mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 20:44:16 +00:00 
			
		
		
		
	 ec2db7de7a
			
		
	
	
		ec2db7de7a
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2214 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* 
 | |
|  * ARM PrimeCell Timer modules.
 | |
|  *
 | |
|  * Copyright (c) 2005-2006 CodeSourcery.
 | |
|  * Written by Paul Brook
 | |
|  *
 | |
|  * This code is licenced under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "vl.h"
 | |
| #include "arm_pic.h"
 | |
| 
 | |
| /* Common timer implementation.  */
 | |
| 
 | |
| #define TIMER_CTRL_ONESHOT      (1 << 0)
 | |
| #define TIMER_CTRL_32BIT        (1 << 1)
 | |
| #define TIMER_CTRL_DIV1         (0 << 2)
 | |
| #define TIMER_CTRL_DIV16        (1 << 2)
 | |
| #define TIMER_CTRL_DIV256       (2 << 2)
 | |
| #define TIMER_CTRL_IE           (1 << 5)
 | |
| #define TIMER_CTRL_PERIODIC     (1 << 6)
 | |
| #define TIMER_CTRL_ENABLE       (1 << 7)
 | |
| 
 | |
| typedef struct {
 | |
|     int64_t next_time;
 | |
|     int64_t expires;
 | |
|     int64_t loaded;
 | |
|     QEMUTimer *timer;
 | |
|     uint32_t control;
 | |
|     uint32_t count;
 | |
|     uint32_t limit;
 | |
|     int raw_freq;
 | |
|     int freq;
 | |
|     int int_level;
 | |
|     void *pic;
 | |
|     int irq;
 | |
| } arm_timer_state;
 | |
| 
 | |
| /* Calculate the new expiry time of the given timer.  */
 | |
| 
 | |
| static void arm_timer_reload(arm_timer_state *s)
 | |
| {
 | |
|     int64_t delay;
 | |
| 
 | |
|     s->loaded = s->expires;
 | |
|     delay = muldiv64(s->count, ticks_per_sec, s->freq);
 | |
|     if (delay == 0)
 | |
|         delay = 1;
 | |
|     s->expires += delay;
 | |
| }
 | |
| 
 | |
| /* Check all active timers, and schedule the next timer interrupt.  */
 | |
| 
 | |
| static void arm_timer_update(arm_timer_state *s, int64_t now)
 | |
| {
 | |
|     int64_t next;
 | |
| 
 | |
|     /* Ignore disabled timers.  */
 | |
|     if ((s->control & TIMER_CTRL_ENABLE) == 0)
 | |
|         return;
 | |
|     /* Ignore expired one-shot timers.  */
 | |
|     if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
 | |
|         return;
 | |
|     if (s->expires - now <= 0) {
 | |
|         /* Timer has expired.  */
 | |
|         s->int_level = 1;
 | |
|         if (s->control & TIMER_CTRL_ONESHOT) {
 | |
|             /* One-shot.  */
 | |
|             s->count = 0;
 | |
|         } else {
 | |
|             if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
 | |
|                 /* Free running.  */
 | |
|                 if (s->control & TIMER_CTRL_32BIT)
 | |
|                     s->count = 0xffffffff;
 | |
|                 else
 | |
|                     s->count = 0xffff;
 | |
|             } else {
 | |
|                   /* Periodic.  */
 | |
|                   s->count = s->limit;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     while (s->expires - now <= 0) {
 | |
|         arm_timer_reload(s);
 | |
|     }
 | |
|     /* Update interrupts.  */
 | |
|     if (s->int_level && (s->control & TIMER_CTRL_IE)) {
 | |
|         pic_set_irq_new(s->pic, s->irq, 1);
 | |
|     } else {
 | |
|         pic_set_irq_new(s->pic, s->irq, 0);
 | |
|     }
 | |
| 
 | |
|     next = now;
 | |
|     if (next - s->expires < 0)
 | |
|         next = s->expires;
 | |
| 
 | |
|     /* Schedule the next timer interrupt.  */
 | |
|     if (next == now) {
 | |
|         qemu_del_timer(s->timer);
 | |
|         s->next_time = 0;
 | |
|     } else if (next != s->next_time) {
 | |
|         qemu_mod_timer(s->timer, next);
 | |
|         s->next_time = next;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the current value of the timer.  */
 | |
| static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
 | |
| {
 | |
|     int64_t left;
 | |
|     int64_t period;
 | |
| 
 | |
|     if (s->count == 0)
 | |
|         return 0;
 | |
|     if ((s->control & TIMER_CTRL_ENABLE) == 0)
 | |
|         return s->count;
 | |
|     left = s->expires - now;
 | |
|     period = s->expires - s->loaded;
 | |
|     /* If the timer should have expired then return 0.  This can happen
 | |
|        when the host timer signal doesnt occur immediately.  It's better to
 | |
|        have a timer appear to sit at zero for a while than have it wrap
 | |
|        around before the guest interrupt is raised.  */
 | |
|     /* ??? Could we trigger the interrupt here?  */
 | |
|     if (left < 0)
 | |
|         return 0;
 | |
|     /* We need to calculate count * elapsed / period without overfowing.
