mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-27 05:04:40 +00:00 
			
		
		
		
	 0075270317
			
		
	
	
		0075270317
		
	
	
	
	
		
			
			This same treatment previously done to phys_node_map and phys_sections is now applied to the dispatch field of AddressSpace. Topology updates use as->next_dispatch while accesses use as->dispatch. Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			1062 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1062 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Physical memory management API
 | |
|  *
 | |
|  * Copyright 2011 Red Hat, Inc. and/or its affiliates
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Avi Kivity <avi@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifndef MEMORY_H
 | |
| #define MEMORY_H
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| #include "qemu-common.h"
 | |
| #include "exec/cpu-common.h"
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| #include "exec/hwaddr.h"
 | |
| #endif
 | |
| #include "qemu/queue.h"
 | |
| #include "qemu/int128.h"
 | |
| #include "qemu/notify.h"
 | |
| 
 | |
| #define MAX_PHYS_ADDR_SPACE_BITS 62
 | |
| #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
 | |
| 
 | |
| typedef struct MemoryRegionOps MemoryRegionOps;
 | |
| typedef struct MemoryRegionMmio MemoryRegionMmio;
 | |
| 
 | |
| /* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
 | |
|  * registration.
 | |
|  */
 | |
| #define DIRTY_MEMORY_VGA       0
 | |
| #define DIRTY_MEMORY_CODE      1
 | |
| #define DIRTY_MEMORY_MIGRATION 3
 | |
| 
 | |
| struct MemoryRegionMmio {
 | |
|     CPUReadMemoryFunc *read[3];
 | |
|     CPUWriteMemoryFunc *write[3];
 | |
| };
 | |
| 
 | |
| typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 | |
| 
 | |
| /* See address_space_translate: bit 0 is read, bit 1 is write.  */
 | |
| typedef enum {
 | |
|     IOMMU_NONE = 0,
 | |
|     IOMMU_RO   = 1,
 | |
|     IOMMU_WO   = 2,
 | |
|     IOMMU_RW   = 3,
 | |
| } IOMMUAccessFlags;
 | |
| 
 | |
| struct IOMMUTLBEntry {
 | |
|     AddressSpace    *target_as;
 | |
|     hwaddr           iova;
 | |
|     hwaddr           translated_addr;
 | |
|     hwaddr           addr_mask;  /* 0xfff = 4k translation */
 | |
|     IOMMUAccessFlags perm;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Memory region callbacks
 | |
|  */
 | |
| struct MemoryRegionOps {
 | |
|     /* Read from the memory region. @addr is relative to @mr; @size is
 | |
|      * in bytes. */
 | |
|     uint64_t (*read)(void *opaque,
 | |
|                      hwaddr addr,
 | |
|                      unsigned size);
 | |
|     /* Write to the memory region. @addr is relative to @mr; @size is
 | |
|      * in bytes. */
 | |
|     void (*write)(void *opaque,
 | |
|                   hwaddr addr,
 | |
|                   uint64_t data,
 | |
|                   unsigned size);
 | |
| 
 | |
|     enum device_endian endianness;
 | |
|     /* Guest-visible constraints: */
 | |
|     struct {
 | |
|         /* If nonzero, specify bounds on access sizes beyond which a machine
 | |
|          * check is thrown.
 | |
|          */
 | |
|         unsigned min_access_size;
 | |
|         unsigned max_access_size;
 | |
|         /* If true, unaligned accesses are supported.  Otherwise unaligned
 | |
|          * accesses throw machine checks.
 | |
|          */
 | |
|          bool unaligned;
 | |
|         /*
 | |
|          * If present, and returns #false, the transaction is not accepted
 | |
|          * by the device (and results in machine dependent behaviour such
 | |
|          * as a machine check exception).
 | |
|          */
 | |
|         bool (*accepts)(void *opaque, hwaddr addr,
 | |
|                         unsigned size, bool is_write);
 | |
|     } valid;
 | |
|     /* Internal implementation constraints: */
 | |
|     struct {
 | |
|         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 | |
|          * will be rounded upwards and a partial result will be returned.
 | |
|          */
 | |
|         unsigned min_access_size;
 | |
|         /* If nonzero, specifies the maximum size implemented.  Larger sizes
 | |
|          * will be done as a series of accesses with smaller sizes.
 | |
|          */
 | |
|         unsigned max_access_size;
 | |
|         /* If true, unaligned accesses are supported.  Otherwise all accesses
 | |
|          * are converted to (possibly multiple) naturally aligned accesses.
