qemu/include/hw/arm/arm.h
Greg Bellows c8e829b7bf target-arm: Add arm_boot_info secure_boot control
Adds the secure_boot boolean field to the arm_boot_info descriptor.  This
fields is used to indicate whether Linux should boot into secure or non-secure
state if the ARM EL3 feature is enabled.  The default is to leave the CPU in an
unaltered reset state.  On EL3 enabled systems, the reset state is secure and
can be overridden by setting the added field to false.

Signed-off-by: Greg Bellows <greg.bellows@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1418684992-8996-11-git-send-email-greg.bellows@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-12-22 23:12:28 +00:00

81 lines
3.0 KiB
C

/*
* Misc ARM declarations
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the LGPL.
*
*/
#ifndef ARM_MISC_H
#define ARM_MISC_H 1
#include "exec/memory.h"
#include "hw/irq.h"
/* armv7m.c */
qemu_irq *armv7m_init(MemoryRegion *system_memory,
int flash_size, int sram_size,
const char *kernel_filename, const char *cpu_model);
/* arm_boot.c */
struct arm_boot_info {
uint64_t ram_size;
const char *kernel_filename;
const char *kernel_cmdline;
const char *initrd_filename;
const char *dtb_filename;
hwaddr loader_start;
/* multicore boards that use the default secondary core boot functions
* need to put the address of the secondary boot code, the boot reg,
* and the GIC address in the next 3 values, respectively. boards that
* have their own boot functions can use these values as they want.
*/
hwaddr smp_loader_start;
hwaddr smp_bootreg_addr;
hwaddr gic_cpu_if_addr;
int nb_cpus;
int board_id;
/* ARM machines that support the ARM Security Extensions use this field to
* control whether Linux is booted as secure(true) or non-secure(false).
*/
bool secure_boot;
int (*atag_board)(const struct arm_boot_info *info, void *p);
/* multicore boards that use the default secondary core boot functions
* can ignore these two function calls. If the default functions won't
* work, then write_secondary_boot() should write a suitable blob of
* code mimicking the secondary CPU startup process used by the board's
* boot loader/boot ROM code, and secondary_cpu_reset_hook() should
* perform any necessary CPU reset handling and set the PC for the
* secondary CPUs to point at this boot blob.
*/
void (*write_secondary_boot)(ARMCPU *cpu,
const struct arm_boot_info *info);
void (*secondary_cpu_reset_hook)(ARMCPU *cpu,
const struct arm_boot_info *info);
/* if a board is able to create a dtb without a dtb file then it
* sets get_dtb. This will only be used if no dtb file is provided
* by the user. On success, sets *size to the length of the created
* dtb, and returns a pointer to it. (The caller must free this memory
* with g_free() when it has finished with it.) On failure, returns NULL.
*/
void *(*get_dtb)(const struct arm_boot_info *info, int *size);
/* if a board needs to be able to modify a device tree provided by
* the user it should implement this hook.
*/
void (*modify_dtb)(const struct arm_boot_info *info, void *fdt);
/* Used internally by arm_boot.c */
int is_linux;
hwaddr initrd_start;
hwaddr initrd_size;
hwaddr entry;
};
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info);
/* Multiplication factor to convert from system clock ticks to qemu timer
ticks. */
extern int system_clock_scale;
#endif /* !ARM_MISC_H */