mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 b01fec3659
			
		
	
	
		b01fec3659
		
	
	
	
	
		
			
			The current logic for calculating 'maxdomain' making it a sum of
numa_state->num_nodes with spapr->gpu_numa_id. spapr->gpu_numa_id is
used as a index to determine the next available NUMA id that a
given NVGPU can use.
The problem is that the initial value of gpu_numa_id, for any topology
that has more than one NUMA node, is equal to numa_state->num_nodes.
This means that our maxdomain will always be, at least, twice the
amount of existing NUMA nodes. This means that a guest with 4 NUMA
nodes will end up with the following max-associativity-domains:
rtas/ibm,max-associativity-domains
                 00000004 00000008 00000008 00000008 00000008
This overtuning of maxdomains doesn't go unnoticed in the guest, being
detected in SLUB during boot:
 dmesg | grep SLUB
[    0.000000] SLUB: HWalign=128, Order=0-3, MinObjects=0, CPUs=4, Nodes=8
SLUB is detecting 8 total nodes, with 4 nodes being online.
This patch fixes ibm,max-associativity-domains by considering the amount
of NVGPUs NUMA nodes presented in the guest, instead of just
spapr->gpu_numa_id.
Reported-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20210128174213.1349181-4-danielhb413@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
		
	
			
		
			
				
	
	
		