 | |
|          */
 | |
|          bool unaligned;
 | |
|     } impl;
 | |
| 
 | |
|     /* If .read and .write are not present, old_mmio may be used for
 | |
|      * backwards compatibility with old mmio registration
 | |
|      */
 | |
|     const MemoryRegionMmio old_mmio;
 | |
| };
 | |
| 
 | |
| typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
 | |
| 
 | |
| struct MemoryRegionIOMMUOps {
 | |
|     /* Return a TLB entry that contains a given address. */
 | |
|     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
 | |
| };
 | |
| 
 | |
| typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 | |
| typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 | |
| 
 | |
| struct MemoryRegion {
 | |
|     /* All fields are private - violators will be prosecuted */
 | |
|     const MemoryRegionOps *ops;
 | |
|     const MemoryRegionIOMMUOps *iommu_ops;
 | |
|     void *opaque;
 | |
|     struct Object *owner;
 | |
|     MemoryRegion *parent;
 | |
|     Int128 size;
 | |
|     hwaddr addr;
 | |
|     void (*destructor)(MemoryRegion *mr);
 | |
|     ram_addr_t ram_addr;
 | |
|     bool subpage;
 | |
|     bool terminates;
 | |
|     bool romd_mode;
 | |
|     bool ram;
 | |
|     bool readonly; /* For RAM regions */
 | |
|     bool enabled;
 | |
|     bool rom_device;
 | |
|     bool warning_printed; /* For reservations */
 | |
|     bool flush_coalesced_mmio;
 | |
|     MemoryRegion *alias;
 | |
|     hwaddr alias_offset;
 | |
|     unsigned priority;
 | |
|     bool may_overlap;
 | |
|     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 | |
|     QTAILQ_ENTRY(MemoryRegion) subregions_link;
 | |
|     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 | |
|     const char *name;
 | |
|     uint8_t dirty_log_mask;
 | |
|     unsigned ioeventfd_nb;
 | |
|     MemoryRegionIoeventfd *ioeventfds;
 | |
|     NotifierList iommu_notify;
 | |
| };
 | |
| 
 | |
| typedef struct MemoryListener MemoryListener;
 | |
| 
 | |
| /**
 | |
|  * MemoryListener: callbacks structure for updates to the physical memory map
 | |
|  *
 | |
|  * Allows a component to adjust to changes in the guest-visible memory map.
 | |
|  * Use with memory_listener_register() and memory_listener_unregister().
 | |
|  */
 | |
| struct MemoryListener {
 | |
|     void (*begin)(MemoryListener *listener);
 | |
|     void (*commit)(MemoryListener *listener);
 | |
|     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 | |
|     void (*log_global_start)(MemoryListener *listener);
 | |
|     void (*log_global_stop)(MemoryListener *listener);
 | |
|     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 | |
|                         bool match_data, uint64_t data, EventNotifier *e);
 | |
|     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 | |
|                         bool match_data, uint64_t data, EventNotifier *e);
 | |
|     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 | |
|                                hwaddr addr, hwaddr len);
 | |
|     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 | |
|                                hwaddr addr, hwaddr len);
 | |
|     /* Lower = earlier (during add), later (during del) */
 | |
|     unsigned priority;
 | |
|     AddressSpace *address_space_filter;
 | |
|     QTAILQ_ENTRY(MemoryListener) link;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 | |
|  */
 | |
| struct AddressSpace {
 | |
|     /* All fields are private. */
 | |
|     char *name;
 | |
|     MemoryRegion *root;
 | |
|     struct FlatView *current_map;
 | |
|     int ioeventfd_nb;
 | |
|     struct MemoryRegionIoeventfd *ioeventfds;
 | |
|     struct AddressSpaceDispatch *dispatch;
 | |
|     struct AddressSpaceDispatch *next_dispatch;
 | |
|     MemoryListener dispatch_listener;
 | |
| 
 | |
|     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * MemoryRegionSection: describes a fragment of a #MemoryRegion
 | |
|  *
 | |
|  * @mr: the region, or %NULL if empty
 | |
|  * @address_space: the address space the region is mapped in
 | |
|  * @offset_within_region: the beginning of the section, relative to @mr's start
 | |
|  * @size: the size of the section; will not exceed @mr's boundaries
 | |
|  * @offset_within_address_space: the address of the first byte of the section
 | |
|  *     relative to the region's address space
 | |
|  * @readonly: writes to this section are ignored
 | |
|  */
 | |
| struct MemoryRegionSection {
 | |
|     MemoryRegion *mr;
 | |
|     AddressSpace *address_space;
 | |
|     hwaddr offset_within_region;
 | |
|     Int128 size;
 | |
|     hwaddr offset_within_address_space;
 | |
|     bool readonly;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * memory_region_init: Initialize a memory region
 | |
|  *
 | |
|  * The region typically acts as a container for other memory regions.  Use
 | |
|  * memory_region_add_subregion() to add subregions.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @name: used for debugging; not visible to the user or ABI
 | |
|  * @size: size of the region; any subregions beyond this size will be clipped
 | |
|  */
 | |
| void memory_region_init(MemoryRegion *mr,
 | |
|                         struct Object *owner,
 | |
|                         const char *name,
 | |
|                         uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_ref: Add 1 to a memory region's reference count
 | |
|  *
 | |
|  * Whenever memory regions are accessed outside the BQL, they need to be
 | |
|  * preserved against hot-unplug.  MemoryRegions actually do not have their
 | |
|  * own reference count; they piggyback on a QOM object, their "owner".
