mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 04:06:46 +00:00 
			
		
		
		
	 fad6cb1a56
			
		
	
	
		fad6cb1a56
		
	
	
	
	
		
			
			The attached patch updates the FSF address in the GPL/LGPL boilerplate in most GPL/LGPLed files, and also in COPYING.LIB. Signed-off-by: Stuart Brady <stuart.brady@gmail.com> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6162 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			1220 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1220 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Alpha emulation cpu micro-operations helpers for qemu.
 | |
|  *
 | |
|  *  Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "exec.h"
 | |
| #include "host-utils.h"
 | |
| #include "softfloat.h"
 | |
| #include "helper.h"
 | |
| 
 | |
| void helper_tb_flush (void)
 | |
| {
 | |
|     tlb_flush(env, 1);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Exceptions processing helpers */
 | |
| void helper_excp (int excp, int error)
 | |
| {
 | |
|     env->exception_index = excp;
 | |
|     env->error_code = error;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| uint64_t helper_amask (uint64_t arg)
 | |
| {
 | |
|     switch (env->implver) {
 | |
|     case IMPLVER_2106x:
 | |
|         /* EV4, EV45, LCA, LCA45 & EV5 */
 | |
|         break;
 | |
|     case IMPLVER_21164:
 | |
|     case IMPLVER_21264:
 | |
|     case IMPLVER_21364:
 | |
|         arg &= ~env->amask;
 | |
|         break;
 | |
|     }
 | |
|     return arg;
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_pcc (void)
 | |
| {
 | |
|     /* XXX: TODO */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_implver (void)
 | |
| {
 | |
|     return env->implver;
 | |
| }
 | |
| 
 | |
| uint64_t helper_load_fpcr (void)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
|     ret |= env->fp_status.float_exception_flags << 52;
 | |
|     if (env->fp_status.float_exception_flags)
 | |
|         ret |= 1ULL << 63;
 | |
|     env->ipr[IPR_EXC_SUM] &= ~0x3E:
 | |
|     env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
 | |
| #endif
 | |
|     switch (env->fp_status.float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         ret |= 2ULL << 58;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         ret |= 1ULL << 58;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         ret |= 3ULL << 58;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         break;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_store_fpcr (uint64_t val)
 | |
| {
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
|     set_float_exception_flags((val >> 52) & 0x3F, &FP_STATUS);
 | |
| #endif
 | |
|     switch ((val >> 58) & 3) {
 | |
|     case 0:
 | |
|         set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
 | |
|         break;
 | |
|     case 1:
 | |
|         set_float_rounding_mode(float_round_down, &FP_STATUS);
 | |
|         break;
 | |
|     case 2:
 | |
|         set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
 | |
|         break;
 | |
|     case 3:
 | |
|         set_float_rounding_mode(float_round_up, &FP_STATUS);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| uint64_t helper_rs(void)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     spin_lock(&intr_cpu_lock);
 | |
|     tmp = env->intr_flag;
 | |
|     env->intr_flag = 1;
 | |
|     spin_unlock(&intr_cpu_lock);
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| uint64_t helper_rc(void)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     spin_lock(&intr_cpu_lock);
 | |
|     tmp = env->intr_flag;
 | |
|     env->intr_flag = 0;
 | |
|     spin_unlock(&intr_cpu_lock);
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 += op2;
 | |
|     if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addlv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 = (uint32_t)(op1 + op2);
 | |
|     if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_subqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 -= op2;
 | |
|     if (unlikely(((~tmp) ^ op1 ^ (-1ULL)) & ((~tmp) ^ op2) & (1ULL << 63))) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_sublv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tmp = op1;
 | |
|     op1 = (uint32_t)(op1 - op2);
 | |
|     if (unlikely(((~tmp) ^ op1 ^ (-1UL)) & ((~tmp) ^ op2) & (1UL << 31))) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return op1;
 | |
| }
 | |
| 
 | |
| uint64_t helper_mullv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     int64_t res = (int64_t)op1 * (int64_t)op2;
 | |
| 
 | |
|     if (unlikely((int32_t)res != res)) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return (int64_t)((int32_t)res);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     muls64(&tl, &th, op1, op2);
 | |
|     /* If th != 0 && th != -1, then we had an overflow */
 | |
|     if (unlikely((th + 1) > 1)) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     return tl;
 | |
| }
 | |
| 
 | |
| uint64_t helper_umulh (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     mulu64(&tl, &th, op1, op2);