			437 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
 | |
|  *
 | |
|  * Copyright IBM Corp. 2020
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "hw/ppc/spapr_numa.h"
 | |
| #include "hw/pci-host/spapr.h"
 | |
| #include "hw/ppc/fdt.h"
 | |
| 
 | |
| /* Moved from hw/ppc/spapr_pci_nvlink2.c */
 | |
| #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
 | |
| 
 | |
| static bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 | |
| 
 | |
|     return smc->pre_5_2_numa_associativity ||
 | |
|            machine->numa_state->num_nodes <= 1;
 | |
| }
 | |
| 
 | |
| static bool spapr_numa_is_symmetrical(MachineState *ms)
 | |
| {
 | |
|     int src, dst;
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     NodeInfo *numa_info = ms->numa_state->nodes;
 | |
| 
 | |
|     for (src = 0; src < nb_numa_nodes; src++) {
 | |
|         for (dst = src; dst < nb_numa_nodes; dst++) {
 | |
|             if (numa_info[src].distance[dst] !=
 | |
|                 numa_info[dst].distance[src]) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
 | |
|  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
 | |
|  * called from vPHB reset handler so we initialize the counter here.
 | |
|  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
 | |
|  * must be equally distant from any other node.
 | |
|  * The final value of spapr->gpu_numa_id is going to be written to
 | |
|  * max-associativity-domains in spapr_build_fdt().
 | |
|  */
 | |
| unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
 | |
| {
 | |
|     return MAX(1, machine->numa_state->num_nodes);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function will translate the user distances into
 | |
|  * what the kernel understand as possible values: 10
 | |
|  * (local distance), 20, 40, 80 and 160, and return the equivalent
 | |
|  * NUMA level for each. Current heuristic is:
 | |
|  *  - local distance (10) returns numa_level = 0x4, meaning there is
 | |
|  *    no rounding for local distance
 | |
|  *  - distances between 11 and 30 inclusive -> rounded to 20,
 | |
|  *    numa_level = 0x3
 | |
|  *  - distances between 31 and 60 inclusive -> rounded to 40,
 | |
|  *    numa_level = 0x2
 | |
|  *  - distances between 61 and 120 inclusive -> rounded to 80,
 | |
|  *    numa_level = 0x1
 | |
|  *  - everything above 120 returns numa_level = 0 to indicate that
 | |
|  *    there is no match. This will be calculated as disntace = 160
 | |
|  *    by the kernel (as of v5.9)
 | |
|  */
 | |
| static uint8_t spapr_numa_get_numa_level(uint8_t distance)
 | |
| {
 | |
|     if (distance == 10) {
 | |
|         return 0x4;
 | |
|     } else if (distance > 11 && distance <= 30) {
 | |
|         return 0x3;
 | |
|     } else if (distance > 31 && distance <= 60) {
 | |
|         return 0x2;
 | |
|     } else if (distance > 61 && distance <= 120) {
 | |
|         return 0x1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_numa_define_associativity_domains(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     NodeInfo *numa_info = ms->numa_state->nodes;
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     int src, dst, i;
 | |
| 
 | |
|     for (src = 0; src < nb_numa_nodes; src++) {
 | |
|         for (dst = src; dst < nb_numa_nodes; dst++) {
 | |
|             /*
 | |
|              * This is how the associativity domain between A and B
 | |
|              * is calculated:
 | |
|              *
 | |
|              * - get the distance D between them
 | |
|              * - get the correspondent NUMA level 'n_level' for D
 | |
|              * - all associativity arrays were initialized with their own
 | |
|              * numa_ids, and we're calculating the distance in node_id
 | |
|              * ascending order, starting from node id 0 (the first node
 | |
|              * retrieved by numa_state). This will have a cascade effect in
 | |
|              * the algorithm because the associativity domains that node 0
 | |
|              * defines will be carried over to other nodes, and node 1
 | |
|              * associativities will be carried over after taking node 0
 | |
|              * associativities into account, and so on. This happens because
 | |
|              * we'll assign assoc_src as the associativity domain of dst
 | |
|              * as well, for all NUMA levels beyond and including n_level.
 | |
|              *
 | |
|              * The PPC kernel expects the associativity domains of node 0 to
 | |
|              * be always 0, and this algorithm will grant that by default.
 | |
|              */
 | |
|             uint8_t distance = numa_info[src].distance[dst];
 | |
|             uint8_t n_level = spapr_numa_get_numa_level(distance);
 | |
|             uint32_t assoc_src;
 | |
| 
 | |
|             /*
 | |
|              * n_level = 0 means that the distance is greater than our last
 | |
|              * rounded value (120). In this case there is no NUMA level match
 | |
|              * between src and dst and we can skip the remaining of the loop.
 | |
|              *
 | |
|              * The Linux kernel will assume that the distance between src and
 | |
|              * dst, in this case of no match, is 10 (local distance) doubled
 | |
|              * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
 | |
|              * levels (4), so this gives us 10*2*2*2*2 = 160.
 | |
|              *
 | |
|              * This logic can be seen in the Linux kernel source code, as of
 | |
|              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
 | |
|              */
 | |
|             if (n_level == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * We must assign all assoc_src to dst, starting from n_level