 | |
|  * This function adds a reference to the owner.
 | |
|  *
 | |
|  * All MemoryRegions must have an owner if they can disappear, even if the
 | |
|  * device they belong to operates exclusively under the BQL.  This is because
 | |
|  * the region could be returned at any time by memory_region_find, and this
 | |
|  * is usually under guest control.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion
 | |
|  */
 | |
| void memory_region_ref(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_unref: Remove 1 to a memory region's reference count
 | |
|  *
 | |
|  * Whenever memory regions are accessed outside the BQL, they need to be
 | |
|  * preserved against hot-unplug.  MemoryRegions actually do not have their
 | |
|  * own reference count; they piggyback on a QOM object, their "owner".
 | |
|  * This function removes a reference to the owner and possibly destroys it.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion
 | |
|  */
 | |
| void memory_region_unref(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_io: Initialize an I/O memory region.
 | |
|  *
 | |
|  * Accesses into the region will cause the callbacks in @ops to be called.
 | |
|  * if @size is nonzero, subregions will be clipped to @size.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized.
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @ops: a structure containing read and write callbacks to be used when
 | |
|  *       I/O is performed on the region.
 | |
|  * @opaque: passed to to the read and write callbacks of the @ops structure.
 | |
|  * @name: used for debugging; not visible to the user or ABI
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_io(MemoryRegion *mr,
 | |
|                            struct Object *owner,
 | |
|                            const MemoryRegionOps *ops,
 | |
|                            void *opaque,
 | |
|                            const char *name,
 | |
|                            uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 | |
|  *                          region will modify memory directly.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized.
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @name: the name of the region.
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_ram(MemoryRegion *mr,
 | |
|                             struct Object *owner,
 | |
|                             const char *name,
 | |
|                             uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 | |
|  *                              user-provided pointer.  Accesses into the
 | |
|  *                              region will modify memory directly.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized.
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @name: the name of the region.
 | |
|  * @size: size of the region.
 | |
|  * @ptr: memory to be mapped; must contain at least @size bytes.
 | |
|  */
 | |
| void memory_region_init_ram_ptr(MemoryRegion *mr,
 | |
|                                 struct Object *owner,
 | |
|                                 const char *name,
 | |
|                                 uint64_t size,
 | |
|                                 void *ptr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_alias: Initialize a memory region that aliases all or a
 | |
|  *                           part of another memory region.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized.
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @name: used for debugging; not visible to the user or ABI
 | |
|  * @orig: the region to be referenced; @mr will be equivalent to
 | |
|  *        @orig between @offset and @offset + @size - 1.
 | |
|  * @offset: start of the section in @orig to be referenced.
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_alias(MemoryRegion *mr,
 | |
|                               struct Object *owner,
 | |
|                               const char *name,
 | |
|                               MemoryRegion *orig,
 | |
|                               hwaddr offset,
 | |
|                               uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 | |
|  *                                 handled via callbacks.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized.
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @ops: callbacks for write access handling.
 | |
|  * @name: the name of the region.
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_rom_device(MemoryRegion *mr,
 | |
|                                    struct Object *owner,
 | |
|                                    const MemoryRegionOps *ops,
 | |
|                                    void *opaque,
 | |
|                                    const char *name,
 | |
|                                    uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_reservation: Initialize a memory region that reserves
 | |
|  *                                 I/O space.
 | |
|  *
 | |
|  * A reservation region primariy serves debugging purposes.  It claims I/O
 | |
|  * space that is not supposed to be handled by QEMU itself.  Any access via
 | |
|  * the memory API will cause an abort().
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @name: used for debugging; not visible to the user or ABI
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_reservation(MemoryRegion *mr,
 | |
|                                     struct Object *owner,
 | |
|                                     const char *name,
 | |
|                                     uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_init_iommu: Initialize a memory region that translates
 | |
|  * addresses
 | |
|  *
 | |
|  * An IOMMU region translates addresses and forwards accesses to a target
 | |
|  * memory region.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be initialized
 | |
|  * @owner: the object that tracks the region's reference count
 | |
|  * @ops: a function that translates addresses into the @target region
 | |
|  * @name: used for debugging; not visible to the user or ABI
 | |
|  * @size: size of the region.
 | |
|  */
 | |
| void memory_region_init_iommu(MemoryRegion *mr,
 | |
|                               struct Object *owner,
 | |
|                               const MemoryRegionIOMMUOps *ops,
 | |
|                               const char *name,
 | |
|                               uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_destroy: Destroy a memory region and reclaim all resources.