 | |
|     return th;
 | |
| }
 | |
| 
 | |
| uint64_t helper_ctpop (uint64_t arg)
 | |
| {
 | |
|     return ctpop64(arg);
 | |
| }
 | |
| 
 | |
| uint64_t helper_ctlz (uint64_t arg)
 | |
| {
 | |
|     return clz64(arg);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cttz (uint64_t arg)
 | |
| {
 | |
|     return ctz64(arg);
 | |
| }
 | |
| 
 | |
| static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb)
 | |
| {
 | |
|     uint64_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
 | |
|     mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
 | |
|     mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
 | |
|     mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
 | |
|     mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
 | |
|     mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
 | |
|     mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
 | |
|     mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
 | |
| 
 | |
|     return op & ~mask;
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskbl(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, 0x01 << (mask & 7));
 | |
| }
 | |
| 
 | |
| uint64_t helper_insbl(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val <<= (mask & 7) * 8;
 | |
|     return byte_zap(val, ~(0x01 << (mask & 7)));
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskwl(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, 0x03 << (mask & 7));
 | |
| }
 | |
| 
 | |
| uint64_t helper_inswl(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val <<= (mask & 7) * 8;
 | |
|     return byte_zap(val, ~(0x03 << (mask & 7)));
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskll(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, 0x0F << (mask & 7));
 | |
| }
 | |
| 
 | |
| uint64_t helper_insll(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val <<= (mask & 7) * 8;
 | |
|     return byte_zap(val, ~(0x0F << (mask & 7)));
 | |
| }
 | |
| 
 | |
| uint64_t helper_zap(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, mask);
 | |
| }
 | |
| 
 | |
| uint64_t helper_zapnot(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, ~mask);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskql(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, 0xFF << (mask & 7));
 | |
| }
 | |
| 
 | |
| uint64_t helper_insql(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val <<= (mask & 7) * 8;
 | |
|     return byte_zap(val, ~(0xFF << (mask & 7)));
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskwh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, (0x03 << (mask & 7)) >> 8);
 | |
| }
 | |
| 
 | |
| uint64_t helper_inswh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val >>= 64 - ((mask & 7) * 8);
 | |
|     return byte_zap(val, ~((0x03 << (mask & 7)) >> 8));
 | |
| }
 | |
| 
 | |
| uint64_t helper_msklh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, (0x0F << (mask & 7)) >> 8);
 | |
| }
 | |
| 
 | |
| uint64_t helper_inslh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val >>= 64 - ((mask & 7) * 8);
 | |
|     return byte_zap(val, ~((0x0F << (mask & 7)) >> 8));
 | |
| }
 | |
| 
 | |
| uint64_t helper_mskqh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     return byte_zap(val, (0xFF << (mask & 7)) >> 8);
 | |
| }
 | |
| 
 | |
| uint64_t helper_insqh(uint64_t val, uint64_t mask)
 | |
| {
 | |
|     val >>= 64 - ((mask & 7) * 8);
 | |
|     return byte_zap(val, ~((0xFF << (mask & 7)) >> 8));
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     uint8_t opa, opb, res;
 | |
|     int i;
 | |
| 
 | |
|     res = 0;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         opa = op1 >> (i * 8);
 | |
|         opb = op2 >> (i * 8);
 | |
|         if (opa >= opb)
 | |
|             res |= 1 << i;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Floating point helpers */
 | |
| 
 | |
| /* F floating (VAX) */
 | |
| static always_inline uint64_t float32_to_f (float32 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_FloatU a;
 | |
| 
 | |
|     a.f = fa;
 | |
|     sig = ((uint64_t)a.l & 0x80000000) << 32;
 | |
|     exp = (a.l >> 23) & 0xff;
 | |
|     mant = ((uint64_t)a.l & 0x007fffff) << 29;
 | |
| 
 | |
|     if (exp == 255) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 253) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static always_inline float32 f_to_float32 (uint64_t a)
 | |
| {
 | |
|     uint32_t exp, mant_sig;
 | |
|     CPU_FloatU r;
 | |
| 
 | |
|     exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
 | |
|     mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
 | |
| 
 | |
|     if (unlikely(!exp && mant_sig)) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         helper_excp(EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.l = 0;
 | |
|     } else {
 | |
|         r.l = ((exp - 2) << 23) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_f_to_memory (uint64_t a)
 | |
| {
 | |
|     uint32_t r;
 | |
|     r =  (a & 0x00001fffe0000000ull) >> 13;
 | |