 | |
|        Scale both elapsed and period so they fit in a 32-bit int.  */
 | |
|     while (period != (int32_t)period) {
 | |
|         period >>= 1;
 | |
|         left >>= 1;
 | |
|     }
 | |
|     return ((uint64_t)s->count * (uint64_t)(int32_t)left)
 | |
|             / (int32_t)period;
 | |
| }
 | |
| 
 | |
| uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
 | |
| {
 | |
|     arm_timer_state *s = (arm_timer_state *)opaque;
 | |
| 
 | |
|     switch (offset >> 2) {
 | |
|     case 0: /* TimerLoad */
 | |
|     case 6: /* TimerBGLoad */
 | |
|         return s->limit;
 | |
|     case 1: /* TimerValue */
 | |
|         return arm_timer_getcount(s, qemu_get_clock(vm_clock));
 | |
|     case 2: /* TimerControl */
 | |
|         return s->control;
 | |
|     case 4: /* TimerRIS */
 | |
|         return s->int_level;
 | |
|     case 5: /* TimerMIS */
 | |
|         if ((s->control & TIMER_CTRL_IE) == 0)
 | |
|             return 0;
 | |
|         return s->int_level;
 | |
|     default:
 | |
|         cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_timer_write(void *opaque, target_phys_addr_t offset,
 | |
|                             uint32_t value)
 | |
| {
 | |
|     arm_timer_state *s = (arm_timer_state *)opaque;
 | |
|     int64_t now;
 | |
| 
 | |
|     now = qemu_get_clock(vm_clock);
 | |
|     switch (offset >> 2) {
 | |
|     case 0: /* TimerLoad */
 | |
|         s->limit = value;
 | |
|         s->count = value;
 | |
|         s->expires = now;
 | |
|         arm_timer_reload(s);
 | |
|         break;
 | |
|     case 1: /* TimerValue */
 | |
|         /* ??? Linux seems to want to write to this readonly register.
 | |
|            Ignore it.  */
 | |
|         break;
 | |
|     case 2: /* TimerControl */
 | |
|         if (s->control & TIMER_CTRL_ENABLE) {
 | |
|             /* Pause the timer if it is running.  This may cause some
 | |
|                inaccuracy dure to rounding, but avoids a whole lot of other
 | |
|                messyness.  */
 | |
|             s->count = arm_timer_getcount(s, now);
 | |
|         }
 | |
|         s->control = value;
 | |
|         s->freq = s->raw_freq;
 | |
|         /* ??? Need to recalculate expiry time after changing divisor.  */
 | |
|         switch ((value >> 2) & 3) {
 | |
|         case 1: s->freq >>= 4; break;
 | |
|         case 2: s->freq >>= 8; break;
 | |
|         }
 | |
|         if (s->control & TIMER_CTRL_ENABLE) {
 | |
|             /* Restart the timer if still enabled.  */
 | |
|             s->expires = now;
 | |
|             arm_timer_reload(s);
 | |
|         }
 | |
|         break;
 | |
|     case 3: /* TimerIntClr */
 | |
|         s->int_level = 0;
 | |
|         break;
 | |
|     case 6: /* TimerBGLoad */
 | |
|         s->limit = value;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
 | |
|     }
 | |
|     arm_timer_update(s, now);
 | |
| }
 | |
| 
 | |
| static void arm_timer_tick(void *opaque)
 | |
| {
 | |
|     int64_t now;
 | |
| 
 | |
|     now = qemu_get_clock(vm_clock);
 | |
|     arm_timer_update((arm_timer_state *)opaque, now);
 | |
| }
 | |
| 
 | |
| static void *arm_timer_init(uint32_t freq, void *pic, int irq)
 | |
| {
 | |
|     arm_timer_state *s;
 | |
| 
 | |
|     s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
 | |
|     s->pic = pic;
 | |
|     s->irq = irq;
 | |
|     s->raw_freq = s->freq = 1000000;
 | |
|     s->control = TIMER_CTRL_IE;
 | |
|     s->count = 0xffffffff;
 | |
| 
 | |
|     s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
 | |
|     /* ??? Save/restore.  */
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /* ARM PrimeCell SP804 dual timer module.
