mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-30 19:15:42 +00:00 
			
		
		
		
	 7786ae40ba
			
		
	
	
		7786ae40ba
		
	
	
	
	
		
			
			dirty_pages is used to calculate dirtyrate via dirty ring, when enabled, kvm-reaper will increase the dirty pages after gfns being dirtied. kvm_dirty_ring_enabled shows if kvm-reaper is working. dirtyrate thread could use it to check if measurement can base on dirty ring feature. Signed-off-by: Hyman Huang(黄勇) <huangy81@chinatelecom.cn> Message-Id: <fee5fb2ab17ec2159405fc54a3cff8e02322f816.1624040308.git.huangy81@chinatelecom.cn> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
		
			
				
	
	
		
			3670 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3670 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU KVM support
 | |
|  *
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *           Red Hat, Inc. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *  Glauber Costa     <gcosta@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include <sys/ioctl.h>
 | |
| #include <poll.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu/atomic.h"
 | |
| #include "qemu/option.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/pci/msi.h"
 | |
| #include "hw/pci/msix.h"
 | |
| #include "hw/s390x/adapter.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "sysemu/kvm_int.h"
 | |
| #include "sysemu/runstate.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "qemu/bswap.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "qemu/event_notifier.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "trace.h"
 | |
| #include "hw/irq.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "qapi/qapi-types-common.h"
 | |
| #include "qapi/qapi-visit-common.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "qemu/guest-random.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "kvm-cpus.h"
 | |
| 
 | |
| #include "hw/boards.h"
 | |
| 
 | |
| /* This check must be after config-host.h is included */
 | |
| #ifdef CONFIG_EVENTFD
 | |
| #include <sys/eventfd.h>
 | |
| #endif
 | |
| 
 | |
| /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
 | |
|  * need to use the real host PAGE_SIZE, as that's what KVM will use.
 | |
|  */
 | |
| #ifdef PAGE_SIZE
 | |
| #undef PAGE_SIZE
 | |
| #endif
 | |
| #define PAGE_SIZE qemu_real_host_page_size
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define KVM_MSI_HASHTAB_SIZE    256
 | |
| 
 | |
| struct KVMParkedVcpu {
 | |
|     unsigned long vcpu_id;
 | |
|     int kvm_fd;
 | |
|     QLIST_ENTRY(KVMParkedVcpu) node;
 | |
| };
 | |
| 
 | |
| enum KVMDirtyRingReaperState {
 | |
|     KVM_DIRTY_RING_REAPER_NONE = 0,
 | |
|     /* The reaper is sleeping */
 | |
|     KVM_DIRTY_RING_REAPER_WAIT,
 | |
|     /* The reaper is reaping for dirty pages */
 | |
|     KVM_DIRTY_RING_REAPER_REAPING,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * KVM reaper instance, responsible for collecting the KVM dirty bits
 | |
|  * via the dirty ring.
 | |
|  */
 | |
| struct KVMDirtyRingReaper {
 | |
|     /* The reaper thread */
 | |
|     QemuThread reaper_thr;
 | |
|     volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
 | |
|     volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
 | |
| };
 | |
| 
 | |
| struct KVMState
 | |
| {
 | |
|     AccelState parent_obj;
 | |
| 
 | |
|     int nr_slots;
 | |
|     int fd;
 | |
|     int vmfd;
 | |
|     int coalesced_mmio;
 | |
|     int coalesced_pio;
 | |
|     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 | |
|     bool coalesced_flush_in_progress;
 | |
|     int vcpu_events;
 | |
|     int robust_singlestep;
 | |
|     int debugregs;
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
 | |
| #endif
 | |
|     int max_nested_state_len;
 | |
|     int many_ioeventfds;
 | |
|     int intx_set_mask;
 | |
|     int kvm_shadow_mem;
 | |
|     bool kernel_irqchip_allowed;
 | |
|     bool kernel_irqchip_required;
 | |
|     OnOffAuto kernel_irqchip_split;
 | |
|     bool sync_mmu;
 | |
|     uint64_t manual_dirty_log_protect;
 | |
|     /* The man page (and posix) say ioctl numbers are signed int, but
 | |
|      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
 | |
|      * unsigned, and treating them as signed here can break things */
 | |
|     unsigned irq_set_ioctl;
 | |
|     unsigned int sigmask_len;
 | |
|     GHashTable *gsimap;
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     struct kvm_irq_routing *irq_routes;
 | |
|     int nr_allocated_irq_routes;
 | |
|     unsigned long *used_gsi_bitmap;
 | |
|     unsigned int gsi_count;
 | |
|     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 | |
| #endif
 | |
|     KVMMemoryListener memory_listener;
 | |
|     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
 | |
| 
 | |
|     /* For "info mtree -f" to tell if an MR is registered in KVM */
 | |
|     int nr_as;
 | |
|     struct KVMAs {
 | |
|         KVMMemoryListener *ml;
 | |
|         AddressSpace *as;
 | |
|     } *as;
 | |
|     uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
 | |
|     uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
 | |
|     struct KVMDirtyRingReaper reaper;
 | |
| };
 | |
| 
 | |
| KVMState *kvm_state;
 | |
| bool kvm_kernel_irqchip;
 | |
| bool kvm_split_irqchip;
 | |
| bool kvm_async_interrupts_allowed;
 | |
| bool kvm_halt_in_kernel_allowed;
 | |
| bool kvm_eventfds_allowed;
 | |
| bool kvm_irqfds_allowed;
 | |
| bool kvm_resamplefds_allowed;
 | |
| bool kvm_msi_via_irqfd_allowed;
 | |
| bool kvm_gsi_routing_allowed;
 | |
| bool kvm_gsi_direct_mapping;
 | |
| bool kvm_allowed;
 | |
| bool kvm_readonly_mem_allowed;
 | |
| bool kvm_vm_attributes_allowed;
 | |
| bool kvm_direct_msi_allowed;
 | |
| bool kvm_ioeventfd_any_length_allowed;
 | |
| bool kvm_msi_use_devid;
 | |
| static bool kvm_immediate_exit;
 | |
| static hwaddr kvm_max_slot_size = ~0;
 | |
| 
 | |
| static const KVMCapabilityInfo kvm_required_capabilites[] = {
 | |
|     KVM_CAP_INFO(USER_MEMORY),
 | |
|     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 | |
|     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static NotifierList kvm_irqchip_change_notifiers =
 | |
|     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
 | |
| 
 | |
| struct KVMResampleFd {
 | |
|     int gsi;
 | |
|     EventNotifier *resample_event;
 | |
|     QLIST_ENTRY(KVMResampleFd) node;
 | |
| };
 | |
| typedef struct KVMResampleFd KVMResampleFd;
 | |
| 
 | |
| /*
 | |
|  * Only used with split irqchip where we need to do the resample fd
 | |
|  * kick for the kernel from userspace.
 | |
|  */
 | |
| static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
 | |
|     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
 | |
| 
 | |
| static QemuMutex kml_slots_lock;
 | |
| 
 | |
| #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
 | |
| #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
 | |
| 
 | |
| static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
 | |
| 
 | |
| static inline void kvm_resample_fd_remove(int gsi)
 | |
| {
 | |
|     KVMResampleFd *rfd;
 | |
| 
 | |
|     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 | |
|         if (rfd->gsi == gsi) {
 | |
|             QLIST_REMOVE(rfd, node);
 | |
|             g_free(rfd);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
 | |
| {
 | |
|     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
 | |
| 
 | |
|     rfd->gsi = gsi;
 | |
|     rfd->resample_event = event;
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
 | |
| }
 | |
| 
 | |
| void kvm_resample_fd_notify(int gsi)
 | |
| {
 | |
|     KVMResampleFd *rfd;
 | |
| 
 | |
|     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 | |
|         if (rfd->gsi == gsi) {
 | |
|             event_notifier_set(rfd->resample_event);
 | |
|             trace_kvm_resample_fd_notify(gsi);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_get_max_memslots(void)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(current_accel());
 | |
| 
 | |
|     return s->nr_slots;
 | |
| }
 | |
| 
 | |
| /* Called with KVMMemoryListener.slots_lock held */
 | |
| static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         if (kml->slots[i].memory_size == 0) {
 | |
|             return &kml->slots[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| bool kvm_has_free_slot(MachineState *ms)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(ms->accelerator);
 | |
|     bool result;
 | |
|     KVMMemoryListener *kml = &s->memory_listener;
 | |
| 
 | |
|     kvm_slots_lock();
 | |
|     result = !!kvm_get_free_slot(kml);
 | |
|     kvm_slots_unlock();
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called with KVMMemoryListener.slots_lock held */
 | |
| static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 | |
| {
 | |
|     KVMSlot *slot = kvm_get_free_slot(kml);
 | |
| 
 | |
|     if (slot) {
 | |
|         return slot;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: no free slot available\n", __func__);
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 | |
|                                          hwaddr start_addr,
 | |
|                                          hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         KVMSlot *mem = &kml->slots[i];
 | |
| 
 | |
|         if (start_addr == mem->start_addr && size == mem->memory_size) {
 | |
|             return mem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate and align the start address and the size of the section.
 | |
|  * Return the size. If the size is 0, the aligned section is empty.