 | |
|              * and going up to 0x1.
 | |
|              */
 | |
|             for (i = n_level; i > 0; i--) {
 | |
|                 assoc_src = spapr->numa_assoc_array[src][i];
 | |
|                 spapr->numa_assoc_array[dst][i] = assoc_src;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void spapr_numa_associativity_init(SpaprMachineState *spapr,
 | |
|                                    MachineState *machine)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     int nb_numa_nodes = machine->numa_state->num_nodes;
 | |
|     int i, j, max_nodes_with_gpus;
 | |
|     bool using_legacy_numa = spapr_machine_using_legacy_numa(spapr);
 | |
| 
 | |
|     /*
 | |
|      * For all associativity arrays: first position is the size,
 | |
|      * position MAX_DISTANCE_REF_POINTS is always the numa_id,
 | |
|      * represented by the index 'i'.
 | |
|      *
 | |
|      * This will break on sparse NUMA setups, when/if QEMU starts
 | |
|      * to support it, because there will be no more guarantee that
 | |
|      * 'i' will be a valid node_id set by the user.
 | |
|      */
 | |
|     for (i = 0; i < nb_numa_nodes; i++) {
 | |
|         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 | |
|         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
 | |
| 
 | |
|         /*
 | |
|          * Fill all associativity domains of non-zero NUMA nodes with
 | |
|          * node_id. This is required because the default value (0) is
 | |
|          * considered a match with associativity domains of node 0.
 | |
|          */
 | |
|         if (!using_legacy_numa && i != 0) {
 | |
|             for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
 | |
|                 spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Initialize NVLink GPU associativity arrays. We know that
 | |
|      * the first GPU will take the first available NUMA id, and
 | |
|      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
 | |
|      * At this point we're not sure if there are GPUs or not, but
 | |
|      * let's initialize the associativity arrays and allow NVLink
 | |
|      * GPUs to be handled like regular NUMA nodes later on.
 | |
|      */
 | |
|     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
 | |
| 
 | |
|     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
 | |
|         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 | |
| 
 | |
|         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
 | |
|             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
 | |
|                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
 | |
|             spapr->numa_assoc_array[i][j] = gpu_assoc;
 | |
|         }
 | |
| 
 | |
|         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Legacy NUMA guests (pseries-5.1 and older, or guests with only
 | |
|      * 1 NUMA node) will not benefit from anything we're going to do
 | |
|      * after this point.
 | |
|      */
 | |
|     if (using_legacy_numa) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!spapr_numa_is_symmetrical(machine)) {
 | |
|         error_report("Asymmetrical NUMA topologies aren't supported "
 | |
|                      "in the pSeries machine");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     spapr_numa_define_associativity_domains(spapr);
 | |
| }
 | |
| 
 | |
| void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
 | |
|                                        int offset, int nodeid)
 | |
| {
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
 | |
|                       spapr->numa_assoc_array[nodeid],
 | |
|                       sizeof(spapr->numa_assoc_array[nodeid]))));
 | |
| }
 | |
| 
 | |
| static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
 | |
|                                            PowerPCCPU *cpu)
 | |
| {
 | |
|     uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
 | |
|     int index = spapr_get_vcpu_id(cpu);
 | |
| 
 | |
|     /*
 | |
|      * VCPUs have an extra 'cpu_id' value in ibm,associativity
 | |
|      * compared to other resources. Increment the size at index
 | |
|      * 0, put cpu_id last, then copy the remaining associativity
 | |
|      * domains.
 | |
|      */
 | |
|     vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
 | |
|     vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
 | |
|     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
 | |
|            (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
 | |
| 
 | |
|     return vcpu_assoc;
 | |
| }
 | |
| 
 | |
| int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
 | |
|                             int offset, PowerPCCPU *cpu)
 | |
| {
 | |
|     g_autofree uint32_t *vcpu_assoc = NULL;
 | |
| 
 | |
|     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
 | |
| 
 | |
|     /* Advertise NUMA via ibm,associativity */
 | |
|     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
 | |
|                        VCPU_ASSOC_SIZE * sizeof(uint32_t));
 | |
| }
 | |
| 
 | |
| 
 | |
| int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
 | |
|                                          int offset)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int nb_numa_nodes = machine->numa_state->num_nodes;
 | |
|     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 | |
|     uint32_t *int_buf, *cur_index, buf_len;
 | |
|     int ret, i;
 | |
| 
 | |
|     /* ibm,associativity-lookup-arrays */
 | |
|     buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
 | |
|     cur_index = int_buf = g_malloc0(buf_len);
 | |
|     int_buf[0] = cpu_to_be32(nr_nodes);