 | |
|  *
 | |
|  * @mr: the region to be destroyed.  May not currently be a subregion
 | |
|  *      (see memory_region_add_subregion()) or referenced in an alias
 | |
|  *      (see memory_region_init_alias()).
 | |
|  */
 | |
| void memory_region_destroy(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_owner: get a memory region's owner.
 | |
|  *
 | |
|  * @mr: the memory region being queried.
 | |
|  */
 | |
| struct Object *memory_region_owner(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_size: get a memory region's size.
 | |
|  *
 | |
|  * @mr: the memory region being queried.
 | |
|  */
 | |
| uint64_t memory_region_size(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_is_ram: check whether a memory region is random access
 | |
|  *
 | |
|  * Returns %true is a memory region is random access.
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| bool memory_region_is_ram(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_is_romd: check whether a memory region is in ROMD mode
 | |
|  *
 | |
|  * Returns %true if a memory region is a ROM device and currently set to allow
 | |
|  * direct reads.
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| static inline bool memory_region_is_romd(MemoryRegion *mr)
 | |
| {
 | |
|     return mr->rom_device && mr->romd_mode;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_region_is_iommu: check whether a memory region is an iommu
 | |
|  *
 | |
|  * Returns %true is a memory region is an iommu.
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| bool memory_region_is_iommu(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 | |
|  *
 | |
|  * @mr: the memory region that was changed
 | |
|  * @entry: the new entry in the IOMMU translation table.  The entry
 | |
|  *         replaces all old entries for the same virtual I/O address range.
 | |
|  *         Deleted entries have .@perm == 0.
 | |
|  */
 | |
| void memory_region_notify_iommu(MemoryRegion *mr,
 | |
|                                 IOMMUTLBEntry entry);
 | |
| 
 | |
| /**
 | |
|  * memory_region_register_iommu_notifier: register a notifier for changes to
 | |
|  * IOMMU translation entries.
 | |
|  *
 | |
|  * @mr: the memory region to observe
 | |
|  * @n: the notifier to be added; the notifier receives a pointer to an
 | |
|  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
 | |
|  *     valid on exit from the notifier.
 | |
|  */
 | |
| void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
 | |
| 
 | |
| /**
 | |
|  * memory_region_unregister_iommu_notifier: unregister a notifier for
 | |
|  * changes to IOMMU translation entries.
 | |
|  *
 | |
|  * @n: the notifier to be removed.
 | |
|  */
 | |
| void memory_region_unregister_iommu_notifier(Notifier *n);
 | |
| 
 | |
| /**
 | |
|  * memory_region_name: get a memory region's name
 | |
|  *
 | |
|  * Returns the string that was used to initialize the memory region.
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| const char *memory_region_name(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_is_logging: return whether a memory region is logging writes
 | |
|  *
 | |
|  * Returns %true if the memory region is logging writes
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| bool memory_region_is_logging(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_is_rom: check whether a memory region is ROM
 | |
|  *
 | |
|  * Returns %true is a memory region is read-only memory.
 | |
|  *
 | |
|  * @mr: the memory region being queried
 | |
|  */
 | |
| bool memory_region_is_rom(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 | |
|  *
 | |
|  * Returns a host pointer to a RAM memory region (created with
 | |
|  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
 | |
|  * care.
 | |
|  *
 | |
|  * @mr: the memory region being queried.
 | |
|  */
 | |
| void *memory_region_get_ram_ptr(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_set_log: Turn dirty logging on or off for a region.
 | |
|  *
 | |
|  * Turns dirty logging on or off for a specified client (display, migration).
 | |
|  * Only meaningful for RAM regions.
 | |
|  *
 | |
|  * @mr: the memory region being updated.
 | |
|  * @log: whether dirty logging is to be enabled or disabled.
 | |
|  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 | |
|  *          %DIRTY_MEMORY_VGA.
 | |
|  */
 | |
| void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
 | |
| 
 | |
| /**
 | |
|  * memory_region_get_dirty: Check whether a range of bytes is dirty
 | |
|  *                          for a specified client.
 | |
|  *
 | |
|  * Checks whether a range of bytes has been written to since the last
 | |
|  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 | |
|  * must be enabled.
 | |
|  *
 | |
|  * @mr: the memory region being queried.
 | |
|  * @addr: the address (relative to the start of the region) being queried.
 | |
|  * @size: the size of the range being queried.
 | |
|  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 | |
|  *          %DIRTY_MEMORY_VGA.
 | |
|  */
 | |
| bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                              hwaddr size, unsigned client);
 | |
| 
 | |
| /**
 | |
|  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 | |
|  *
 | |
|  * Marks a range of bytes as dirty, after it has been dirtied outside
 | |
|  * guest code.
