
 | |
|     } else if (overflow) {
 | |
|         cr |= CRF_SO;
 | |
|     } else if (zero) {
 | |
|         cr |= CRF_EQ;
 | |
|     }
 | |
| 
 | |
|     *r = result;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdsub(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     ppc_avr_t bcopy = *b;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     if (sgnb < 0) {
 | |
|         bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
 | |
|     } else if (sgnb > 0) {
 | |
|         bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
 | |
|     }
 | |
|     /* else invalid ... defer to bcdadd code for proper handling */
 | |
| 
 | |
|     return helper_bcdadd(r, a, &bcopy, ps);
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int cr = 0;
 | |
|     uint16_t national = 0;
 | |
|     uint16_t sgnb = get_national_digit(b, 0);
 | |
|     ppc_avr_t ret = { .u64 = { 0, 0 } };
 | |
|     int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
 | |
| 
 | |
|     for (i = 1; i < 8; i++) {
 | |
|         national = get_national_digit(b, i);
 | |
|         if (unlikely(national < 0x30 || national > 0x39)) {
 | |
|             invalid = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         bcd_put_digit(&ret, national & 0xf, i);
 | |
|     }
 | |
| 
 | |
|     if (sgnb == NATIONAL_PLUS) {
 | |
|         bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
 | |
|     } else {
 | |
|         bcd_put_digit(&ret, BCD_NEG_PREF, 0);
 | |
|     }
 | |
| 
 | |
|     cr = bcd_cmp_zero(&ret);
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int cr = 0;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     int invalid = (sgnb == 0);
 | |
|     ppc_avr_t ret = { .u64 = { 0, 0 } };
 | |
| 
 | |
|     int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
 | |
| 
 | |
|     for (i = 1; i < 8; i++) {
 | |
|         set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
 | |
| 
 | |
|         if (unlikely(invalid)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
 | |
| 
 | |
|     cr = bcd_cmp_zero(b);
 | |
| 
 | |
|     if (ox_flag) {
 | |
|         cr |= CRF_SO;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int cr = 0;
 | |
|     int invalid = 0;
 | |
|     int zone_digit = 0;
 | |
|     int zone_lead = ps ? 0xF : 0x3;
 | |
|     int digit = 0;
 | |
|     ppc_avr_t ret = { .u64 = { 0, 0 } };
 | |
|     int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
 | |
| 
 | |
|     if (unlikely((sgnb < 0xA) && ps)) {
 | |
|         invalid = 1;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
 | |
|         digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
 | |
|         if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
 | |
|             invalid = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         bcd_put_digit(&ret, digit, i + 1);
 | |
|     }
 | |
| 
 | |
|     if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
 | |
|             (!ps && (sgnb & 0x4))) {
 | |
|         bcd_put_digit(&ret, BCD_NEG_PREF, 0);
 | |
|     } else {
 | |
|         bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
 | |
|     }
 | |
| 
 | |
|     cr = bcd_cmp_zero(&ret);
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int cr = 0;
 | |
|     uint8_t digit = 0;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     int zone_lead = (ps) ? 0xF0 : 0x30;
 | |
|     int invalid = (sgnb == 0);
 | |
|     ppc_avr_t ret = { .u64 = { 0, 0 } };
 | |
| 
 | |
|     int ox_flag = ((b->VsrD(0) >> 4) != 0);
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         digit = bcd_get_digit(b, i + 1, &invalid);
 | |
| 
 | |
|         if (unlikely(invalid)) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
 | |
|     }
 | |
| 
 | |
|     if (ps) {
 | |
|         bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