 | |
|  */
 | |
| static hwaddr kvm_align_section(MemoryRegionSection *section,
 | |
|                                 hwaddr *start)
 | |
| {
 | |
|     hwaddr size = int128_get64(section->size);
 | |
|     hwaddr delta, aligned;
 | |
| 
 | |
|     /* kvm works in page size chunks, but the function may be called
 | |
|        with sub-page size and unaligned start address. Pad the start
 | |
|        address to next and truncate size to previous page boundary. */
 | |
|     aligned = ROUND_UP(section->offset_within_address_space,
 | |
|                        qemu_real_host_page_size);
 | |
|     delta = aligned - section->offset_within_address_space;
 | |
|     *start = aligned;
 | |
|     if (delta > size) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return (size - delta) & qemu_real_host_page_mask;
 | |
| }
 | |
| 
 | |
| int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 | |
|                                        hwaddr *phys_addr)
 | |
| {
 | |
|     KVMMemoryListener *kml = &s->memory_listener;
 | |
|     int i, ret = 0;
 | |
| 
 | |
|     kvm_slots_lock();
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         KVMSlot *mem = &kml->slots[i];
 | |
| 
 | |
|         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 | |
|             *phys_addr = mem->start_addr + (ram - mem->ram);
 | |
|             ret = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     kvm_slots_unlock();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     struct kvm_userspace_memory_region mem;
 | |
|     int ret;
 | |
| 
 | |
|     mem.slot = slot->slot | (kml->as_id << 16);
 | |
|     mem.guest_phys_addr = slot->start_addr;
 | |
|     mem.userspace_addr = (unsigned long)slot->ram;
 | |
|     mem.flags = slot->flags;
 | |
| 
 | |
|     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
 | |
|         /* Set the slot size to 0 before setting the slot to the desired
 | |
|          * value. This is needed based on KVM commit 75d61fbc. */
 | |
|         mem.memory_size = 0;
 | |
|         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | |
|         if (ret < 0) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     mem.memory_size = slot->memory_size;
 | |
|     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | |
|     slot->old_flags = mem.flags;
 | |
| err:
 | |
|     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
 | |
|                               mem.memory_size, mem.userspace_addr, ret);
 | |
|     if (ret < 0) {
 | |
|         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
 | |
|                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
 | |
|                      __func__, mem.slot, slot->start_addr,
 | |
|                      (uint64_t)mem.memory_size, strerror(errno));
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int do_kvm_destroy_vcpu(CPUState *cpu)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     long mmap_size;
 | |
|     struct KVMParkedVcpu *vcpu = NULL;
 | |
|     int ret = 0;
 | |
| 
 | |
|     DPRINTF("kvm_destroy_vcpu\n");
 | |
| 
 | |
|     ret = kvm_arch_destroy_vcpu(cpu);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 | |
|     if (mmap_size < 0) {
 | |
|         ret = mmap_size;
 | |
|         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = munmap(cpu->kvm_run, mmap_size);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (cpu->kvm_dirty_gfns) {
 | |
|         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
 | |
|         if (ret < 0) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vcpu = g_malloc0(sizeof(*vcpu));
 | |
|     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
 | |
|     vcpu->kvm_fd = cpu->kvm_fd;
 | |
|     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_destroy_vcpu(CPUState *cpu)
 | |
| {
 | |
|     if (do_kvm_destroy_vcpu(cpu) < 0) {
 | |
|         error_report("kvm_destroy_vcpu failed");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
 | |
| {
 | |
|     struct KVMParkedVcpu *cpu;
 | |
| 
 | |
|     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
 | |
|         if (cpu->vcpu_id == vcpu_id) {
 | |
|             int kvm_fd;
 | |
| 
 | |
|             QLIST_REMOVE(cpu, node);
 | |
|             kvm_fd = cpu->kvm_fd;
 | |
|             g_free(cpu);
 | |
|             return kvm_fd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
 | |
| }
 | |
| 
 | |
| int kvm_init_vcpu(CPUState *cpu, Error **errp)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     long mmap_size;
 | |
|     int ret;
 | |
| 
 | |
|     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
 | |
| 
 | |
|     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
 | |
|     if (ret < 0) {
 | |
|         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
 | |
|                          kvm_arch_vcpu_id(cpu));
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     cpu->kvm_fd = ret;
 | |
|     cpu->kvm_state = s;
 | |
|     cpu->vcpu_dirty = true;
 | |
|     cpu->dirty_pages = 0;
 | |
| 
 | |
|     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 | |
|     if (mmap_size < 0) {
 | |
|         ret = mmap_size;
 | |
|         error_setg_errno(errp, -mmap_size,
 | |
|                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 | |
|                         cpu->kvm_fd, 0);
 | |
|     if (cpu->kvm_run == MAP_FAILED) {
 | |
|         ret = -errno;
 | |
|         error_setg_errno(errp, ret,
 | |
|                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
 | |
|                          kvm_arch_vcpu_id(cpu));
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 | |
|         s->coalesced_mmio_ring =
 | |
|             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     if (s->kvm_dirty_ring_size) {
 | |
|         /* Use MAP_SHARED to share pages with the kernel */
 | |
|         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
 | |
|                                    PROT_READ | PROT_WRITE, MAP_SHARED,
 | |
|                                    cpu->kvm_fd,
 | |
|                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
 | |
|         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
 | |
|             ret = -errno;
 | |
|             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = kvm_arch_init_vcpu(cpu);
 | |
|     if (ret < 0) {
 | |
|         error_setg_errno(errp, -ret,
 | |
|                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
 | |
|                          kvm_arch_vcpu_id(cpu));
 | |
|     }
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dirty pages logging control
 | |
|  */
 | |
| 
 | |
| static int kvm_mem_flags(MemoryRegion *mr)
 | |
| {
 | |
|     bool readonly = mr->readonly || memory_region_is_romd(mr);
 | |
|     int flags = 0;
 | |
| 
 | |
|     if (memory_region_get_dirty_log_mask(mr) != 0) {
 | |
|         flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     }
 | |
|     if (readonly && kvm_readonly_mem_allowed) {
 | |
|         flags |= KVM_MEM_READONLY;
 | |
|     }
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| /* Called with KVMMemoryListener.slots_lock held */
 | |
| static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 | |
|                                  MemoryRegion *mr)
 | |
| {
 | |
|     mem->flags = kvm_mem_flags(mr);
 | |
| 
 | |
|     /* If nothing changed effectively, no need to issue ioctl */
 | |
|     if (mem->flags == mem->old_flags) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     kvm_slot_init_dirty_bitmap(mem);
 | |
|     return kvm_set_user_memory_region(kml, mem, false);
 | |
| }
 | |
| 
 | |
| static int kvm_section_update_flags(KVMMemoryListener *kml,
 | |
|                                     MemoryRegionSection *section)
 | |
| {
 | |
|     hwaddr start_addr, size, slot_size;
 | |
|     KVMSlot *mem;
 | |
|     int ret = 0;
 | |
| 
 | |
|     size = kvm_align_section(section, &start_addr);
 | |
|     if (!size) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     kvm_slots_lock();
 | |
| 
 | |
|     while (size && !ret) {
 | |
|         slot_size = MIN(kvm_max_slot_size, size);
 | |
|         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 | |
|         if (!mem) {
 | |
|             /* We don't have a slot if we want to trap every access. */
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         ret = kvm_slot_update_flags(kml, mem, section->mr);
 | |
|         start_addr += slot_size;
 | |
|         size -= slot_size;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     kvm_slots_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_log_start(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section,
 | |
|                           int old, int new)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
|     int r;
 | |
| 
 | |
|     if (old != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     r = kvm_section_update_flags(kml, section);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_log_stop(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section,
 | |
|                           int old, int new)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
|     int r;
 | |
| 
 | |
|     if (new != 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     r = kvm_section_update_flags(kml, section);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* get kvm's dirty pages bitmap and update qemu's */
 | |
| static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
 | |
| {
 | |
|     ram_addr_t start = slot->ram_start_offset;
 | |
|     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
 | |
| 
 | |
|     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
 | |
| }
 | |
| 
 | |
| static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
 | |
| {
 | |
|     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
 | |
| }
 | |
| 
 | |
| #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 | |
| 
 | |
| /* Allocate the dirty bitmap for a slot  */
 | |
| static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
 | |
| {
 | |
|     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * XXX bad kernel interface alert
 | |
|      * For dirty bitmap, kernel allocates array of size aligned to
 | |
|      * bits-per-long.  But for case when the kernel is 64bits and
 | |
|      * the userspace is 32bits, userspace can't align to the same
 | |
|      * bits-per-long, since sizeof(long) is different between kernel
 | |
|      * and user space.  This way, userspace will provide buffer which
 | |
|      * may be 4 bytes less than the kernel will use, resulting in
 | |
|      * userspace memory corruption (which is not detectable by valgrind
 | |
|      * too, in most cases).
 | |
|      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 | |
|      * a hope that sizeof(long) won't become >8 any time soon.
 | |
|      *
 | |
|      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
 | |
|      * And mem->memory_size is aligned to it (otherwise this mem can't
 | |
|      * be registered to KVM).
 | |
|      */
 | |
|     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
 | |
|                                         /*HOST_LONG_BITS*/ 64) / 8;
 | |
|     mem->dirty_bmap = g_malloc0(bitmap_size);
 | |
|     mem->dirty_bmap_size = bitmap_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
 | |
|  * succeeded, false otherwise
 | |
|  */
 | |
| static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
 | |
| {
 | |
|     struct kvm_dirty_log d = {};
 | |
|     int ret;
 | |
| 
 | |
|     d.dirty_bitmap = slot->dirty_bmap;
 | |
|     d.slot = slot->slot | (slot->as_id << 16);
 | |
|     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
 | |
| 
 | |
|     if (ret == -ENOENT) {
 | |
|         /* kernel does not have dirty bitmap in this slot */
 | |
|         ret = 0;
 | |
|     }
 | |
|     if (ret) {
 | |
|         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
 | |
|                           __func__, ret);
 | |
|     }
 | |
|     return ret == 0;
 | |
| }
 | |
| 
 | |
| /* Should be with all slots_lock held for the address spaces. */
 | |
| static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
 | |
|                                      uint32_t slot_id, uint64_t offset)
 | |
| {
 | |
|     KVMMemoryListener *kml;
 | |
|     KVMSlot *mem;
 | |
| 
 | |
|     if (as_id >= s->nr_as) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     kml = s->as[as_id].ml;
 | |
|     mem = &kml->slots[slot_id];
 | |
| 
 | |
|     if (!mem->memory_size || offset >=
 | |
|         (mem->memory_size / qemu_real_host_page_size)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     set_bit(offset, mem->dirty_bmap);
 | |
| }
 | |
| 
 | |
| static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
 | |
| {
 | |
|     return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
 | |
| }
 | |
| 
 | |
| static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
 | |
| {
 | |
|     gfn->flags = KVM_DIRTY_GFN_F_RESET;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should be with all slots_lock held for the address spaces.  It returns the
 | |
|  * dirty page we've collected on this dirty ring.
 | |
|  */
 | |
| static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
 | |
| {
 | |
|     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
 | |
|     uint32_t ring_size = s->kvm_dirty_ring_size;
 | |
|     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
 | |
| 
 | |
|     assert(dirty_gfns && ring_size);
 | |
|     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
 | |
| 
 | |
|     while (true) {
 | |
|         cur = &dirty_gfns[fetch % ring_size];
 | |
|         if (!dirty_gfn_is_dirtied(cur)) {
 | |
|             break;
 | |
|         }
 | |
|         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
 | |
|                                  cur->offset);
 | |
|         dirty_gfn_set_collected(cur);
 | |
|         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
 | |
|         fetch++;
 | |
|         count++;
 | |
|     }
 | |
|     cpu->kvm_fetch_index = fetch;
 | |
|     cpu->dirty_pages += count;
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| /* Must be with slots_lock held */
 | |
| static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
 | |
| {
 | |
|     int ret;
 | |
|     CPUState *cpu;
 | |
|     uint64_t total = 0;
 | |
|     int64_t stamp;
 | |
| 
 | |
|     stamp = get_clock();
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         total += kvm_dirty_ring_reap_one(s, cpu);
 | |
|     }
 | |
| 
 | |
|     if (total) {
 | |
|         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
 | |
|         assert(ret == total);
 | |
|     }
 | |
| 
 | |
|     stamp = get_clock() - stamp;
 | |
| 
 | |
|     if (total) {
 | |
|         trace_kvm_dirty_ring_reap(total, stamp / 1000);
 | |
|     }
 | |
| 
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Currently for simplicity, we must hold BQL before calling this.  We can
 | |
|  * consider to drop the BQL if we're clear with all the race conditions.