 | |
|  *
 | |
|  * @mr: the memory region being dirtied.
 | |
|  * @addr: the address (relative to the start of the region) being dirtied.
 | |
|  * @size: size of the range being dirtied.
 | |
|  */
 | |
| void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                              hwaddr size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 | |
|  *                                     for a specified client. It clears them.
 | |
|  *
 | |
|  * Checks whether a range of bytes has been written to since the last
 | |
|  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 | |
|  * must be enabled.
 | |
|  *
 | |
|  * @mr: the memory region being queried.
 | |
|  * @addr: the address (relative to the start of the region) being queried.
 | |
|  * @size: the size of the range being queried.
 | |
|  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 | |
|  *          %DIRTY_MEMORY_VGA.
 | |
|  */
 | |
| bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                                         hwaddr size, unsigned client);
 | |
| /**
 | |
|  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 | |
|  *                                  any external TLBs (e.g. kvm)
 | |
|  *
 | |
|  * Flushes dirty information from accelerators such as kvm and vhost-net
 | |
|  * and makes it available to users of the memory API.
 | |
|  *
 | |
|  * @mr: the region being flushed.
 | |
|  */
 | |
| void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 | |
|  *                            client.
 | |
|  *
 | |
|  * Marks a range of pages as no longer dirty.
 | |
|  *
 | |
|  * @mr: the region being updated.
 | |
|  * @addr: the start of the subrange being cleaned.
 | |
|  * @size: the size of the subrange being cleaned.
 | |
|  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 | |
|  *          %DIRTY_MEMORY_VGA.
 | |
|  */
 | |
| void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                                hwaddr size, unsigned client);
 | |
| 
 | |
| /**
 | |
|  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 | |
|  *
 | |
|  * Allows a memory region to be marked as read-only (turning it into a ROM).
 | |
|  * only useful on RAM regions.
 | |
|  *
 | |
|  * @mr: the region being updated.
 | |
|  * @readonly: whether rhe region is to be ROM or RAM.
 | |
|  */
 | |
| void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
 | |
| 
 | |
| /**
 | |
|  * memory_region_rom_device_set_romd: enable/disable ROMD mode
 | |
|  *
 | |
|  * Allows a ROM device (initialized with memory_region_init_rom_device() to
 | |
|  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
 | |
|  * device is mapped to guest memory and satisfies read access directly.
 | |
|  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
 | |
|  * Writes are always handled by the #MemoryRegion.write function.
 | |
|  *
 | |
|  * @mr: the memory region to be updated
 | |
|  * @romd_mode: %true to put the region into ROMD mode
 | |
|  */
 | |
| void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
 | |
| 
 | |
| /**
 | |
|  * memory_region_set_coalescing: Enable memory coalescing for the region.
 | |
|  *
 | |
|  * Enabled writes to a region to be queued for later processing. MMIO ->write
 | |
|  * callbacks may be delayed until a non-coalesced MMIO is issued.
 | |
|  * Only useful for IO regions.  Roughly similar to write-combining hardware.
 | |
|  *
 | |
|  * @mr: the memory region to be write coalesced
 | |
|  */
 | |
| void memory_region_set_coalescing(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 | |
|  *                               a region.
 | |
|  *
 | |
|  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 | |
|  * Multiple calls can be issued coalesced disjoint ranges.
 | |
|  *
 | |
|  * @mr: the memory region to be updated.
 | |
|  * @offset: the start of the range within the region to be coalesced.
 | |
|  * @size: the size of the subrange to be coalesced.
 | |
|  */
 | |
| void memory_region_add_coalescing(MemoryRegion *mr,
 | |
|                                   hwaddr offset,
 | |
|                                   uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 | |
|  *
 | |
|  * Disables any coalescing caused by memory_region_set_coalescing() or
 | |
|  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 | |
|  * hardware.
 | |
|  *
 | |
|  * @mr: the memory region to be updated.
 | |
|  */
 | |
| void memory_region_clear_coalescing(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 | |
|  *                                    accesses.
 | |
|  *
 | |
|  * Ensure that pending coalesced MMIO request are flushed before the memory
 | |
|  * region is accessed. This property is automatically enabled for all regions
 | |
|  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 | |
|  *
 | |
|  * @mr: the memory region to be updated.
 | |
|  */
 | |
| void memory_region_set_flush_coalesced(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 | |
|  *                                      accesses.
 | |
|  *
 | |
|  * Clear the automatic coalesced MMIO flushing enabled via
 | |
|  * memory_region_set_flush_coalesced. Note that this service has no effect on
 | |
|  * memory regions that have MMIO coalescing enabled for themselves. For them,
 | |
|  * automatic flushing will stop once coalescing is disabled.
 | |
|  *
 | |
|  * @mr: the memory region to be updated.