|     r |= (a & 0x07ffe00000000000ull) >> 45;
 | |
|     r |= (a & 0xc000000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_f (uint32_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  ((uint64_t)(a & 0x0000c000)) << 48;
 | |
|     r |= ((uint64_t)(a & 0x003fffff)) << 45;
 | |
|     r |= ((uint64_t)(a & 0xffff0000)) << 13;
 | |
|     if (!(a & 0x00004000))
 | |
|         r |= 0x7ll << 59;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divf (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = f_to_float32(a);
 | |
|     fb = f_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtf (uint64_t t)
 | |
| {
 | |
|     float32 ft, fr;
 | |
| 
 | |
|     ft = f_to_float32(t);
 | |
|     fr = float32_sqrt(ft, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* G floating (VAX) */
 | |
| static always_inline uint64_t float64_to_g (float64 fa)
 | |
| {
 | |
|     uint64_t r, exp, mant, sig;
 | |
|     CPU_DoubleU a;
 | |
| 
 | |
|     a.d = fa;
 | |
|     sig = a.ll & 0x8000000000000000ull;
 | |
|     exp = (a.ll >> 52) & 0x7ff;
 | |
|     mant = a.ll & 0x000fffffffffffffull;
 | |
| 
 | |
|     if (exp == 2047) {
 | |
|         /* NaN or infinity */
 | |
|         r = 1; /* VAX dirty zero */
 | |
|     } else if (exp == 0) {
 | |
|         if (mant == 0) {
 | |
|             /* Zero */
 | |
|             r = 0;
 | |
|         } else {
 | |
|             /* Denormalized */
 | |
|             r = sig | ((exp + 1) << 52) | mant;
 | |
|         }
 | |
|     } else {
 | |
|         if (exp >= 2045) {
 | |
|             /* Overflow */
 | |
|             r = 1; /* VAX dirty zero */
 | |
|         } else {
 | |
|             r = sig | ((exp + 2) << 52);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static always_inline float64 g_to_float64 (uint64_t a)
 | |
| {
 | |
|     uint64_t exp, mant_sig;
 | |
|     CPU_DoubleU r;
 | |
| 
 | |
|     exp = (a >> 52) & 0x7ff;
 | |
|     mant_sig = a & 0x800fffffffffffffull;
 | |
| 
 | |
|     if (!exp && mant_sig) {
 | |
|         /* Reserved operands / Dirty zero */
 | |
|         helper_excp(EXCP_OPCDEC, 0);
 | |
|     }
 | |
| 
 | |
|     if (exp < 3) {
 | |
|         /* Underflow */
 | |
|         r.ll = 0;
 | |
|     } else {
 | |
|         r.ll = ((exp - 2) << 52) | mant_sig;
 | |
|     }
 | |
| 
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| uint64_t helper_g_to_memory (uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_g (uint64_t a)
 | |
| {
 | |
|     uint64_t r;
 | |
|     r =  (a & 0x000000000000ffffull) << 48;
 | |
|     r |= (a & 0x00000000ffff0000ull) << 16;
 | |
|     r |= (a & 0x0000ffff00000000ull) >> 16;
 | |
|     r |= (a & 0xffff000000000000ull) >> 48;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divg (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtg (uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* S floating (single) */
 | |
| static always_inline uint64_t float32_to_s (float32 fa)
 | |
| {
 | |
|     CPU_FloatU a;
 | |
|     uint64_t r;
 | |
| 
 | |
|     a.f = fa;
 | |
| 
 | |
|     r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29);
 | |
|     if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000)))
 | |
|         r |= 0x7ll << 59;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static always_inline float32 s_to_float32 (uint64_t a)
 | |
| {
 | |
|     CPU_FloatU r;
 | |
|     r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
 | |
|     return r.f;
 | |
| }
 | |
| 
 | |
| uint32_t helper_s_to_memory (uint64_t a)
 | |
| {
 | |
|     /* Memory format is the same as float32 */
 | |
|     float32 fa = s_to_float32(a);
 | |
|     return *(uint32_t*)(&fa);
 | |
| }
 | |
| 
 | |
| uint64_t helper_memory_to_s (uint32_t a)
 | |
| {
 | |
|     /* Memory format is the same as float32 */
 | |
|     return float32_to_s(*(float32*)(&a));
 | |
| }
 | |
| 
 | |
| uint64_t helper_adds (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_add(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subs (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_sub(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_muls (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_mul(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divs (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float32 fa, fb, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fb = s_to_float32(b);
 | |
|     fr = float32_div(fa, fb, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrts (uint64_t a)
 | |
| {
 | |
|     float32 fa, fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_sqrt(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* T floating (double) */
 | |
| static always_inline float64 t_to_float64 (uint64_t a)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.ll = a;
 | |
|     return r.d;
 | |
| }
 | |
| 
 | |
| static always_inline uint64_t float64_to_t (float64 fa)
 | |
| {
 | |
|     /* Memory format is the same as float64 */
 | |
|     CPU_DoubleU r;
 | |
|     r.d = fa;
 | |