 | |
|  */
 | |
| static uint64_t kvm_dirty_ring_reap(KVMState *s)
 | |
| {
 | |
|     uint64_t total;
 | |
| 
 | |
|     /*
 | |
|      * We need to lock all kvm slots for all address spaces here,
 | |
|      * because:
 | |
|      *
 | |
|      * (1) We need to mark dirty for dirty bitmaps in multiple slots
 | |
|      *     and for tons of pages, so it's better to take the lock here
 | |
|      *     once rather than once per page.  And more importantly,
 | |
|      *
 | |
|      * (2) We must _NOT_ publish dirty bits to the other threads
 | |
|      *     (e.g., the migration thread) via the kvm memory slot dirty
 | |
|      *     bitmaps before correctly re-protect those dirtied pages.
 | |
|      *     Otherwise we can have potential risk of data corruption if
 | |
|      *     the page data is read in the other thread before we do
 | |
|      *     reset below.
 | |
|      */
 | |
|     kvm_slots_lock();
 | |
|     total = kvm_dirty_ring_reap_locked(s);
 | |
|     kvm_slots_unlock();
 | |
| 
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     /* No need to do anything */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick all vcpus out in a synchronized way.  When returned, we
 | |
|  * guarantee that every vcpu has been kicked and at least returned to
 | |
|  * userspace once.
 | |
|  */
 | |
| static void kvm_cpu_synchronize_kick_all(void)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all the existing dirty pages to the KVM slot buffers.  When
 | |
|  * this call returns, we guarantee that all the touched dirty pages
 | |
|  * before calling this function have been put into the per-kvmslot
 | |
|  * dirty bitmap.
 | |
|  *
 | |
|  * This function must be called with BQL held.
 | |
|  */
 | |
| static void kvm_dirty_ring_flush(void)
 | |
| {
 | |
|     trace_kvm_dirty_ring_flush(0);
 | |
|     /*
 | |
|      * The function needs to be serialized.  Since this function
 | |
|      * should always be with BQL held, serialization is guaranteed.
 | |
|      * However, let's be sure of it.
 | |
|      */
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
|     /*
 | |
|      * First make sure to flush the hardware buffers by kicking all
 | |
|      * vcpus out in a synchronous way.
 | |
|      */
 | |
|     kvm_cpu_synchronize_kick_all();
 | |
|     kvm_dirty_ring_reap(kvm_state);
 | |
|     trace_kvm_dirty_ring_flush(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
 | |
|  *
 | |
|  * This function will first try to fetch dirty bitmap from the kernel,
 | |
|  * and then updates qemu's dirty bitmap.
 | |
|  *
 | |
|  * NOTE: caller must be with kml->slots_lock held.
 | |
|  *
 | |
|  * @kml: the KVM memory listener object
 | |
|  * @section: the memory section to sync the dirty bitmap with
 | |
|  */
 | |
| static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 | |
|                                            MemoryRegionSection *section)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem;
 | |
|     hwaddr start_addr, size;
 | |
|     hwaddr slot_size;
 | |
| 
 | |
|     size = kvm_align_section(section, &start_addr);
 | |
|     while (size) {
 | |
|         slot_size = MIN(kvm_max_slot_size, size);
 | |
|         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 | |
|         if (!mem) {
 | |
|             /* We don't have a slot if we want to trap every access. */
 | |
|             return;
 | |
|         }
 | |
|         if (kvm_slot_get_dirty_log(s, mem)) {
 | |
|             kvm_slot_sync_dirty_pages(mem);
 | |
|         }
 | |
|         start_addr += slot_size;
 | |
|         size -= slot_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
 | |
| #define KVM_CLEAR_LOG_SHIFT  6
 | |
| #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
 | |
| #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
 | |
| 
 | |
| static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
 | |
|                                   uint64_t size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     uint64_t end, bmap_start, start_delta, bmap_npages;
 | |
|     struct kvm_clear_dirty_log d;
 | |
|     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
 | |
|     int ret;
 | |
| 
 | |
|     /*
 | |
|      * We need to extend either the start or the size or both to
 | |
|      * satisfy the KVM interface requirement.  Firstly, do the start
 | |
|      * page alignment on 64 host pages
 | |
|      */
 | |
|     bmap_start = start & KVM_CLEAR_LOG_MASK;
 | |
|     start_delta = start - bmap_start;
 | |
|     bmap_start /= psize;
 | |
| 
 | |
|     /*
 | |
|      * The kernel interface has restriction on the size too, that either:
 | |
|      *
 | |
|      * (1) the size is 64 host pages aligned (just like the start), or
 | |
|      * (2) the size fills up until the end of the KVM memslot.
 | |
|      */
 | |
|     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
 | |
|         << KVM_CLEAR_LOG_SHIFT;
 | |
|     end = mem->memory_size / psize;
 | |
|     if (bmap_npages > end - bmap_start) {
 | |
|         bmap_npages = end - bmap_start;
 | |
|     }
 | |
|     start_delta /= psize;
 | |
| 
 | |
|     /*
 | |
|      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
 | |
|      * that we won't clear any unknown dirty bits otherwise we might
 | |
|      * accidentally clear some set bits which are not yet synced from
 | |
|      * the kernel into QEMU's bitmap, then we'll lose track of the
 | |
|      * guest modifications upon those pages (which can directly lead
 | |
|      * to guest data loss or panic after migration).
 | |
|      *
 | |
|      * Layout of the KVMSlot.dirty_bmap:
 | |
|      *
 | |
|      *                   |<-------- bmap_npages -----------..>|
 | |
|      *                                                     [1]
 | |
|      *                     start_delta         size
 | |
|      *  |----------------|-------------|------------------|------------|
 | |
|      *  ^                ^             ^                               ^
 | |
|      *  |                |             |                               |
 | |
|      * start          bmap_start     (start)                         end
 | |
|      * of memslot                                             of memslot
 | |
|      *
 | |
|      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
 | |
|      */
 | |
| 
 | |
|     assert(bmap_start % BITS_PER_LONG == 0);
 | |
|     /* We should never do log_clear before log_sync */
 | |
|     assert(mem->dirty_bmap);
 | |
|     if (start_delta || bmap_npages - size / psize) {
 | |
|         /* Slow path - we need to manipulate a temp bitmap */
 | |
|         bmap_clear = bitmap_new(bmap_npages);
 | |
|         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
 | |
|                                     bmap_start, start_delta + size / psize);
 | |
|         /*
 | |
|          * We need to fill the holes at start because that was not
 | |
|          * specified by the caller and we extended the bitmap only for
 | |
|          * 64 pages alignment
 | |
|          */
 | |
|         bitmap_clear(bmap_clear, 0, start_delta);
 | |
|         d.dirty_bitmap = bmap_clear;
 | |
|     } else {
 | |
|         /*
 | |
|          * Fast path - both start and size align well with BITS_PER_LONG
 | |
|          * (or the end of memory slot)
 | |
|          */
 | |
|         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
 | |
|     }
 | |
| 
 | |
|     d.first_page = bmap_start;
 | |
|     /* It should never overflow.  If it happens, say something */
 | |
|     assert(bmap_npages <= UINT32_MAX);
 | |
|     d.num_pages = bmap_npages;
 | |
|     d.slot = mem->slot | (as_id << 16);
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
 | |
|     if (ret < 0 && ret != -ENOENT) {
 | |
|         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
 | |
|                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
 | |
|                      __func__, d.slot, (uint64_t)d.first_page,
 | |
|                      (uint32_t)d.num_pages, ret);
 | |
|     } else {
 | |
|         ret = 0;
 | |
|         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * After we have updated the remote dirty bitmap, we update the
 | |
|      * cached bitmap as well for the memslot, then if another user
 | |
|      * clears the same region we know we shouldn't clear it again on
 | |
|      * the remote otherwise it's data loss as well.
 | |
|      */
 | |
|     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
 | |
|                  size / psize);
 | |
|     /* This handles the NULL case well */
 | |
|     g_free(bmap_clear);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
 | |
|  *
 | |
|  * NOTE: this will be a no-op if we haven't enabled manual dirty log
 | |
|  * protection in the host kernel because in that case this operation
 | |
|  * will be done within log_sync().
 | |
|  *
 | |
|  * @kml:     the kvm memory listener
 | |
|  * @section: the memory range to clear dirty bitmap
 | |
|  */
 | |
| static int kvm_physical_log_clear(KVMMemoryListener *kml,
 | |
|                                   MemoryRegionSection *section)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     uint64_t start, size, offset, count;
 | |
|     KVMSlot *mem;
 | |
|     int ret = 0, i;
 | |
| 
 | |
|     if (!s->manual_dirty_log_protect) {
 | |
|         /* No need to do explicit clear */
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     start = section->offset_within_address_space;
 | |
|     size = int128_get64(section->size);
 | |
| 
 | |
|     if (!size) {
 | |
|         /* Nothing more we can do... */
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     kvm_slots_lock();
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         mem = &kml->slots[i];
 | |
|         /* Discard slots that are empty or do not overlap the section */
 | |
|         if (!mem->memory_size ||
 | |
|             mem->start_addr > start + size - 1 ||
 | |
|             start > mem->start_addr + mem->memory_size - 1) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (start >= mem->start_addr) {
 | |
|             /* The slot starts before section or is aligned to it.  */
 | |
|             offset = start - mem->start_addr;
 | |
|             count = MIN(mem->memory_size - offset, size);
 | |
|         } else {
 | |
|             /* The slot starts after section.  */
 | |
|             offset = 0;
 | |
|             count = MIN(mem->memory_size, size - (mem->start_addr - start));
 | |
|         }
 | |
|         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
 | |
|         if (ret < 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_slots_unlock();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_coalesce_mmio_region(MemoryListener *listener,
 | |
|                                      MemoryRegionSection *secion,
 | |
|                                      hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pad = 0;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 | |
|                                        MemoryRegionSection *secion,
 | |
|                                        hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pad = 0;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_coalesce_pio_add(MemoryListener *listener,
 | |
|                                 MemoryRegionSection *section,
 | |
|                                 hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_pio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pio = 1;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_coalesce_pio_del(MemoryListener *listener,
 | |
|                                 MemoryRegionSection *section,
 | |
|                                 hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_pio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pio = 1;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 | |
|      }
 | |
| }
 | |
| 
 | |
| static MemoryListener kvm_coalesced_pio_listener = {
 | |
|     .name = "kvm-coalesced-pio",
 | |
|     .coalesced_io_add = kvm_coalesce_pio_add,
 | |
|     .coalesced_io_del = kvm_coalesce_pio_del,
 | |
| };
 | |
| 
 | |
| int kvm_check_extension(KVMState *s, unsigned int extension)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 | |
|     if (ret < 0) {
 | |
|         ret = 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 | |
|     if (ret < 0) {
 | |
|         /* VM wide version not implemented, use global one instead */
 | |
|         ret = kvm_check_extension(s, extension);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| typedef struct HWPoisonPage {
 | |
|     ram_addr_t ram_addr;
 | |
|     QLIST_ENTRY(HWPoisonPage) list;
 | |
| } HWPoisonPage;
 | |
| 
 | |
| static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 | |
|     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 | |
| 
 | |
| static void kvm_unpoison_all(void *param)
 | |
| {
 | |
|     HWPoisonPage *page, *next_page;
 | |
| 
 | |
|     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 | |
|         QLIST_REMOVE(page, list);
 | |
|         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 | |
|         g_free(page);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 | |
| {
 | |
|     HWPoisonPage *page;
 | |
| 
 | |
|     QLIST_FOREACH(page, &hwpoison_page_list, list) {
 | |
|         if (page->ram_addr == ram_addr) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     page = g_new(HWPoisonPage, 1);
 | |
|     page->ram_addr = ram_addr;
 | |
|     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 | |
| }
 | |
| 
 | |
| static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 | |
| {
 | |
| #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 | |
|     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 | |
|      * endianness, but the memory core hands them in target endianness.