 | |
|    Docs for this device don't seem to be publicly available.  This
 | |
|    implementation is based on gueswork, the linux kernel sources and the
 | |
|    Integrator/CP timer modules.  */
 | |
| 
 | |
| typedef struct {
 | |
|     /* Include a pseudo-PIC device to merge the two interrupt sources.  */
 | |
|     arm_pic_handler handler;
 | |
|     void *timer[2];
 | |
|     int level[2];
 | |
|     uint32_t base;
 | |
|     /* The output PIC device.  */
 | |
|     void *pic;
 | |
|     int irq;
 | |
| } sp804_state;
 | |
| 
 | |
| static void sp804_set_irq(void *opaque, int irq, int level)
 | |
| {
 | |
|     sp804_state *s = (sp804_state *)opaque;
 | |
| 
 | |
|     s->level[irq] = level;
 | |
|     pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
 | |
| }
 | |
| 
 | |
| static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
 | |
| {
 | |
|     sp804_state *s = (sp804_state *)opaque;
 | |
| 
 | |
|     /* ??? Don't know the PrimeCell ID for this device.  */
 | |
|     offset -= s->base;
 | |
|     if (offset < 0x20) {
 | |
|         return arm_timer_read(s->timer[0], offset);
 | |
|     } else {
 | |
|         return arm_timer_read(s->timer[1], offset - 0x20);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sp804_write(void *opaque, target_phys_addr_t offset,
 | |
|                         uint32_t value)
 | |
| {
 | |
|     sp804_state *s = (sp804_state *)opaque;
 | |
| 
 | |
|     offset -= s->base;
 | |
|     if (offset < 0x20) {
 | |
|         arm_timer_write(s->timer[0], offset, value);
 | |
|     } else {
 | |
|         arm_timer_write(s->timer[1], offset - 0x20, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *sp804_readfn[] = {
 | |
|    sp804_read,
 | |
|    sp804_read,
 | |
|    sp804_read
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *sp804_writefn[] = {
 | |
|    sp804_write,
 | |
|    sp804_write,
 | |
|    sp804_write
 | |
| };
 | |
| 
 | |
| void sp804_init(uint32_t base, void *pic, int irq)
 | |
| {
 | |
|     int iomemtype;
 | |
|     sp804_state *s;
 | |
| 
 | |
|     s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
 | |
|     s->handler = sp804_set_irq;
 | |
|     s->base = base;
 | |
|     s->pic = pic;
 | |
|     s->irq = irq;
 | |
|     /* ??? The timers are actually configurable between 32kHz and 1MHz, but
 | |
|        we don't implement that.  */
 | |
|     s->timer[0] = arm_timer_init(1000000, s, 0);
 | |
|     s->timer[1] = arm_timer_init(1000000, s, 1);
 | |
|     iomemtype = cpu_register_io_memory(0, sp804_readfn,
 | |
|                                        sp804_writefn, s);
 | |
|     cpu_register_physical_memory(base, 0x00000fff, iomemtype);
 | |
|     /* ??? Save/restore.  */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Integrator/CP timer module.  */
 | |
| 
 | |
| typedef struct {
 | |
|     void *timer[3];
 | |
|     uint32_t base;
 | |
| } icp_pit_state;
 | |
| 
 | |
| static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
 | |
| {
 | |
|     icp_pit_state *s = (icp_pit_state *)opaque;
 | |
|     int n;
 | |
| 
 | |
|     /* ??? Don't know the PrimeCell ID for this device.  */
 | |
|     offset -= s->base;
 | |
|     n = offset >> 8;
 | |
|     if (n > 3)
 | |
|         cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
 | |
| 
 | |
|     return arm_timer_read(s->timer[n], offset & 0xff);
 | |
| }
 | |
| 
 | |
| static void icp_pit_write(void *opaque, target_phys_addr_t offset,
 | |
|                           uint32_t value)
 | |
| {
 | |
|     icp_pit_state *s = (icp_pit_state *)opaque;
 | |
|     int n;
 | |
| 
 | |
|     offset -= s->base;
 | |
|     n = offset >> 8;
 | |
|     if (n > 3)
 | |
|         cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
 | |
| 
 | |
|     arm_timer_write(s->timer[n], offset & 0xff, value);
 | |
| }
 | |
| 
 | |
| 
 | |
| static CPUReadMemoryFunc *icp_pit_readfn[] = {
 | |
|    icp_pit_read,
 | |
|    icp_pit_read,
 | |
|    icp_pit_read
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *icp_pit_writefn[] = {
 | |
|    icp_pit_write,
 | |
|    icp_pit_write,
 | |
|    icp_pit_write
 | |
| };
 | |
| 
 | |
| void icp_pit_init(uint32_t base, void *pic, int irq)
 | |
| {
 | |
|     int iomemtype;
 | |
|     icp_pit_state *s;
 | |
| 
 | |
|     s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
 | |
|     s->base = base;
 | |
|     /* Timer 0 runs at the system clock speed (40MHz).  */
 | |
|     s->timer[0] = arm_timer_init(40000000, pic, irq);
 | |
|     /* The other two timers run at 1MHz.  */
 | |
|     s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
 | |
|     s->timer[2] = arm_timer_init(1000000, pic, irq + 2);
 | |
| 
 | |
|     iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
 | |
|                                        icp_pit_writefn, s);
 | |
|     cpu_register_physical_memory(base, 0x00000fff, iomemtype);
 | |
|     /* ??? Save/restore.  */
 | |
| }
 | |
| 
 |