 | |
|  */
 | |
| void memory_region_clear_flush_coalesced(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 | |
|  *                            is written to a location.
 | |
|  *
 | |
|  * Marks a word in an IO region (initialized with memory_region_init_io())
 | |
|  * as a trigger for an eventfd event.  The I/O callback will not be called.
 | |
|  * The caller must be prepared to handle failure (that is, take the required
 | |
|  * action if the callback _is_ called).
 | |
|  *
 | |
|  * @mr: the memory region being updated.
 | |
|  * @addr: the address within @mr that is to be monitored
 | |
|  * @size: the size of the access to trigger the eventfd
 | |
|  * @match_data: whether to match against @data, instead of just @addr
 | |
|  * @data: the data to match against the guest write
 | |
|  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 | |
|  **/
 | |
| void memory_region_add_eventfd(MemoryRegion *mr,
 | |
|                                hwaddr addr,
 | |
|                                unsigned size,
 | |
|                                bool match_data,
 | |
|                                uint64_t data,
 | |
|                                EventNotifier *e);
 | |
| 
 | |
| /**
 | |
|  * memory_region_del_eventfd: Cancel an eventfd.
 | |
|  *
 | |
|  * Cancels an eventfd trigger requested by a previous
 | |
|  * memory_region_add_eventfd() call.
 | |
|  *
 | |
|  * @mr: the memory region being updated.
 | |
|  * @addr: the address within @mr that is to be monitored
 | |
|  * @size: the size of the access to trigger the eventfd
 | |
|  * @match_data: whether to match against @data, instead of just @addr
 | |
|  * @data: the data to match against the guest write
 | |
|  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 | |
|  */
 | |
| void memory_region_del_eventfd(MemoryRegion *mr,
 | |
|                                hwaddr addr,
 | |
|                                unsigned size,
 | |
|                                bool match_data,
 | |
|                                uint64_t data,
 | |
|                                EventNotifier *e);
 | |
| 
 | |
| /**
 | |
|  * memory_region_add_subregion: Add a subregion to a container.
 | |
|  *
 | |
|  * Adds a subregion at @offset.  The subregion may not overlap with other
 | |
|  * subregions (except for those explicitly marked as overlapping).  A region
 | |
|  * may only be added once as a subregion (unless removed with
 | |
|  * memory_region_del_subregion()); use memory_region_init_alias() if you
 | |
|  * want a region to be a subregion in multiple locations.
 | |
|  *
 | |
|  * @mr: the region to contain the new subregion; must be a container
 | |
|  *      initialized with memory_region_init().
 | |
|  * @offset: the offset relative to @mr where @subregion is added.
 | |
|  * @subregion: the subregion to be added.
 | |
|  */
 | |
| void memory_region_add_subregion(MemoryRegion *mr,
 | |
|                                  hwaddr offset,
 | |
|                                  MemoryRegion *subregion);
 | |
| /**
 | |
|  * memory_region_add_subregion_overlap: Add a subregion to a container
 | |
|  *                                      with overlap.
 | |
|  *
 | |
|  * Adds a subregion at @offset.  The subregion may overlap with other
 | |
|  * subregions.  Conflicts are resolved by having a higher @priority hide a
 | |
|  * lower @priority. Subregions without priority are taken as @priority 0.
 | |
|  * A region may only be added once as a subregion (unless removed with
 | |
|  * memory_region_del_subregion()); use memory_region_init_alias() if you
 | |
|  * want a region to be a subregion in multiple locations.
 | |
|  *
 | |
|  * @mr: the region to contain the new subregion; must be a container
 | |
|  *      initialized with memory_region_init().
 | |
|  * @offset: the offset relative to @mr where @subregion is added.
 | |
|  * @subregion: the subregion to be added.
 | |
|  * @priority: used for resolving overlaps; highest priority wins.
 | |
|  */
 | |
| void memory_region_add_subregion_overlap(MemoryRegion *mr,
 | |
|                                          hwaddr offset,
 | |
|                                          MemoryRegion *subregion,
 | |
|                                          unsigned priority);
 | |
| 
 | |
| /**
 | |
|  * memory_region_get_ram_addr: Get the ram address associated with a memory
 | |
|  *                             region
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
 | |
|  * code is being reworked.
 | |
|  */
 | |
| ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_del_subregion: Remove a subregion.
 | |
|  *
 | |
|  * Removes a subregion from its container.
 | |
|  *
 | |
|  * @mr: the container to be updated.
 | |
|  * @subregion: the region being removed; must be a current subregion of @mr.
 | |
|  */
 | |
| void memory_region_del_subregion(MemoryRegion *mr,
 | |
|                                  MemoryRegion *subregion);
 | |
| 
 | |
| /*
 | |
|  * memory_region_set_enabled: dynamically enable or disable a region
 | |
|  *
 | |
|  * Enables or disables a memory region.  A disabled memory region
 | |
|  * ignores all accesses to itself and its subregions.  It does not
 | |
|  * obscure sibling subregions with lower priority - it simply behaves as
 | |
|  * if it was removed from the hierarchy.