 | |
|      * For example, PPC is always treated as big-endian even if running
 | |
|      * on KVM and on PPC64LE.  Correct here.
 | |
|      */
 | |
|     switch (size) {
 | |
|     case 2:
 | |
|         val = bswap16(val);
 | |
|         break;
 | |
|     case 4:
 | |
|         val = bswap32(val);
 | |
|         break;
 | |
|     }
 | |
| #endif
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 | |
|                                   bool assign, uint32_t size, bool datamatch)
 | |
| {
 | |
|     int ret;
 | |
|     struct kvm_ioeventfd iofd = {
 | |
|         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 | |
|         .addr = addr,
 | |
|         .len = size,
 | |
|         .flags = 0,
 | |
|         .fd = fd,
 | |
|     };
 | |
| 
 | |
|     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
 | |
|                                  datamatch);
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     if (datamatch) {
 | |
|         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 | |
|     }
 | |
|     if (!assign) {
 | |
|         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 | |
|                                  bool assign, uint32_t size, bool datamatch)
 | |
| {
 | |
|     struct kvm_ioeventfd kick = {
 | |
|         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 | |
|         .addr = addr,
 | |
|         .flags = KVM_IOEVENTFD_FLAG_PIO,
 | |
|         .len = size,
 | |
|         .fd = fd,
 | |
|     };
 | |
|     int r;
 | |
|     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     if (datamatch) {
 | |
|         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 | |
|     }
 | |
|     if (!assign) {
 | |
|         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
|     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 | |
|     if (r < 0) {
 | |
|         return r;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int kvm_check_many_ioeventfds(void)
 | |
| {
 | |
|     /* Userspace can use ioeventfd for io notification.  This requires a host
 | |
|      * that supports eventfd(2) and an I/O thread; since eventfd does not
 | |
|      * support SIGIO it cannot interrupt the vcpu.
 | |
|      *
 | |
|      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 | |
|      * can avoid creating too many ioeventfds.
 | |
|      */
 | |
| #if defined(CONFIG_EVENTFD)
 | |
|     int ioeventfds[7];
 | |
|     int i, ret = 0;
 | |
|     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 | |
|         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 | |
|         if (ioeventfds[i] < 0) {
 | |
|             break;
 | |
|         }
 | |
|         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 | |
|         if (ret < 0) {
 | |
|             close(ioeventfds[i]);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Decide whether many devices are supported or not */
 | |
|     ret = i == ARRAY_SIZE(ioeventfds);
 | |
| 
 | |
|     while (i-- > 0) {
 | |
|         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 | |
|         close(ioeventfds[i]);
 | |
|     }
 | |
|     return ret;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const KVMCapabilityInfo *
 | |
| kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 | |
| {
 | |
|     while (list->name) {
 | |
|         if (!kvm_check_extension(s, list->value)) {
 | |
|             return list;
 | |
|         }
 | |
|         list++;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void kvm_set_max_memslot_size(hwaddr max_slot_size)
 | |
| {
 | |
|     g_assert(
 | |
|         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
 | |
|     );
 | |
|     kvm_max_slot_size = max_slot_size;
 | |
| }
 | |
| 
 | |
| static void kvm_set_phys_mem(KVMMemoryListener *kml,
 | |
|                              MemoryRegionSection *section, bool add)
 | |
| {
 | |
|     KVMSlot *mem;
 | |
|     int err;
 | |
|     MemoryRegion *mr = section->mr;
 | |
|     bool writeable = !mr->readonly && !mr->rom_device;
 | |
|     hwaddr start_addr, size, slot_size, mr_offset;
 | |
|     ram_addr_t ram_start_offset;
 | |
|     void *ram;
 | |
| 
 | |
|     if (!memory_region_is_ram(mr)) {
 | |
|         if (writeable || !kvm_readonly_mem_allowed) {
 | |
|             return;
 | |
|         } else if (!mr->romd_mode) {
 | |
|             /* If the memory device is not in romd_mode, then we actually want
 | |
|              * to remove the kvm memory slot so all accesses will trap. */
 | |
|             add = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size = kvm_align_section(section, &start_addr);
 | |
|     if (!size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* The offset of the kvmslot within the memory region */
 | |
|     mr_offset = section->offset_within_region + start_addr -
 | |
|         section->offset_within_address_space;
 | |
| 
 | |
|     /* use aligned delta to align the ram address and offset */
 | |
|     ram = memory_region_get_ram_ptr(mr) + mr_offset;
 | |
|     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
 | |
| 
 | |
|     kvm_slots_lock();
 | |
| 
 | |
|     if (!add) {
 | |
|         do {
 | |
|             slot_size = MIN(kvm_max_slot_size, size);
 | |
|             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 | |
|             if (!mem) {
 | |
|                 goto out;
 | |
|             }
 | |
|             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 | |
|                 /*
 | |
|                  * NOTE: We should be aware of the fact that here we're only
 | |
|                  * doing a best effort to sync dirty bits.  No matter whether
 | |
|                  * we're using dirty log or dirty ring, we ignored two facts:
 | |
|                  *
 | |
|                  * (1) dirty bits can reside in hardware buffers (PML)
 | |
|                  *
 | |
|                  * (2) after we collected dirty bits here, pages can be dirtied
 | |
|                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
 | |
|                  * remove the slot.
 | |
|                  *
 | |
|                  * Not easy.  Let's cross the fingers until it's fixed.
 | |
|                  */
 | |
|                 if (kvm_state->kvm_dirty_ring_size) {
 | |
|                     kvm_dirty_ring_reap_locked(kvm_state);
 | |
|                 } else {
 | |
|                     kvm_slot_get_dirty_log(kvm_state, mem);
 | |
|                 }
 | |
|                 kvm_slot_sync_dirty_pages(mem);
 | |
|             }
 | |
| 
 | |
|             /* unregister the slot */
 | |
|             g_free(mem->dirty_bmap);
 | |
|             mem->dirty_bmap = NULL;
 | |
|             mem->memory_size = 0;
 | |
|             mem->flags = 0;
 | |
|             err = kvm_set_user_memory_region(kml, mem, false);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error unregistering slot: %s\n",
 | |
|                         __func__, strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
|             start_addr += slot_size;
 | |
|             size -= slot_size;
 | |
|         } while (size);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* register the new slot */
 | |
|     do {
 | |
|         slot_size = MIN(kvm_max_slot_size, size);
 | |
|         mem = kvm_alloc_slot(kml);
 | |
|         mem->as_id = kml->as_id;
 | |
|         mem->memory_size = slot_size;
 | |
|         mem->start_addr = start_addr;
 | |
|         mem->ram_start_offset = ram_start_offset;
 | |
|         mem->ram = ram;
 | |
|         mem->flags = kvm_mem_flags(mr);
 | |
|         kvm_slot_init_dirty_bitmap(mem);
 | |
|         err = kvm_set_user_memory_region(kml, mem, true);
 | |
|         if (err) {
 | |
|             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 | |
|                     strerror(-err));
 | |
|             abort();
 | |
|         }
 | |
|         start_addr += slot_size;
 | |
|         ram_start_offset += slot_size;
 | |
|         ram += slot_size;
 | |
|         size -= slot_size;
 | |
|     } while (size);
 | |
| 
 | |
| out:
 | |
|     kvm_slots_unlock();
 | |
| }
 | |
| 
 | |
| static void *kvm_dirty_ring_reaper_thread(void *data)
 | |
| {
 | |
|     KVMState *s = data;
 | |
|     struct KVMDirtyRingReaper *r = &s->reaper;
 | |
| 
 | |
|     rcu_register_thread();
 | |
| 
 | |
|     trace_kvm_dirty_ring_reaper("init");
 | |
| 
 | |
|     while (true) {
 | |
|         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
 | |
|         trace_kvm_dirty_ring_reaper("wait");
 | |
|         /*
 | |
|          * TODO: provide a smarter timeout rather than a constant?
 | |
|          */
 | |
|         sleep(1);
 | |
| 
 | |
|         trace_kvm_dirty_ring_reaper("wakeup");
 | |
|         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
 | |
| 
 | |
|         qemu_mutex_lock_iothread();
 | |
|         kvm_dirty_ring_reap(s);
 | |
|         qemu_mutex_unlock_iothread();
 | |
| 
 | |
|         r->reaper_iteration++;
 | |
|     }
 | |
| 
 | |
|     trace_kvm_dirty_ring_reaper("exit");
 | |
| 
 | |
|     rcu_unregister_thread();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int kvm_dirty_ring_reaper_init(KVMState *s)
 | |
| {
 | |
|     struct KVMDirtyRingReaper *r = &s->reaper;
 | |
| 
 | |
|     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
 | |
|                        kvm_dirty_ring_reaper_thread,
 | |
|                        s, QEMU_THREAD_JOINABLE);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_region_add(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
| 
 | |
|     memory_region_ref(section->mr);
 | |
|     kvm_set_phys_mem(kml, section, true);
 | |
| }
 | |
| 
 | |
| static void kvm_region_del(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
| 
 | |
|     kvm_set_phys_mem(kml, section, false);
 | |
|     memory_region_unref(section->mr);
 | |
| }
 | |
| 
 | |
| static void kvm_log_sync(MemoryListener *listener,
 | |
|                          MemoryRegionSection *section)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
| 
 | |
|     kvm_slots_lock();
 | |
|     kvm_physical_sync_dirty_bitmap(kml, section);
 | |
|     kvm_slots_unlock();
 | |
| }
 | |
| 
 | |
| static void kvm_log_sync_global(MemoryListener *l)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem;
 | |
|     int i;
 | |
| 
 | |
|     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
 | |
|     kvm_dirty_ring_flush();
 | |
| 
 | |
|     /*
 | |
|      * TODO: make this faster when nr_slots is big while there are
 | |
|      * only a few used slots (small VMs).
 | |
|      */
 | |
|     kvm_slots_lock();
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         mem = &kml->slots[i];
 | |
|         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 | |
|             kvm_slot_sync_dirty_pages(mem);
 | |
|             /*
 | |
|              * This is not needed by KVM_GET_DIRTY_LOG because the
 | |
|              * ioctl will unconditionally overwrite the whole region.
 | |
|              * However kvm dirty ring has no such side effect.