 | |
|     } else {
 | |
|         bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
 | |
|     }
 | |
| 
 | |
|     cr = bcd_cmp_zero(b);
 | |
| 
 | |
|     if (ox_flag) {
 | |
|         cr |= CRF_SO;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int cr = 0;
 | |
|     uint64_t lo_value;
 | |
|     uint64_t hi_value;
 | |
|     ppc_avr_t ret = { .u64 = { 0, 0 } };
 | |
| 
 | |
|     if (b->VsrSD(0) < 0) {
 | |
|         lo_value = -b->VsrSD(1);
 | |
|         hi_value = ~b->VsrD(0) + !lo_value;
 | |
|         bcd_put_digit(&ret, 0xD, 0);
 | |
|     } else {
 | |
|         lo_value = b->VsrD(1);
 | |
|         hi_value = b->VsrD(0);
 | |
|         bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
 | |
|     }
 | |
| 
 | |
|     if (divu128(&lo_value, &hi_value, 1000000000000000ULL) ||
 | |
|             lo_value > 9999999999999999ULL) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i < 16; hi_value /= 10, i++) {
 | |
|         bcd_put_digit(&ret, hi_value % 10, i);
 | |
|     }
 | |
| 
 | |
|     for (; i < 32; lo_value /= 10, i++) {
 | |
|         bcd_put_digit(&ret, lo_value % 10, i);
 | |
|     }
 | |
| 
 | |
|     cr |= bcd_cmp_zero(&ret);
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     uint8_t i;
 | |
|     int cr;
 | |
|     uint64_t carry;
 | |
|     uint64_t unused;
 | |
|     uint64_t lo_value;
 | |
|     uint64_t hi_value = 0;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     int invalid = (sgnb == 0);
 | |
| 
 | |
|     lo_value = bcd_get_digit(b, 31, &invalid);
 | |
|     for (i = 30; i > 0; i--) {
 | |
|         mulu64(&lo_value, &carry, lo_value, 10ULL);
 | |
|         mulu64(&hi_value, &unused, hi_value, 10ULL);
 | |
|         lo_value += bcd_get_digit(b, i, &invalid);
 | |
|         hi_value += carry;
 | |
| 
 | |
|         if (unlikely(invalid)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (sgnb == -1) {
 | |
|         r->VsrSD(1) = -lo_value;
 | |
|         r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
 | |
|     } else {
 | |
|         r->VsrSD(1) = lo_value;
 | |
|         r->VsrSD(0) = hi_value;
 | |
|     }
 | |
| 
 | |
|     cr = bcd_cmp_zero(b);
 | |
| 
 | |
|     if (unlikely(invalid)) {
 | |
|         cr = CRF_SO;
 | |
|     }
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     int invalid = 0;
 | |
| 
 | |
|     if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
 | |
|         return CRF_SO;
 | |
|     }
 | |
| 
 | |
|     *r = *a;
 | |
|     bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
 | |
| 
 | |
|     for (i = 1; i < 32; i++) {
 | |
|         bcd_get_digit(a, i, &invalid);
 | |
|         bcd_get_digit(b, i, &invalid);
 | |
|         if (unlikely(invalid)) {
 | |
|             return CRF_SO;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return bcd_cmp_zero(r);
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
| 
 | |
|     *r = *b;
 | |
|     bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
 | |
| 
 | |
|     if (bcd_is_valid(b) == false) {
 | |
|         return CRF_SO;
 | |
|     }
 | |
| 
 | |
|     return bcd_cmp_zero(r);
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int cr;
 | |
|     int i = a->VsrSB(7);
 | |
|     bool ox_flag = false;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     ppc_avr_t ret = *b;
 | |
|     ret.VsrD(1) &= ~0xf;
 | |
| 
 | |
|     if (bcd_is_valid(b) == false) {
 | |
|         return CRF_SO;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(i > 31)) {
 | |
|         i = 31;
 | |
|     } else if (unlikely(i < -31)) {
 | |
|         i = -31;
 | |
|     }
 | |
| 
 | |
|     if (i > 0) {
 | |
|         ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
 | |
|     } else {
 | |
|         urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