 | |
|  *
 | |
|  * Regions default to being enabled.
 | |
|  *
 | |
|  * @mr: the region to be updated
 | |
|  * @enabled: whether to enable or disable the region
 | |
|  */
 | |
| void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
 | |
| 
 | |
| /*
 | |
|  * memory_region_set_address: dynamically update the address of a region
 | |
|  *
 | |
|  * Dynamically updates the address of a region, relative to its parent.
 | |
|  * May be used on regions are currently part of a memory hierarchy.
 | |
|  *
 | |
|  * @mr: the region to be updated
 | |
|  * @addr: new address, relative to parent region
 | |
|  */
 | |
| void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
 | |
| 
 | |
| /*
 | |
|  * memory_region_set_alias_offset: dynamically update a memory alias's offset
 | |
|  *
 | |
|  * Dynamically updates the offset into the target region that an alias points
 | |
|  * to, as if the fourth argument to memory_region_init_alias() has changed.
 | |
|  *
 | |
|  * @mr: the #MemoryRegion to be updated; should be an alias.
 | |
|  * @offset: the new offset into the target memory region
 | |
|  */
 | |
| void memory_region_set_alias_offset(MemoryRegion *mr,
 | |
|                                     hwaddr offset);
 | |
| 
 | |
| /**
 | |
|  * memory_region_present: translate an address/size relative to a
 | |
|  * MemoryRegion into a #MemoryRegionSection.
 | |
|  *
 | |
|  * Answer whether a #MemoryRegion within @parent covers the address
 | |
|  * @addr.
 | |
|  *
 | |
|  * @parent: a MemoryRegion within which @addr is a relative address
 | |
|  * @addr: the area within @parent to be searched
 | |
|  */
 | |
| bool memory_region_present(MemoryRegion *parent, hwaddr addr);
 | |
| 
 | |
| /**
 | |
|  * memory_region_find: translate an address/size relative to a
 | |
|  * MemoryRegion into a #MemoryRegionSection.
 | |
|  *
 | |
|  * Locates the first #MemoryRegion within @mr that overlaps the range
 | |
|  * given by @addr and @size.
 | |
|  *
 | |
|  * Returns a #MemoryRegionSection that describes a contiguous overlap.
 | |
|  * It will have the following characteristics:
 | |
|  *    .@size = 0 iff no overlap was found
 | |
|  *    .@mr is non-%NULL iff an overlap was found
 | |
|  *
 | |
|  * Remember that in the return value the @offset_within_region is
 | |
|  * relative to the returned region (in the .@mr field), not to the
 | |
|  * @mr argument.
 | |
|  *
 | |
|  * Similarly, the .@offset_within_address_space is relative to the
 | |
|  * address space that contains both regions, the passed and the
 | |
|  * returned one.  However, in the special case where the @mr argument
 | |
|  * has no parent (and thus is the root of the address space), the
 | |
|  * following will hold:
 | |
|  *    .@offset_within_address_space >= @addr
 | |
|  *    .@offset_within_address_space + .@size <= @addr + @size
 | |
|  *
 | |
|  * @mr: a MemoryRegion within which @addr is a relative address
 | |
|  * @addr: start of the area within @as to be searched
 | |
|  * @size: size of the area to be searched
 | |
|  */
 | |
| MemoryRegionSection memory_region_find(MemoryRegion *mr,
 | |
|                                        hwaddr addr, uint64_t size);
 | |
| 
 | |
| /**
 | |
|  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
 | |
|  *
 | |
|  * Synchronizes the dirty page log for an entire address space.
 | |
|  * @as: the address space that contains the memory being synchronized
 | |
|  */
 | |
| void address_space_sync_dirty_bitmap(AddressSpace *as);
 | |
| 
 | |
| /**
 | |
|  * memory_region_transaction_begin: Start a transaction.
 | |
|  *
 | |
|  * During a transaction, changes will be accumulated and made visible
 | |
|  * only when the transaction ends (is committed).
 | |
|  */
 | |
| void memory_region_transaction_begin(void);
 | |
| 
 | |
| /**
 | |
|  * memory_region_transaction_commit: Commit a transaction and make changes
 | |
|  *                                   visible to the guest.