|     return r.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_addt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_add(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_subt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_sub(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_mult (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_mul(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_divt (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
|     fr = float64_div(fa, fb, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_sqrtt (uint64_t a)
 | |
| {
 | |
|     float64 fa, fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_sqrt(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Sign copy */
 | |
| uint64_t helper_cpys(uint64_t a, uint64_t b)
 | |
| {
 | |
|     return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cpysn(uint64_t a, uint64_t b)
 | |
| {
 | |
|     return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cpyse(uint64_t a, uint64_t b)
 | |
| {
 | |
|     return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Comparisons */
 | |
| uint64_t helper_cmptun (uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_is_nan(fa) || float64_is_nan(fb))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpteq(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_eq(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptle(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmptlt(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fb = t_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_eq(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpgle(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_le(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpglt(uint64_t a, uint64_t b)
 | |
| {
 | |
|     float64 fa, fb;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fb = g_to_float64(b);
 | |
| 
 | |
|     if (float64_lt(fa, fb, &FP_STATUS))
 | |
|         return 0x4000000000000000ULL;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpfeq (uint64_t a)
 | |
| {
 | |
|     return !(a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpfne (uint64_t a)
 | |
| {
 | |
|     return (a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpflt (uint64_t a)
 | |
| {
 | |
|     return (a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpfle (uint64_t a)
 | |
| {
 | |
|     return (a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpfgt (uint64_t a)
 | |
| {
 | |
|     return !(a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cmpfge (uint64_t a)
 | |
| {
 | |
|     return !(a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Floating point format conversion */
 | |
| uint64_t helper_cvtts (uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = t_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtst (uint64_t a)
 | |
| {
 | |
|     float32 fa;
 | |
|     float64 fr;
 | |
| 
 | |
|     fa = s_to_float32(a);
 | |
|     fr = float32_to_float64(fa, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqs (uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_s(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvttq (uint64_t a)
 | |
| {
 | |
|     float64 fa = t_to_float64(a);
 | |
|     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqt (uint64_t a)
 | |
| {
 | |
|     float64 fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_t(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqf (uint64_t a)
 | |
| {
 | |
|     float32 fr = int64_to_float32(a, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgf (uint64_t a)
 | |
| {
 | |
|     float64 fa;
 | |
|     float32 fr;
 | |
| 
 | |
|     fa = g_to_float64(a);
 | |
|     fr = float64_to_float32(fa, &FP_STATUS);
 | |
|     return float32_to_f(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtgq (uint64_t a)
 | |
| {
 | |
|     float64 fa = g_to_float64(a);
 | |
|     return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqg (uint64_t a)
 | |
| {
 | |
|     float64 fr;
 | |
|     fr = int64_to_float64(a, &FP_STATUS);
 | |
|     return float64_to_g(fr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtlq (uint64_t a)
 | |
| {
 | |
|     return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF)));
 | |
| }
 | |
| 
 | |
| static always_inline uint64_t __helper_cvtql (uint64_t a, int s, int v)
 | |
| {
 | |
|     uint64_t r;
 | |
| 
 | |
|     r = ((uint64_t)(a & 0xC0000000)) << 32;
 | |
|     r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
 | |
| 
 | |
|     if (v && (int64_t)((int32_t)r) != (int64_t)r) {
 | |
|         helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
 | |
|     }
 | |
|     if (s) {
 | |
|         /* TODO */
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtql (uint64_t a)
 | |
| {
 | |
|     return __helper_cvtql(a, 0, 0);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqlv (uint64_t a)
 | |
| {
 | |
|     return __helper_cvtql(a, 0, 1);
 | |
| }
 | |
| 
 | |
| uint64_t helper_cvtqlsv (uint64_t a)
 | |
| {
 | |
|     return __helper_cvtql(a, 1, 1);
 | |
| }
 | |
| 
 | |