 | |
|      /* Number of entries per associativity list */
 | |
|     int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
 | |
|     cur_index += 2;
 | |
|     for (i = 0; i < nr_nodes; i++) {
 | |
|         /*
 | |
|          * For the lookup-array we use the ibm,associativity array,
 | |
|          * from numa_assoc_array. without the first element (size).
 | |
|          */
 | |
|         uint32_t *associativity = spapr->numa_assoc_array[i];
 | |
|         memcpy(cur_index, ++associativity,
 | |
|                sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
 | |
|         cur_index += MAX_DISTANCE_REF_POINTS;
 | |
|     }
 | |
|     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 | |
|                       (cur_index - int_buf) * sizeof(uint32_t));
 | |
|     g_free(int_buf);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper that writes ibm,associativity-reference-points and
 | |
|  * max-associativity-domains in the RTAS pointed by @rtas
 | |
|  * in the DT @fdt.
 | |
|  */
 | |
| void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
 | |
|                                    spapr_numa_initial_nvgpu_numa_id(ms);
 | |
|     uint32_t refpoints[] = {
 | |
|         cpu_to_be32(0x4),
 | |
|         cpu_to_be32(0x3),
 | |
|         cpu_to_be32(0x2),
 | |
|         cpu_to_be32(0x1),
 | |
|     };
 | |
|     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
 | |
|     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
 | |
|     uint32_t maxdomains[] = {
 | |
|         cpu_to_be32(4),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain)
 | |
|     };
 | |
| 
 | |
|     if (spapr_machine_using_legacy_numa(spapr)) {
 | |
|         uint32_t legacy_refpoints[] = {
 | |
|             cpu_to_be32(0x4),
 | |
|             cpu_to_be32(0x4),
 | |
|             cpu_to_be32(0x2),
 | |
|         };
 | |
|         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
 | |
|         uint32_t legacy_maxdomains[] = {
 | |
|             cpu_to_be32(4),
 | |
|             cpu_to_be32(legacy_maxdomain),
 | |
|             cpu_to_be32(legacy_maxdomain),
 | |
|             cpu_to_be32(legacy_maxdomain),
 | |
|             cpu_to_be32(spapr->gpu_numa_id),
 | |
|         };
 | |
| 
 | |
|         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
 | |
|         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
 | |
| 
 | |
|         nr_refpoints = 3;
 | |
| 
 | |
|         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
 | |
|         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
 | |
| 
 | |
|         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
 | |
|         if (smc->pre_5_1_assoc_refpoints) {
 | |
|             nr_refpoints = 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 | |
|                      refpoints, nr_refpoints * sizeof(refpoints[0])));
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 | |
|                      maxdomains, sizeof(maxdomains)));
 | |
| }
 | |
| 
 | |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 | |
|                                               SpaprMachineState *spapr,
 | |
|                                               target_ulong opcode,
 | |
|                                               target_ulong *args)
 | |
| {
 | |
|     g_autofree uint32_t *vcpu_assoc = NULL;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong procno = args[1];
 | |
|     PowerPCCPU *tcpu;
 | |
|     int idx, assoc_idx;
 | |
| 
 | |
|     /* only support procno from H_REGISTER_VPA */
 | |
|     if (flags != 0x1) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     tcpu = spapr_find_cpu(procno);
 | |
|     if (tcpu == NULL) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Given that we want to be flexible with the sizes and indexes,
 | |
|      * we must consider that there is a hard limit of how many
 | |
|      * associativities domain we can fit in R4 up to R9, which would be
 | |
|      * 12 associativity domains for vcpus. Assert and bail if that's
 | |
|      * not the case.
 | |
|      */
 | |
|     G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
 | |
| 
 | |
|     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
 | |
|     /* assoc_idx starts at 1 to skip associativity size */
 | |
|     assoc_idx = 1;
 | |
| 
 | |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 | |
|                              ((uint64_t)(b) & 0xffffffff))
 | |
| 
 | |
|     for (idx = 0; idx < 6; idx++) {
 | |
|         int32_t a, b;
 | |
| 
 | |
|         /*
 | |
|          * vcpu_assoc[] will contain the associativity domains for tcpu,
 | |
|          * including tcpu->node_id and procno, meaning that we don't
 | |
|          * need to use these variables here.
 | |
|          *
 | |
|          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
 | |
|          * macro. The ternary will fill the remaining registers with -1
 | |
|          * after we went through vcpu_assoc[].
 | |
|          */
 | |
|         a = assoc_idx < VCPU_ASSOC_SIZE ?
 | |
|             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 | |
|         b = assoc_idx < VCPU_ASSOC_SIZE ?
 | |
|             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 | |
| 
 | |
|         args[idx] = ASSOCIATIVITY(a, b);
 | |
|     }
 | |
| #undef ASSOCIATIVITY
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void spapr_numa_register_types(void)
 | |
| {
 | |
|     /* Virtual Processor Home Node */
 | |
|     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 | |
|                              h_home_node_associativity);
 | |
| }
 | |
| 
 | |
| type_init(spapr_numa_register_types)
 |