 | |
|     }
 | |
|     bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
 | |
| 
 | |
|     *r = ret;
 | |
| 
 | |
|     cr = bcd_cmp_zero(r);
 | |
|     if (ox_flag) {
 | |
|         cr |= CRF_SO;
 | |
|     }
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int cr;
 | |
|     int i;
 | |
|     int invalid = 0;
 | |
|     bool ox_flag = false;
 | |
|     ppc_avr_t ret = *b;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         bcd_get_digit(b, i, &invalid);
 | |
| 
 | |
|         if (unlikely(invalid)) {
 | |
|             return CRF_SO;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     i = a->VsrSB(7);
 | |
|     if (i >= 32) {
 | |
|         ox_flag = true;
 | |
|         ret.VsrD(1) = ret.VsrD(0) = 0;
 | |
|     } else if (i <= -32) {
 | |
|         ret.VsrD(1) = ret.VsrD(0) = 0;
 | |
|     } else if (i > 0) {
 | |
|         ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
 | |
|     } else {
 | |
|         urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
 | |
|     }
 | |
|     *r = ret;
 | |
| 
 | |
|     cr = bcd_cmp_zero(r);
 | |
|     if (ox_flag) {
 | |
|         cr |= CRF_SO;
 | |
|     }
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int cr;
 | |
|     int unused = 0;
 | |
|     int invalid = 0;
 | |
|     bool ox_flag = false;
 | |
|     int sgnb = bcd_get_sgn(b);
 | |
|     ppc_avr_t ret = *b;
 | |
|     ret.VsrD(1) &= ~0xf;
 | |
| 
 | |
|     int i = a->VsrSB(7);
 | |
|     ppc_avr_t bcd_one;
 | |
| 
 | |
|     bcd_one.VsrD(0) = 0;
 | |
|     bcd_one.VsrD(1) = 0x10;
 | |
| 
 | |
|     if (bcd_is_valid(b) == false) {
 | |
|         return CRF_SO;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(i > 31)) {
 | |
|         i = 31;
 | |
|     } else if (unlikely(i < -31)) {
 | |
|         i = -31;
 | |
|     }
 | |
| 
 | |
|     if (i > 0) {
 | |
|         ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
 | |
|     } else {
 | |
|         urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
 | |
| 
 | |
|         if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
 | |
|             bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
 | |
|         }
 | |
|     }
 | |
|     bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
 | |
| 
 | |
|     cr = bcd_cmp_zero(&ret);
 | |
|     if (ox_flag) {
 | |
|         cr |= CRF_SO;
 | |
|     }
 | |
|     *r = ret;
 | |
| 
 | |
|     return cr;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     uint64_t mask;
 | |
|     uint32_t ox_flag = 0;
 | |
|     int i = a->VsrSH(3) + 1;
 | |
|     ppc_avr_t ret = *b;
 | |
| 
 | |
|     if (bcd_is_valid(b) == false) {
 | |
|         return CRF_SO;
 | |
|     }
 | |
| 
 | |
|     if (i > 16 && i < 32) {
 | |
|         mask = (uint64_t)-1 >> (128 - i * 4);
 | |
|         if (ret.VsrD(0) & ~mask) {
 | |
|             ox_flag = CRF_SO;
 | |
|         }
 | |
| 
 | |
|         ret.VsrD(0) &= mask;
 | |
|     } else if (i >= 0 && i <= 16) {
 | |
|         mask = (uint64_t)-1 >> (64 - i * 4);
 | |
|         if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
 | |
|             ox_flag = CRF_SO;
 | |
|         }
 | |
| 
 | |
|         ret.VsrD(1) &= mask;
 | |
|         ret.VsrD(0) = 0;
 | |
|     }
 | |
|     bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
 | |
|     *r = ret;
 | |
| 
 | |
|     return bcd_cmp_zero(&ret) | ox_flag;
 | |
| }
 | |
| 
 | |
| uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t mask;
 | |
|     uint32_t ox_flag = 0;
 | |
|     int invalid = 0;
 | |
|     ppc_avr_t ret = *b;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         bcd_get_digit(b, i, &invalid);
 | |
| 
 | |
|         if (unlikely(invalid)) {
 | |
|             return CRF_SO;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     i = a->VsrSH(3);