 | |
|              */
 | |
|             kvm_slot_reset_dirty_pages(mem);
 | |
|         }
 | |
|     }
 | |
|     kvm_slots_unlock();
 | |
| }
 | |
| 
 | |
| static void kvm_log_clear(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
|     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_physical_log_clear(kml, section);
 | |
|     if (r < 0) {
 | |
|         error_report_once("%s: kvm log clear failed: mr=%s "
 | |
|                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
 | |
|                           section->mr->name, section->offset_within_region,
 | |
|                           int128_get64(section->size));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 | |
|                                   MemoryRegionSection *section,
 | |
|                                   bool match_data, uint64_t data,
 | |
|                                   EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | |
|                                data, true, int128_get64(section->size),
 | |
|                                match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
 | |
|                 __func__, strerror(-r), -r);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 | |
|                                   MemoryRegionSection *section,
 | |
|                                   bool match_data, uint64_t data,
 | |
|                                   EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | |
|                                data, false, int128_get64(section->size),
 | |
|                                match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
 | |
|                 __func__, strerror(-r), -r);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_io_ioeventfd_add(MemoryListener *listener,
 | |
|                                  MemoryRegionSection *section,
 | |
|                                  bool match_data, uint64_t data,
 | |
|                                  EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 | |
|                               data, true, int128_get64(section->size),
 | |
|                               match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
 | |
|                 __func__, strerror(-r), -r);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_io_ioeventfd_del(MemoryListener *listener,
 | |
|                                  MemoryRegionSection *section,
 | |
|                                  bool match_data, uint64_t data,
 | |
|                                  EventNotifier *e)
 | |
| 
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 | |
|                               data, false, int128_get64(section->size),
 | |
|                               match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
 | |
|                 __func__, strerror(-r), -r);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
 | |
|                                   AddressSpace *as, int as_id, const char *name)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 | |
|     kml->as_id = as_id;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         kml->slots[i].slot = i;
 | |
|     }
 | |
| 
 | |
|     kml->listener.region_add = kvm_region_add;
 | |
|     kml->listener.region_del = kvm_region_del;
 | |
|     kml->listener.log_start = kvm_log_start;
 | |
|     kml->listener.log_stop = kvm_log_stop;
 | |
|     kml->listener.priority = 10;
 | |
|     kml->listener.name = name;
 | |
| 
 | |
|     if (s->kvm_dirty_ring_size) {
 | |
|         kml->listener.log_sync_global = kvm_log_sync_global;
 | |
|     } else {
 | |
|         kml->listener.log_sync = kvm_log_sync;
 | |
|         kml->listener.log_clear = kvm_log_clear;
 | |
|     }
 | |
| 
 | |
|     memory_listener_register(&kml->listener, as);
 | |
| 
 | |
|     for (i = 0; i < s->nr_as; ++i) {
 | |
|         if (!s->as[i].as) {
 | |
|             s->as[i].as = as;
 | |
|             s->as[i].ml = kml;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemoryListener kvm_io_listener = {
 | |
|     .name = "kvm-io",
 | |
|     .eventfd_add = kvm_io_ioeventfd_add,
 | |
|     .eventfd_del = kvm_io_ioeventfd_del,
 | |
|     .priority = 10,
 | |
| };
 | |
| 
 | |
| int kvm_set_irq(KVMState *s, int irq, int level)
 | |
| {
 | |
|     struct kvm_irq_level event;
 | |
|     int ret;
 | |
| 
 | |
|     assert(kvm_async_interrupts_enabled());
 | |
| 
 | |
|     event.level = level;
 | |
|     event.irq = irq;
 | |
|     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 | |
|     if (ret < 0) {
 | |
|         perror("kvm_set_irq");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
| typedef struct KVMMSIRoute {
 | |
|     struct kvm_irq_routing_entry kroute;
 | |
|     QTAILQ_ENTRY(KVMMSIRoute) entry;
 | |
| } KVMMSIRoute;
 | |
| 
 | |
| static void set_gsi(KVMState *s, unsigned int gsi)
 | |
| {
 | |
|     set_bit(gsi, s->used_gsi_bitmap);
 | |
| }
 | |
| 
 | |
| static void clear_gsi(KVMState *s, unsigned int gsi)
 | |
| {
 | |
|     clear_bit(gsi, s->used_gsi_bitmap);
 | |
| }
 | |
| 
 | |
| void kvm_init_irq_routing(KVMState *s)
 | |
| {
 | |
|     int gsi_count, i;
 | |
| 
 | |
|     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
 | |
|     if (gsi_count > 0) {
 | |
|         /* Round up so we can search ints using ffs */
 | |
|         s->used_gsi_bitmap = bitmap_new(gsi_count);
 | |
|         s->gsi_count = gsi_count;
 | |
|     }
 | |
| 
 | |
|     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 | |
|     s->nr_allocated_irq_routes = 0;
 | |
| 
 | |
|     if (!kvm_direct_msi_allowed) {
 | |
|         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 | |
|             QTAILQ_INIT(&s->msi_hashtab[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_arch_init_irq_routing(s);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_commit_routes(KVMState *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->irq_routes->flags = 0;
 | |
|     trace_kvm_irqchip_commit_routes();
 | |
|     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 | |
|     assert(ret == 0);
 | |
| }
 | |
| 
 | |
| static void kvm_add_routing_entry(KVMState *s,
 | |
|                                   struct kvm_irq_routing_entry *entry)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *new;
 | |
|     int n, size;
 | |
| 
 | |
|     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
 | |
|         n = s->nr_allocated_irq_routes * 2;
 | |
|         if (n < 64) {
 | |
|             n = 64;
 | |
|         }
 | |
|         size = sizeof(struct kvm_irq_routing);
 | |
|         size += n * sizeof(*new);
 | |
|         s->irq_routes = g_realloc(s->irq_routes, size);
 | |
|         s->nr_allocated_irq_routes = n;
 | |
|     }
 | |
|     n = s->irq_routes->nr++;
 | |
|     new = &s->irq_routes->entries[n];
 | |
| 
 | |
|     *new = *entry;
 | |
| 
 | |
|     set_gsi(s, entry->gsi);
 | |
| }
 | |
| 
 | |
| static int kvm_update_routing_entry(KVMState *s,
 | |
|                                     struct kvm_irq_routing_entry *new_entry)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *entry;
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < s->irq_routes->nr; n++) {
 | |
|         entry = &s->irq_routes->entries[n];
 | |
|         if (entry->gsi != new_entry->gsi) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if(!memcmp(entry, new_entry, sizeof *entry)) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         *entry = *new_entry;
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return -ESRCH;
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
 | |
| {
 | |
|     struct kvm_irq_routing_entry e = {};
 | |
| 
 | |
|     assert(pin < s->gsi_count);
 | |
| 
 | |
|     e.gsi = irq;
 | |
|     e.type = KVM_IRQ_ROUTING_IRQCHIP;
 | |
|     e.flags = 0;
 | |
|     e.u.irqchip.irqchip = irqchip;
 | |
|     e.u.irqchip.pin = pin;
 | |
|     kvm_add_routing_entry(s, &e);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_release_virq(KVMState *s, int virq)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *e;
 | |
|     int i;
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < s->irq_routes->nr; i++) {
 | |
|         e = &s->irq_routes->entries[i];
 | |
|         if (e->gsi == virq) {
 | |
|             s->irq_routes->nr--;
 | |
|             *e = s->irq_routes->entries[s->irq_routes->nr];
 | |
|         }
 | |
|     }
 | |
|     clear_gsi(s, virq);
 | |
|     kvm_arch_release_virq_post(virq);
 | |
|     trace_kvm_irqchip_release_virq(virq);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_add_change_notifier(Notifier *n)
 | |
| {
 | |
|     notifier_list_add(&kvm_irqchip_change_notifiers, n);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_remove_change_notifier(Notifier *n)
 | |
| {
 | |
|     notifier_remove(n);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_change_notify(void)
 | |
| {
 | |
|     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
 | |
| }
 | |
| 
 | |
| static unsigned int kvm_hash_msi(uint32_t data)
 | |
| {
 | |
|     /* This is optimized for IA32 MSI layout. However, no other arch shall
 | |
|      * repeat the mistake of not providing a direct MSI injection API. */
 | |
|     return data & 0xff;
 | |
| }
 | |
| 
 | |
| static void kvm_flush_dynamic_msi_routes(KVMState *s)
 | |
| {
 | |
|     KVMMSIRoute *route, *next;
 | |
|     unsigned int hash;
 | |
| 
 | |
|     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
 | |
|         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
 | |
|             kvm_irqchip_release_virq(s, route->kroute.gsi);
 | |
|             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
 | |
|             g_free(route);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_get_virq(KVMState *s)
 | |
| {
 | |
|     int next_virq;
 | |
| 
 | |
|     /*
 | |
|      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
 | |
|      * GSI numbers are more than the number of IRQ route. Allocating a GSI
 | |
|      * number can succeed even though a new route entry cannot be added.
 | |
|      * When this happens, flush dynamic MSI entries to free IRQ route entries.
 | |
|      */
 | |
|     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
 | |
|         kvm_flush_dynamic_msi_routes(s);
 | |
|     }
 | |
| 
 | |
|     /* Return the lowest unused GSI in the bitmap */
 | |
|     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
 | |
|     if (next_virq >= s->gsi_count) {
 | |
|         return -ENOSPC;
 | |
|     } else {
 | |
|         return next_virq;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     unsigned int hash = kvm_hash_msi(msg.data);
 | |
|     KVMMSIRoute *route;
 | |
| 
 | |
|     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
 | |
|         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
 | |
|             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
 | |
|             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
 | |
|             return route;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     struct kvm_msi msi;
 | |
|     KVMMSIRoute *route;
 | |
| 
 | |
|     if (kvm_direct_msi_allowed) {
 | |
|         msi.address_lo = (uint32_t)msg.address;
 | |
|         msi.address_hi = msg.address >> 32;
 | |
|         msi.data = le32_to_cpu(msg.data);
 | |
|         msi.flags = 0;
 | |
|         memset(msi.pad, 0, sizeof(msi.pad));
 | |
| 
 | |
|         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
 | |
|     }
 | |
| 
 | |
|     route = kvm_lookup_msi_route(s, msg);
 | |
|     if (!route) {
 | |
|         int virq;
 | |
| 
 | |
|         virq = kvm_irqchip_get_virq(s);
 | |
|         if (virq < 0) {
 | |
|             return virq;
 | |
|         }
 | |
| 
 | |
|         route = g_malloc0(sizeof(KVMMSIRoute));
 | |
|         route->kroute.gsi = virq;
 | |
|         route->kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|         route->kroute.flags = 0;
 | |
|         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|         route->kroute.u.msi.address_hi = msg.address >> 32;
 | |
|         route->kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
| 
 | |
|         kvm_add_routing_entry(s, &route->kroute);
 | |
|         kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
 | |
|                            entry);
 | |
|     }
 | |
| 
 | |
|     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
 | |
| 
 | |
|     return kvm_set_irq(s, route->kroute.gsi, 1);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
|     int virq;
 | |
|     MSIMessage msg = {0, 0};
 | |
| 
 | |
|     if (pci_available && dev) {
 | |
|         msg = pci_get_msi_message(dev, vector);
 | |
|     }
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return kvm_arch_msi_data_to_gsi(msg.data);
 | |
|     }
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     virq = kvm_irqchip_get_virq(s);
 | |
|     if (virq < 0) {
 | |
|         return virq;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|     kroute.u.msi.address_hi = msg.address >> 32;
 | |
|     kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
|     if (pci_available && kvm_msi_devid_required()) {
 | |
|         kroute.flags = KVM_MSI_VALID_DEVID;
 | |
|         kroute.u.msi.devid = pci_requester_id(dev);
 | |
|     }
 | |
|     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
 | |
|         kvm_irqchip_release_virq(s, virq);
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
 | |
|                                     vector, virq);
 | |
| 
 | |
|     kvm_add_routing_entry(s, &kroute);
 | |
|     kvm_arch_add_msi_route_post(&kroute, vector, dev);
 | |
|     kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|     return virq;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
 | |
|                                  PCIDevice *dev)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|     kroute.u.msi.address_hi = msg.address >> 32;
 | |
|     kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
|     if (pci_available && kvm_msi_devid_required()) {
 | |
|         kroute.flags = KVM_MSI_VALID_DEVID;
 | |
|         kroute.u.msi.devid = pci_requester_id(dev);
 | |
|     }
 | |
|     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     trace_kvm_irqchip_update_msi_route(virq);
 | |
| 
 | |
|     return kvm_update_routing_entry(s, &kroute);
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
 | |
|                                     EventNotifier *resample, int virq,
 | |
|                                     bool assign)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(event);
 | |
|     int rfd = resample ? event_notifier_get_fd(resample) : -1;
 | |
| 
 | |
|     struct kvm_irqfd irqfd = {
 | |
|         .fd = fd,
 | |
|         .gsi = virq,
 | |
|         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
 | |
|     };
 | |
| 
 | |
|     if (rfd != -1) {
 | |
|         assert(assign);
 | |
|         if (kvm_irqchip_is_split()) {
 | |
|             /*
 | |
|              * When the slow irqchip (e.g. IOAPIC) is in the
 | |
|              * userspace, KVM kernel resamplefd will not work because
 | |
|              * the EOI of the interrupt will be delivered to userspace
 | |
|              * instead, so the KVM kernel resamplefd kick will be
 | |
|              * skipped.  The userspace here mimics what the kernel
 | |
|              * provides with resamplefd, remember the resamplefd and
 | |
|              * kick it when we receive EOI of this IRQ.