 | |
|  */
 | |
| void memory_region_transaction_commit(void);
 | |
| 
 | |
| /**
 | |
|  * memory_listener_register: register callbacks to be called when memory
 | |
|  *                           sections are mapped or unmapped into an address
 | |
|  *                           space
 | |
|  *
 | |
|  * @listener: an object containing the callbacks to be called
 | |
|  * @filter: if non-%NULL, only regions in this address space will be observed
 | |
|  */
 | |
| void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
 | |
| 
 | |
| /**
 | |
|  * memory_listener_unregister: undo the effect of memory_listener_register()
 | |
|  *
 | |
|  * @listener: an object containing the callbacks to be removed
 | |
|  */
 | |
| void memory_listener_unregister(MemoryListener *listener);
 | |
| 
 | |
| /**
 | |
|  * memory_global_dirty_log_start: begin dirty logging for all regions
 | |
|  */
 | |
| void memory_global_dirty_log_start(void);
 | |
| 
 | |
| /**
 | |
|  * memory_global_dirty_log_stop: end dirty logging for all regions
 | |
|  */
 | |
| void memory_global_dirty_log_stop(void);
 | |
| 
 | |
| void mtree_info(fprintf_function mon_printf, void *f);
 | |
| 
 | |
| /**
 | |
|  * address_space_init: initializes an address space
 | |
|  *
 | |
|  * @as: an uninitialized #AddressSpace
 | |
|  * @root: a #MemoryRegion that routes addesses for the address space
 | |
|  * @name: an address space name.  The name is only used for debugging
 | |
|  *        output.
 | |
|  */
 | |
| void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * address_space_destroy: destroy an address space
 | |
|  *
 | |
|  * Releases all resources associated with an address space.  After an address space
 | |
|  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
 | |
|  * as well.
 | |
|  *
 | |
|  * @as: address space to be destroyed
 | |
|  */
 | |
| void address_space_destroy(AddressSpace *as);
 | |
| 
 | |
| /**
 | |
|  * address_space_rw: read from or write to an address space.
 | |
|  *
 | |
|  * Return true if the operation hit any unassigned memory or encountered an
 | |
|  * IOMMU fault.
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @buf: buffer with the data transferred
 | |
|  * @is_write: indicates the transfer direction
 | |
|  */
 | |
| bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 | |
|                       int len, bool is_write);
 | |
| 
 | |
| /**
 | |
|  * address_space_write: write to address space.
 | |
|  *
 | |
|  * Return true if the operation hit any unassigned memory or encountered an
 | |
|  * IOMMU fault.
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @buf: buffer with the data transferred
 | |
|  */
 | |
| bool address_space_write(AddressSpace *as, hwaddr addr,
 | |
|                          const uint8_t *buf, int len);
 | |
| 
 | |
| /**
 | |
|  * address_space_read: read from an address space.
 | |
|  *
 | |
|  * Return true if the operation hit any unassigned memory or encountered an
 | |
|  * IOMMU fault.
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @buf: buffer with the data transferred
 | |
|  */
 | |
| bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
 | |
| 
 | |
| /* address_space_translate: translate an address range into an address space
 | |
|  * into a MemoryRegion and an address range into that section
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @xlat: pointer to address within the returned memory region section's
 | |
|  * #MemoryRegion.
 | |
|  * @len: pointer to length
 | |
|  * @is_write: indicates the transfer direction
 | |
|  */
 | |
| MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
 | |
|                                       hwaddr *xlat, hwaddr *len,
 | |
|                                       bool is_write);
 | |
| 
 | |
| /* address_space_access_valid: check for validity of accessing an address
 | |
|  * space range
 | |
|  *
 | |
|  * Check whether memory is assigned to the given address space range, and
 | |
|  * access is permitted by any IOMMU regions that are active for the address
 | |
|  * space.
 | |
|  *
 | |
|  * For now, addr and len should be aligned to a page size.  This limitation
 | |
|  * will be lifted in the future.
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @len: length of the area to be checked
 | |
|  * @is_write: indicates the transfer direction
 | |
|  */
 | |
| bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
 | |
| 
 | |
| /* address_space_map: map a physical memory region into a host virtual address
 | |
|  *
 | |
|  * May map a subset of the requested range, given by and returned in @plen.
 | |
|  * May return %NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use cpu_register_map_client() to know when retrying the map operation is
 | |
|  * likely to succeed.
 | |
|  *
 | |
|  * @as: #AddressSpace to be accessed
 | |
|  * @addr: address within that address space
 | |
|  * @plen: pointer to length of buffer; updated on return
 | |
|  * @is_write: indicates the transfer direction
 | |
|  */
 | |
| void *address_space_map(AddressSpace *as, hwaddr addr,
 | |
|                         hwaddr *plen, bool is_write);
 | |
| 
 | |
| /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
 | |
|  *
 | |
|  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  *
 | |
|  * @as: #AddressSpace used
 | |
|  * @addr: address within that address space
 | |
|  * @len: buffer length as returned by address_space_map()
 | |
|  * @access_len: amount of data actually transferred
 | |
|  * @is_write: indicates the transfer direction
 | |
|  */
 | |
| void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | |
|                          int is_write, hwaddr access_len);
 | |
| 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 |