 | |
|     if (i > 16 && i < 33) {
 | |
|         mask = (uint64_t)-1 >> (128 - i * 4);
 | |
|         if (ret.VsrD(0) & ~mask) {
 | |
|             ox_flag = CRF_SO;
 | |
|         }
 | |
| 
 | |
|         ret.VsrD(0) &= mask;
 | |
|     } else if (i > 0 && i <= 16) {
 | |
|         mask = (uint64_t)-1 >> (64 - i * 4);
 | |
|         if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
 | |
|             ox_flag = CRF_SO;
 | |
|         }
 | |
| 
 | |
|         ret.VsrD(1) &= mask;
 | |
|         ret.VsrD(0) = 0;
 | |
|     } else if (i == 0) {
 | |
|         if (ret.VsrD(0) || ret.VsrD(1)) {
 | |
|             ox_flag = CRF_SO;
 | |
|         }
 | |
|         ret.VsrD(0) = ret.VsrD(1) = 0;
 | |
|     }
 | |
| 
 | |
|     *r = ret;
 | |
|     if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
 | |
|         return ox_flag | CRF_EQ;
 | |
|     }
 | |
| 
 | |
|     return ox_flag | CRF_GT;
 | |
| }
 | |
| 
 | |
| void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
 | |
| {
 | |
|     int i;
 | |
|     VECTOR_FOR_INORDER_I(i, u8) {
 | |
|         r->u8[i] = AES_sbox[a->u8[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         result.VsrW(i) = b->VsrW(i) ^
 | |
|             (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
 | |
|              AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
 | |
|              AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
 | |
|              AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u8) {
 | |
|         result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]);
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     /* This differs from what is written in ISA V2.07.  The RTL is */
 | |
|     /* incorrect and will be fixed in V2.07B.                      */
 | |
|     int i;
 | |
|     ppc_avr_t tmp;
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u8) {
 | |
|         tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         r->VsrW(i) =
 | |
|             AES_imc[tmp.VsrB(4 * i + 0)][0] ^
 | |
|             AES_imc[tmp.VsrB(4 * i + 1)][1] ^
 | |
|             AES_imc[tmp.VsrB(4 * i + 2)][2] ^
 | |
|             AES_imc[tmp.VsrB(4 * i + 3)][3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u8) {
 | |
|         result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]);
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vshasigmaw(ppc_avr_t *r,  ppc_avr_t *a, uint32_t st_six)
 | |
| {
 | |
|     int st = (st_six & 0x10) != 0;
 | |
|     int six = st_six & 0xF;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         if (st == 0) {
 | |
|             if ((six & (0x8 >> i)) == 0) {
 | |
|                 r->VsrW(i) = ror32(a->VsrW(i), 7) ^
 | |
|                              ror32(a->VsrW(i), 18) ^
 | |
|                              (a->VsrW(i) >> 3);
 | |
|             } else { /* six.bit[i] == 1 */
 | |
|                 r->VsrW(i) = ror32(a->VsrW(i), 17) ^
 | |
|                              ror32(a->VsrW(i), 19) ^
 | |
|                              (a->VsrW(i) >> 10);
 | |
|             }
 | |
|         } else { /* st == 1 */
 | |
|             if ((six & (0x8 >> i)) == 0) {
 | |
|                 r->VsrW(i) = ror32(a->VsrW(i), 2) ^
 | |
|                              ror32(a->VsrW(i), 13) ^
 | |
|                              ror32(a->VsrW(i), 22);
 | |
|             } else { /* six.bit[i] == 1 */
 | |
|                 r->VsrW(i) = ror32(a->VsrW(i), 6) ^
 | |
|                              ror32(a->VsrW(i), 11) ^
 | |
|                              ror32(a->VsrW(i), 25);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vshasigmad(ppc_avr_t *r,  ppc_avr_t *a, uint32_t st_six)
 | |
| {
 | |
|     int st = (st_six & 0x10) != 0;
 | |