 | |
|              *
 | |
|              * This is hackery because IOAPIC is mostly bypassed
 | |
|              * (except EOI broadcasts) when irqfd is used.  However
 | |
|              * this can bring much performance back for split irqchip
 | |
|              * with INTx IRQs (for VFIO, this gives 93% perf of the
 | |
|              * full fast path, which is 46% perf boost comparing to
 | |
|              * the INTx slow path).
 | |
|              */
 | |
|             kvm_resample_fd_insert(virq, resample);
 | |
|         } else {
 | |
|             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
 | |
|             irqfd.resamplefd = rfd;
 | |
|         }
 | |
|     } else if (!assign) {
 | |
|         if (kvm_irqchip_is_split()) {
 | |
|             kvm_resample_fd_remove(virq);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!kvm_irqfds_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
|     int virq;
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     virq = kvm_irqchip_get_virq(s);
 | |
|     if (virq < 0) {
 | |
|         return virq;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.adapter.summary_addr = adapter->summary_addr;
 | |
|     kroute.u.adapter.ind_addr = adapter->ind_addr;
 | |
|     kroute.u.adapter.summary_offset = adapter->summary_offset;
 | |
|     kroute.u.adapter.ind_offset = adapter->ind_offset;
 | |
|     kroute.u.adapter.adapter_id = adapter->adapter_id;
 | |
| 
 | |
|     kvm_add_routing_entry(s, &kroute);
 | |
| 
 | |
|     return virq;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
|     int virq;
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     virq = kvm_irqchip_get_virq(s);
 | |
|     if (virq < 0) {
 | |
|         return virq;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.hv_sint.vcpu = vcpu;
 | |
|     kroute.u.hv_sint.sint = sint;
 | |
| 
 | |
|     kvm_add_routing_entry(s, &kroute);
 | |
|     kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|     return virq;
 | |
| }
 | |
| 
 | |
| #else /* !KVM_CAP_IRQ_ROUTING */
 | |
| 
 | |
| void kvm_init_irq_routing(KVMState *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_release_virq(KVMState *s, int virq)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
 | |
|                                     EventNotifier *resample, int virq,
 | |
|                                     bool assign)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #endif /* !KVM_CAP_IRQ_ROUTING */
 | |
| 
 | |
| int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
 | |
|                                        EventNotifier *rn, int virq)
 | |
| {
 | |
|     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
 | |
|                                           int virq)
 | |
| {
 | |
|     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
 | |
|                                    EventNotifier *rn, qemu_irq irq)
 | |
| {
 | |
|     gpointer key, gsi;
 | |
|     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
 | |
| 
 | |
|     if (!found) {
 | |
|         return -ENXIO;
 | |
|     }
 | |
|     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
 | |
|                                       qemu_irq irq)
 | |
| {
 | |
|     gpointer key, gsi;
 | |
|     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
 | |
| 
 | |
|     if (!found) {
 | |
|         return -ENXIO;
 | |
|     }
 | |
|     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
 | |
| {
 | |
|     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
 | |
| }
 | |
| 
 | |
| static void kvm_irqchip_create(KVMState *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
 | |
|     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
 | |
|         ;
 | |
|     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
 | |
|         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
 | |
|         if (ret < 0) {
 | |
|             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
 | |
|             exit(1);
 | |
|         }
 | |
|     } else {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* First probe and see if there's a arch-specific hook to create the
 | |
|      * in-kernel irqchip for us */
 | |
|     ret = kvm_arch_irqchip_create(s);
 | |
|     if (ret == 0) {
 | |
|         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
 | |
|             perror("Split IRQ chip mode not supported.");
 | |
|             exit(1);
 | |
|         } else {
 | |
|             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
 | |
|         }
 | |
|     }
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     kvm_kernel_irqchip = true;
 | |
|     /* If we have an in-kernel IRQ chip then we must have asynchronous
 | |
|      * interrupt delivery (though the reverse is not necessarily true)
 | |
|      */
 | |
|     kvm_async_interrupts_allowed = true;
 | |
|     kvm_halt_in_kernel_allowed = true;
 | |
| 
 | |
|     kvm_init_irq_routing(s);
 | |
| 
 | |
|     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
 | |
| }
 | |
| 
 | |
| /* Find number of supported CPUs using the recommended
 | |
|  * procedure from the kernel API documentation to cope with
 | |
|  * older kernels that may be missing capabilities.
 | |
|  */
 | |
| static int kvm_recommended_vcpus(KVMState *s)
 | |
| {
 | |
|     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
 | |
|     return (ret) ? ret : 4;
 | |
| }
 | |
| 
 | |
| static int kvm_max_vcpus(KVMState *s)
 | |
| {
 | |
|     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
 | |
|     return (ret) ? ret : kvm_recommended_vcpus(s);
 | |
| }
 | |
| 
 | |
| static int kvm_max_vcpu_id(KVMState *s)
 | |
| {
 | |
|     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
 | |
|     return (ret) ? ret : kvm_max_vcpus(s);
 | |
| }
 | |
| 
 | |
| bool kvm_vcpu_id_is_valid(int vcpu_id)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(current_accel());
 | |
|     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
 | |
| }
 | |
| 
 | |
| bool kvm_dirty_ring_enabled(void)
 | |
| {
 | |
|     return kvm_state->kvm_dirty_ring_size ? true : false;
 | |
| }
 | |
| 
 | |
| static int kvm_init(MachineState *ms)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(ms);
 | |
|     static const char upgrade_note[] =
 | |
|         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
 | |
|         "(see http://sourceforge.net/projects/kvm).\n";
 | |
|     struct {
 | |
|         const char *name;
 | |
|         int num;
 | |
|     } num_cpus[] = {
 | |
|         { "SMP",          ms->smp.cpus },
 | |
|         { "hotpluggable", ms->smp.max_cpus },
 | |
|         { NULL, }
 | |
|     }, *nc = num_cpus;
 | |
|     int soft_vcpus_limit, hard_vcpus_limit;
 | |
|     KVMState *s;
 | |
|     const KVMCapabilityInfo *missing_cap;
 | |
|     int ret;
 | |
|     int type = 0;
 | |
|     uint64_t dirty_log_manual_caps;
 | |
| 
 | |
|     qemu_mutex_init(&kml_slots_lock);
 | |
| 
 | |
|     s = KVM_STATE(ms->accelerator);
 | |
| 
 | |
|     /*
 | |
|      * On systems where the kernel can support different base page
 | |
|      * sizes, host page size may be different from TARGET_PAGE_SIZE,
 | |
|      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
 | |
|      * page size for the system though.