| /* PALcode support special instructions */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| void helper_hw_rei (void)
 | |
| {
 | |
|     env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
 | |
|     env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
 | |
|     /* XXX: re-enable interrupts and memory mapping */
 | |
| }
 | |
| 
 | |
| void helper_hw_ret (uint64_t a)
 | |
| {
 | |
|     env->pc = a & ~3;
 | |
|     env->ipr[IPR_EXC_ADDR] = a & 1;
 | |
|     /* XXX: re-enable interrupts and memory mapping */
 | |
| }
 | |
| 
 | |
| uint64_t helper_mfpr (int iprn, uint64_t val)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
 | |
|         val = tmp;
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| void helper_mtpr (int iprn, uint64_t val)
 | |
| {
 | |
|     cpu_alpha_mtpr(env, iprn, val, NULL);
 | |
| }
 | |
| 
 | |
| void helper_set_alt_mode (void)
 | |
| {
 | |
|     env->saved_mode = env->ps & 0xC;
 | |
|     env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
 | |
| }
 | |
| 
 | |
| void helper_restore_mode (void)
 | |
| {
 | |
|     env->ps = (env->ps & ~0xC) | env->saved_mode;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Softmmu support */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| 
 | |
| /* XXX: the two following helpers are pure hacks.
 | |
|  *      Hopefully, we emulate the PALcode, then we should never see
 | |
|  *      HW_LD / HW_ST instructions.
 | |
|  */
 | |
| uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
 | |
| {
 | |
|     uint64_t tlb_addr, physaddr;
 | |
|     int index, mmu_idx;
 | |
|     void *retaddr;
 | |
| 
 | |
|     mmu_idx = cpu_mmu_index(env);
 | |
|     index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|  redo:
 | |
|     tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
 | |
|     if ((virtaddr & TARGET_PAGE_MASK) ==
 | |
|         (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
 | |
|     } else {
 | |
|         /* the page is not in the TLB : fill it */
 | |
|         retaddr = GETPC();
 | |
|         tlb_fill(virtaddr, 0, mmu_idx, retaddr);
 | |
|         goto redo;
 | |
|     }
 | |
|     return physaddr;
 | |
| }
 | |
| 
 | |
| uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
 | |
| {
 | |
|     uint64_t tlb_addr, physaddr;
 | |
|     int index, mmu_idx;
 | |
|     void *retaddr;
 | |
| 
 | |
|     mmu_idx = cpu_mmu_index(env);
 | |
|     index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|  redo:
 | |
|     tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | |
|     if ((virtaddr & TARGET_PAGE_MASK) ==
 | |
|         (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
 | |
|     } else {
 | |
|         /* the page is not in the TLB : fill it */
 | |
|         retaddr = GETPC();
 | |
|         tlb_fill(virtaddr, 1, mmu_idx, retaddr);
 | |
|         goto redo;
 | |
|     }
 | |
|     return physaddr;
 | |
| }
 | |
| 
 | |
| void helper_ldl_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldl_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldq_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldq_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     env->lock = t1;
 | |
|     ldl_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     env->lock = t1;
 | |
|     ldl_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldl_kernel(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldl_kernel(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldq_kernel(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldq_kernel(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldl_data(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldl_data(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_ldq_data(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     ldq_data(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_stl_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     stl_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| void helper_stq_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     stq_raw(t1, t0);
 | |
| }
 | |
| 
 | |
| uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     if (t1 == env->lock) {
 | |
|         stl_raw(t1, t0);
 | |
|         ret = 0;
 | |
|     } else
 | |
|         ret = 1;
 | |
| 
 | |
|     env->lock = 1;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
 | |
| {
 | |
|     uint64_t ret;
 | |
| 
 | |
|     if (t1 == env->lock) {
 | |
|         stq_raw(t1, t0);
 | |
|         ret = 0;
 | |
|     } else
 | |
|         ret = 1;
 | |
| 
 | |
|     env->lock = 1;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     CPUState *saved_env;
 | |
|     unsigned long pc;
 | |
|     int ret;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (!likely(ret == 0)) {
 | |
|         if (likely(retaddr)) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (likely(tb)) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, NULL);
 | |
|             }
 | |
|         }
 | |
|         /* Exception index and error code are already set */
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| #endif
 |