|     int six = st_six & 0xF;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
 | |
|         if (st == 0) {
 | |
|             if ((six & (0x8 >> (2 * i))) == 0) {
 | |
|                 r->VsrD(i) = ror64(a->VsrD(i), 1) ^
 | |
|                              ror64(a->VsrD(i), 8) ^
 | |
|                              (a->VsrD(i) >> 7);
 | |
|             } else { /* six.bit[2*i] == 1 */
 | |
|                 r->VsrD(i) = ror64(a->VsrD(i), 19) ^
 | |
|                              ror64(a->VsrD(i), 61) ^
 | |
|                              (a->VsrD(i) >> 6);
 | |
|             }
 | |
|         } else { /* st == 1 */
 | |
|             if ((six & (0x8 >> (2 * i))) == 0) {
 | |
|                 r->VsrD(i) = ror64(a->VsrD(i), 28) ^
 | |
|                              ror64(a->VsrD(i), 34) ^
 | |
|                              ror64(a->VsrD(i), 39);
 | |
|             } else { /* six.bit[2*i] == 1 */
 | |
|                 r->VsrD(i) = ror64(a->VsrD(i), 14) ^
 | |
|                              ror64(a->VsrD(i), 18) ^
 | |
|                              ror64(a->VsrD(i), 41);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vpermxor(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int indexA = c->VsrB(i) >> 4;
 | |
|         int indexB = c->VsrB(i) & 0xF;
 | |
| 
 | |
|         result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| #undef VECTOR_FOR_INORDER_I
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* SPE extension helpers */
 | |
| /* Use a table to make this quicker */
 | |
| static const uint8_t hbrev[16] = {
 | |
|     0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
 | |
|     0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
 | |
| };
 | |
| 
 | |
| static inline uint8_t byte_reverse(uint8_t val)
 | |
| {
 | |
|     return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
 | |
| }
 | |
| 
 | |
| static inline uint32_t word_reverse(uint32_t val)
 | |
| {
 | |
|     return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
 | |
|         (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
 | |
| }
 | |
| 
 | |
| #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
 | |
| target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     uint32_t a, b, d, mask;
 | |
| 
 | |
|     mask = UINT32_MAX >> (32 - MASKBITS);
 | |
|     a = arg1 & mask;
 | |
|     b = arg2 & mask;
 | |
|     d = word_reverse(1 + word_reverse(a | ~b));
 | |
|     return (arg1 & ~mask) | (d & b);
 | |
| }
 | |
| 
 | |
| uint32_t helper_cntlsw32(uint32_t val)
 | |
| {
 | |
|     if (val & 0x80000000) {
 | |
|         return clz32(~val);
 | |
|     } else {
 | |
|         return clz32(val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t helper_cntlzw32(uint32_t val)
 | |
| {
 | |
|     return clz32(val);
 | |
| }
 | |
| 
 | |
| /* 440 specific */
 | |
| target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
 | |
|                           target_ulong low, uint32_t update_Rc)
 | |
| {
 | |
|     target_ulong mask;
 | |
|     int i;
 | |
| 
 | |
|     i = 1;
 | |
|     for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | |
|         if ((high & mask) == 0) {
 | |
|             if (update_Rc) {
 | |
|                 env->crf[0] = 0x4;
 | |
|             }
 | |
|             goto done;
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | |
|         if ((low & mask) == 0) {
 | |
|             if (update_Rc) {
 | |
|                 env->crf[0] = 0x8;
 | |
|             }
 | |
|             goto done;
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     i = 8;
 | |
|     if (update_Rc) {
 | |
|         env->crf[0] = 0x2;
 | |
|     }
 | |
|  done:
 | |
|     env->xer = (env->xer & ~0x7F) | i;
 | |
|     if (update_Rc) {
 | |
|         env->crf[0] |= xer_so;
 | |
|     }
 | |
|     return i;
 | |
| }
 |