 | |
|      */
 | |
|     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
 | |
| 
 | |
|     s->sigmask_len = 8;
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     QTAILQ_INIT(&s->kvm_sw_breakpoints);
 | |
| #endif
 | |
|     QLIST_INIT(&s->kvm_parked_vcpus);
 | |
|     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
 | |
|     if (s->fd == -1) {
 | |
|         fprintf(stderr, "Could not access KVM kernel module: %m\n");
 | |
|         ret = -errno;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
 | |
|     if (ret < KVM_API_VERSION) {
 | |
|         if (ret >= 0) {
 | |
|             ret = -EINVAL;
 | |
|         }
 | |
|         fprintf(stderr, "kvm version too old\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (ret > KVM_API_VERSION) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm version not supported\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
 | |
|     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
 | |
| 
 | |
|     /* If unspecified, use the default value */
 | |
|     if (!s->nr_slots) {
 | |
|         s->nr_slots = 32;
 | |
|     }
 | |
| 
 | |
|     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
 | |
|     if (s->nr_as <= 1) {
 | |
|         s->nr_as = 1;
 | |
|     }
 | |
|     s->as = g_new0(struct KVMAs, s->nr_as);
 | |
| 
 | |
|     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
 | |
|         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
 | |
|                                                             "kvm-type",
 | |
|                                                             &error_abort);
 | |
|         type = mc->kvm_type(ms, kvm_type);
 | |
|     } else if (mc->kvm_type) {
 | |
|         type = mc->kvm_type(ms, NULL);
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
 | |
|     } while (ret == -EINTR);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
 | |
|                 strerror(-ret));
 | |
| 
 | |
| #ifdef TARGET_S390X
 | |
|         if (ret == -EINVAL) {
 | |
|             fprintf(stderr,
 | |
|                     "Host kernel setup problem detected. Please verify:\n");
 | |
|             fprintf(stderr, "- for kernels supporting the switch_amode or"
 | |
|                     " user_mode parameters, whether\n");
 | |
|             fprintf(stderr,
 | |
|                     "  user space is running in primary address space\n");
 | |
|             fprintf(stderr,
 | |
|                     "- for kernels supporting the vm.allocate_pgste sysctl, "
 | |
|                     "whether it is enabled\n");
 | |
|         }
 | |
| #elif defined(TARGET_PPC)
 | |
|         if (ret == -EINVAL) {
 | |
|             fprintf(stderr,
 | |
|                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
 | |
|                     (type == 2) ? "pr" : "hv");
 | |
|         }
 | |
| #endif
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->vmfd = ret;
 | |
| 
 | |
|     /* check the vcpu limits */
 | |
|     soft_vcpus_limit = kvm_recommended_vcpus(s);
 | |
|     hard_vcpus_limit = kvm_max_vcpus(s);
 | |
| 
 | |
|     while (nc->name) {
 | |
|         if (nc->num > soft_vcpus_limit) {
 | |
|             warn_report("Number of %s cpus requested (%d) exceeds "
 | |
|                         "the recommended cpus supported by KVM (%d)",
 | |
|                         nc->name, nc->num, soft_vcpus_limit);
 | |
| 
 | |
|             if (nc->num > hard_vcpus_limit) {
 | |
|                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
 | |
|                         "the maximum cpus supported by KVM (%d)\n",
 | |
|                         nc->name, nc->num, hard_vcpus_limit);
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|         nc++;
 | |
|     }
 | |
| 
 | |
|     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
 | |
|     if (!missing_cap) {
 | |
|         missing_cap =
 | |
|             kvm_check_extension_list(s, kvm_arch_required_capabilities);
 | |
|     }
 | |
|     if (missing_cap) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm does not support %s\n%s",
 | |
|                 missing_cap->name, upgrade_note);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
 | |
|     s->coalesced_pio = s->coalesced_mmio &&
 | |
|                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
 | |
| 
 | |
|     /*
 | |
|      * Enable KVM dirty ring if supported, otherwise fall back to
 | |
|      * dirty logging mode
 | |
|      */
 | |
|     if (s->kvm_dirty_ring_size > 0) {
 | |
|         uint64_t ring_bytes;
 | |
| 
 | |
|         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
 | |
| 
 | |
|         /* Read the max supported pages */
 | |
|         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
 | |
|         if (ret > 0) {
 | |
|             if (ring_bytes > ret) {
 | |
|                 error_report("KVM dirty ring size %" PRIu32 " too big "
 | |
|                              "(maximum is %ld).  Please use a smaller value.",
 | |
|                              s->kvm_dirty_ring_size,
 | |
|                              (long)ret / sizeof(struct kvm_dirty_gfn));
 | |
|                 ret = -EINVAL;
 | |
|                 goto err;
 | |
|             }
 | |
| 
 | |
|             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
 | |
|             if (ret) {
 | |
|                 error_report("Enabling of KVM dirty ring failed: %s. "
 | |
|                              "Suggested minimum value is 1024.", strerror(-ret));
 | |
|                 goto err;
 | |
|             }
 | |
| 
 | |
|             s->kvm_dirty_ring_bytes = ring_bytes;
 | |
|          } else {
 | |
|              warn_report("KVM dirty ring not available, using bitmap method");
 | |
|              s->kvm_dirty_ring_size = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
 | |
|      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
 | |
|      * page is wr-protected initially, which is against how kvm dirty ring is
 | |
|      * usage - kvm dirty ring requires all pages are wr-protected at the very
 | |
|      * beginning.  Enabling this feature for dirty ring causes data corruption.
 | |
|      *
 | |
|      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
 | |
|      * we may expect a higher stall time when starting the migration.  In the
 | |
|      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
 | |
|      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
 | |
|      * guest pages.
 | |
|      */
 | |
|     if (!s->kvm_dirty_ring_size) {
 | |
|         dirty_log_manual_caps =
 | |
|             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
 | |
|         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
 | |
|                                   KVM_DIRTY_LOG_INITIALLY_SET);
 | |
|         s->manual_dirty_log_protect = dirty_log_manual_caps;
 | |
|         if (dirty_log_manual_caps) {
 | |
|             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
 | |
|                                     dirty_log_manual_caps);
 | |
|             if (ret) {
 | |
|                 warn_report("Trying to enable capability %"PRIu64" of "
 | |
|                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
 | |
|                             "Falling back to the legacy mode. ",
 | |
|                             dirty_log_manual_caps);
 | |
|                 s->manual_dirty_log_protect = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef KVM_CAP_VCPU_EVENTS
 | |
|     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
 | |
| #endif
 | |
| 
 | |
|     s->robust_singlestep =
 | |
|         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
 | |
| 
 | |
| #ifdef KVM_CAP_DEBUGREGS
 | |
|     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
 | |
| #endif
 | |
| 
 | |
|     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
 | |
| 
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
 | |
| #endif
 | |
| 
 | |
|     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
 | |
| 
 | |
|     s->irq_set_ioctl = KVM_IRQ_LINE;
 | |
|     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
 | |
|         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
 | |
|     }
 | |
| 
 | |
|     kvm_readonly_mem_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
 | |
| 
 | |
|     kvm_eventfds_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
 | |
| 
 | |
|     kvm_irqfds_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
 | |
| 
 | |
|     kvm_resamplefds_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
 | |
| 
 | |
|     kvm_vm_attributes_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
 | |
| 
 | |
|     kvm_ioeventfd_any_length_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
 | |
| 
 | |
|     kvm_state = s;
 | |
| 
 | |
|     ret = kvm_arch_init(ms, s);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
 | |
|         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
 | |
|     }
 | |
| 
 | |
|     qemu_register_reset(kvm_unpoison_all, NULL);
 | |
| 
 | |
|     if (s->kernel_irqchip_allowed) {
 | |
|         kvm_irqchip_create(s);
 | |
|     }
 | |
| 
 | |
|     if (kvm_eventfds_allowed) {
 | |
|         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
 | |
|         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
 | |
|     }
 | |
|     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
 | |
|     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
 | |
| 
 | |
|     kvm_memory_listener_register(s, &s->memory_listener,
 | |
|                                  &address_space_memory, 0, "kvm-memory");
 | |
|     if (kvm_eventfds_allowed) {
 | |
|         memory_listener_register(&kvm_io_listener,
 | |
|                                  &address_space_io);
 | |
|     }
 | |
|     memory_listener_register(&kvm_coalesced_pio_listener,
 | |
|                              &address_space_io);
 | |
| 
 | |
|     s->many_ioeventfds = kvm_check_many_ioeventfds();
 | |
| 
 | |
|     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
 | |
|     if (!s->sync_mmu) {
 | |
|         ret = ram_block_discard_disable(true);
 | |
|         assert(!ret);
 | |
|     }
 | |
| 
 | |
|     if (s->kvm_dirty_ring_size) {
 | |
|         ret = kvm_dirty_ring_reaper_init(s);
 | |
|         if (ret) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| err:
 | |
|     assert(ret < 0);
 | |
|     if (s->vmfd >= 0) {
 | |
|         close(s->vmfd);
 | |
|     }
 | |
|     if (s->fd != -1) {
 | |
|         close(s->fd);
 | |
|     }
 | |
|     g_free(s->memory_listener.slots);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
 | |
| {
 | |
|     s->sigmask_len = sigmask_len;
 | |
| }
 | |
| 
 | |
| static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
 | |
|                           int size, uint32_t count)
 | |
| {
 | |
|     int i;
 | |
|     uint8_t *ptr = data;
 | |
| 
 | |
|     for (i = 0; i < count; i++) {
 | |
|         address_space_rw(&address_space_io, port, attrs,
 | |
|                          ptr, size,
 | |
|                          direction == KVM_EXIT_IO_OUT);
 | |
|         ptr += size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
 | |
| {
 | |
|     fprintf(stderr, "KVM internal error. Suberror: %d\n",
 | |
|             run->internal.suberror);
 | |
| 
 | |
|     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < run->internal.ndata; ++i) {
 | |
|             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
 | |
|                     i, (uint64_t)run->internal.data[i]);
 | |
|         }
 | |
|     }
 | |
|     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
 | |
|         fprintf(stderr, "emulation failure\n");
 | |
|         if (!kvm_arch_stop_on_emulation_error(cpu)) {
 | |
|             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
 | |
|             return EXCP_INTERRUPT;
 | |
|         }
 | |
|     }
 | |
|     /* FIXME: Should trigger a qmp message to let management know
 | |
|      * something went wrong.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void kvm_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_flush_in_progress) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->coalesced_flush_in_progress = true;
 | |
| 
 | |
|     if (s->coalesced_mmio_ring) {
 | |
|         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
 | |
|         while (ring->first != ring->last) {
 | |
|             struct kvm_coalesced_mmio *ent;
 | |
| 
 | |
|             ent = &ring->coalesced_mmio[ring->first];
 | |
| 
 | |
|             if (ent->pio == 1) {
 | |
|                 address_space_write(&address_space_io, ent->phys_addr,
 | |
|                                     MEMTXATTRS_UNSPECIFIED, ent->data,
 | |
|                                     ent->len);
 | |
|             } else {
 | |
|                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
 | |
|             }
 | |
|             smp_wmb();
 | |
|             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->coalesced_flush_in_progress = false;
 | |
| }
 | |
| 
 | |
| bool kvm_cpu_check_are_resettable(void)
 | |
| {
 | |
|     return kvm_arch_cpu_check_are_resettable();
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     if (!cpu->vcpu_dirty) {
 | |
|         kvm_arch_get_registers(cpu);
 | |
|         cpu->vcpu_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_state(CPUState *cpu)
 | |
| {
 | |
|     if (!cpu->vcpu_dirty) {
 | |
|         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
 | |
|     cpu->vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_reset(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
 | |
|     cpu->vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_init(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     cpu->vcpu_dirty = true;
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| #ifdef KVM_HAVE_MCE_INJECTION
 | |
| static __thread void *pending_sigbus_addr;
 | |
| static __thread int pending_sigbus_code;
 | |
| static __thread bool have_sigbus_pending;
 | |
| #endif
 | |
| 
 | |
| static void kvm_cpu_kick(CPUState *cpu)
 | |
| {
 | |
|     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
 | |
| }
 | |
| 
 | |
| static void kvm_cpu_kick_self(void)
 | |
| {
 | |
|     if (kvm_immediate_exit) {
 | |
|         kvm_cpu_kick(current_cpu);
 | |
|     } else {
 | |
|         qemu_cpu_kick_self();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_eat_signals(CPUState *cpu)
 | |
| {
 | |
|     struct timespec ts = { 0, 0 };
 | |
|     siginfo_t siginfo;
 | |
|     sigset_t waitset;
 | |
|     sigset_t chkset;
 | |
|     int r;
 | |
| 
 | |
|     if (kvm_immediate_exit) {
 | |
|         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
 | |
|         /* Write kvm_run->immediate_exit before the cpu->exit_request
 | |
|          * write in kvm_cpu_exec.
 | |
|          */
 | |
|         smp_wmb();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     sigemptyset(&waitset);
 | |
|     sigaddset(&waitset, SIG_IPI);
 | |
| 
 | |
|     do {
 | |
|         r = sigtimedwait(&waitset, &siginfo, &ts);
 | |
|         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
 | |
|             perror("sigtimedwait");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         r = sigpending(&chkset);
 | |
|         if (r == -1) {
 | |
|             perror("sigpending");
 | |
|             exit(1);
 | |
|         }
 | |
|     } while (sigismember(&chkset, SIG_IPI));
 | |
| }
 | |
| 
 | |
| int kvm_cpu_exec(CPUState *cpu)
 | |
| {
 | |
|     struct kvm_run *run = cpu->kvm_run;
 | |
|     int ret, run_ret;
 | |
| 
 | |
|     DPRINTF("kvm_cpu_exec()\n");
 | |
| 
 | |
|     if (kvm_arch_process_async_events(cpu)) {
 | |
|         qatomic_set(&cpu->exit_request, 0);
 | |
|         return EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_unlock_iothread();
 | |
|     cpu_exec_start(cpu);
 | |
| 
 | |
|     do {
 | |
|         MemTxAttrs attrs;
 | |
| 
 | |
|         if (cpu->vcpu_dirty) {
 | |
|             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
 | |
|             cpu->vcpu_dirty = false;
 | |
|         }
 | |
| 
 | |
|         kvm_arch_pre_run(cpu, run);
 | |
|         if (qatomic_read(&cpu->exit_request)) {
 | |
|             DPRINTF("interrupt exit requested\n");
 | |
|             /*
 | |
|              * KVM requires us to reenter the kernel after IO exits to complete
 | |
|              * instruction emulation. This self-signal will ensure that we
 | |
|              * leave ASAP again.
 | |
|              */
 | |
|             kvm_cpu_kick_self();
 | |
|         }
 | |
| 
 | |
|         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
 | |
|          * Matching barrier in kvm_eat_signals.
 | |
|          */
 | |
|         smp_rmb();
 | |
| 
 | |
|         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
 | |
| 
 | |
|         attrs = kvm_arch_post_run(cpu, run);
 | |
| 
 | |
| #ifdef KVM_HAVE_MCE_INJECTION
 | |
|         if (unlikely(have_sigbus_pending)) {
 | |
|             qemu_mutex_lock_iothread();
 | |
|             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
 | |
|                                     pending_sigbus_addr);
 | |
|             have_sigbus_pending = false;
 | |
|             qemu_mutex_unlock_iothread();
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         if (run_ret < 0) {
 | |
|             if (run_ret == -EINTR || run_ret == -EAGAIN) {
 | |
|                 DPRINTF("io window exit\n");
 | |
|                 kvm_eat_signals(cpu);
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             }
 | |
|             fprintf(stderr, "error: kvm run failed %s\n",
 | |
|                     strerror(-run_ret));
 | |
| #ifdef TARGET_PPC
 | |
|             if (run_ret == -EBUSY) {
 | |
|                 fprintf(stderr,
 | |
|                         "This is probably because your SMT is enabled.\n"
 | |
|                         "VCPU can only run on primary threads with all "
 | |
|                         "secondary threads offline.\n");
 | |
|             }
 | |
| #endif
 | |
|             ret = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
 | |
|         switch (run->exit_reason) {
 | |
|         case KVM_EXIT_IO:
 | |
|             DPRINTF("handle_io\n");
 | |
|             /* Called outside BQL */
 | |
|             kvm_handle_io(run->io.port, attrs,
 | |
|                           (uint8_t *)run + run->io.data_offset,
 | |
|                           run->io.direction,
 | |
|                           run->io.size,
 | |
|                           run->io.count);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         case KVM_EXIT_MMIO:
 | |
|             DPRINTF("handle_mmio\n");
 | |
|             /* Called outside BQL */
 | |
|             address_space_rw(&address_space_memory,
 | |
|                              run->mmio.phys_addr, attrs,
 | |
|                              run->mmio.data,
 | |
|                              run->mmio.len,
 | |
|                              run->mmio.is_write);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         case KVM_EXIT_IRQ_WINDOW_OPEN:
 | |
|             DPRINTF("irq_window_open\n");
 | |
|             ret = EXCP_INTERRUPT;
 | |
|             break;
 | |
|         case KVM_EXIT_SHUTDOWN:
 | |
|             DPRINTF("shutdown\n");
 | |
|             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 | |
|             ret = EXCP_INTERRUPT;
 | |
|             break;
 | |
|         case KVM_EXIT_UNKNOWN:
 | |
|             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
 | |
|                     (uint64_t)run->hw.hardware_exit_reason);
 | |
|             ret = -1;
 | |
|             break;
 | |
|         case KVM_EXIT_INTERNAL_ERROR:
 | |
|             ret = kvm_handle_internal_error(cpu, run);
 | |
|             break;
 | |
|         case KVM_EXIT_DIRTY_RING_FULL:
 | |
|             /*
 | |
|              * We shouldn't continue if the dirty ring of this vcpu is
 | |
|              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
 | |
|              */
 | |
|             trace_kvm_dirty_ring_full(cpu->cpu_index);
 | |
|             qemu_mutex_lock_iothread();
 | |
|             kvm_dirty_ring_reap(kvm_state);
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             ret = 0;
 | |
|             break;
 | |
|         case KVM_EXIT_SYSTEM_EVENT:
 | |
|             switch (run->system_event.type) {
 | |
|             case KVM_SYSTEM_EVENT_SHUTDOWN:
 | |
|                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             case KVM_SYSTEM_EVENT_RESET:
 | |
|                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             case KVM_SYSTEM_EVENT_CRASH:
 | |
|                 kvm_cpu_synchronize_state(cpu);
 | |
|                 qemu_mutex_lock_iothread();
 | |
|                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
 | |
|                 qemu_mutex_unlock_iothread();
 | |
|                 ret = 0;
 | |
|                 break;
 | |
|             default:
 | |
|                 DPRINTF("kvm_arch_handle_exit\n");
 | |
|                 ret = kvm_arch_handle_exit(cpu, run);
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF("kvm_arch_handle_exit\n");
 | |
|             ret = kvm_arch_handle_exit(cpu, run);
 | |
|             break;
 | |
|         }
 | |
|     } while (ret == 0);
 | |
| 
 | |
|     cpu_exec_end(cpu);
 | |
|     qemu_mutex_lock_iothread();
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
 | |
|         vm_stop(RUN_STATE_INTERNAL_ERROR);
 | |
|     }
 | |
| 
 | |
|     qatomic_set(&cpu->exit_request, 0);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_ioctl(type, arg);
 | |
|     ret = ioctl(s->fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_vm_ioctl(type, arg);
 | |
|     ret = ioctl(s->vmfd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
 | |
|     ret = ioctl(cpu->kvm_fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_device_ioctl(int fd, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_device_ioctl(fd, type, arg);
 | |
|     ret = ioctl(fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
 | |
| {
 | |
|     int ret;
 | |
|     struct kvm_device_attr attribute = {
 | |
|         .group = group,
 | |
|         .attr = attr,
 | |
|     };
 | |
| 
 | |
|     if (!kvm_vm_attributes_allowed) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
 | |
|     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
 | |
|     return ret ? 0 : 1;
 | |
| }
 | |
| 
 | |
| int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
 | |
| {
 | |
|     struct kvm_device_attr attribute = {
 | |
|         .group = group,
 | |
|         .attr = attr,
 | |
|         .flags = 0,
 | |
|     };
 | |
| 
 | |
|     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
 | |
| }
 | |
| 
 | |
| int kvm_device_access(int fd, int group, uint64_t attr,
 | |
|                       void *val, bool write, Error **errp)
 | |
| {
 | |
|     struct kvm_device_attr kvmattr;
 | |
|     int err;
 | |
| 
 | |
|     kvmattr.flags = 0;
 | |
|     kvmattr.group = group;
 | |
|     kvmattr.attr = attr;
 | |
|     kvmattr.addr = (uintptr_t)val;
 | |
| 
 | |
|     err = kvm_device_ioctl(fd,
 | |
|                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
 | |
|                            &kvmattr);
 | |
|     if (err < 0) {
 | |
|         error_setg_errno(errp, -err,
 | |
|                          "KVM_%s_DEVICE_ATTR failed: Group %d "
 | |
|                          "attr 0x%016" PRIx64,
 | |
|                          write ? "SET" : "GET", group, attr);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| bool kvm_has_sync_mmu(void)
 | |
| {
 | |
|     return kvm_state->sync_mmu;
 | |
| }
 | |
| 
 | |
| int kvm_has_vcpu_events(void)
 | |
| {
 | |
|     return kvm_state->vcpu_events;
 | |
| }
 | |
| 
 | |
| int kvm_has_robust_singlestep(void)
 | |
| {
 | |
|     return kvm_state->robust_singlestep;
 | |
| }
 | |
| 
 | |
| int kvm_has_debugregs(void)
 | |
| {
 | |
|     return kvm_state->debugregs;
 | |
| }
 | |
| 
 | |
| int kvm_max_nested_state_length(void)
 | |
| {
 | |
|     return kvm_state->max_nested_state_len;
 | |
| }
 | |
| 
 | |
| int kvm_has_many_ioeventfds(void)
 | |
| {
 | |
|     if (!kvm_enabled()) {
 | |
|         return 0;
 | |
|     }
 | |
|     return kvm_state->many_ioeventfds;
 | |
| }
 | |
| 
 | |
| int kvm_has_gsi_routing(void)
 | |
| {
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int kvm_has_intx_set_mask(void)
 | |
| {
 | |
|     return kvm_state->intx_set_mask;
 | |
| }
 | |
| 
 | |
| bool kvm_arm_supports_user_irq(void)
 | |
| {
 | |
|     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
 | |
|                                                  target_ulong pc)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
 | |
|         if (bp->pc == pc) {
 | |
|             return bp;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_sw_breakpoints_active(CPUState *cpu)
 | |
| {
 | |
|     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
 | |
| }
 | |
| 
 | |
| struct kvm_set_guest_debug_data {
 | |
|     struct kvm_guest_debug dbg;
 | |
|     int err;
 | |
| };
 | |
| 
 | |
| static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data *dbg_data =
 | |
|         (struct kvm_set_guest_debug_data *) data.host_ptr;
 | |
| 
 | |
|     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
 | |
|                                    &dbg_data->dbg);
 | |
| }
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data data;
 | |
| 
 | |
|     data.dbg.control = reinject_trap;
 | |
| 
 | |
|     if (cpu->singlestep_enabled) {
 | |
|         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
 | |
|     }
 | |
|     kvm_arch_update_guest_debug(cpu, &data.dbg);
 | |
| 
 | |
|     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
 | |
|                RUN_ON_CPU_HOST_PTR(&data));
 | |
|     return data.err;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(cpu, addr);
 | |
|         if (bp) {
 | |
|             bp->use_count++;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
 | |
|         bp->pc = addr;
 | |
|         bp->use_count = 1;
 | |
|         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             g_free(bp);
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
 | |
|     } else {
 | |
|         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = kvm_update_guest_debug(cpu, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(cpu, addr);
 | |
|         if (!bp) {
 | |
|             return -ENOENT;
 | |
|         }
 | |
| 
 | |
|         if (bp->use_count > 1) {
 | |
|             bp->use_count--;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     } else {
 | |
|         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = kvm_update_guest_debug(cpu, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *cpu)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp, *next;
 | |
|     KVMState *s = cpu->kvm_state;
 | |
|     CPUState *tmpcpu;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
 | |
|         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
 | |
|             /* Try harder to find a CPU that currently sees the breakpoint. */
 | |
|             CPU_FOREACH(tmpcpu) {
 | |
|                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     }
 | |
|     kvm_arch_remove_all_hw_breakpoints();
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         kvm_update_guest_debug(cpu, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *cpu)
 | |
| {
 | |
| }
 | |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     struct kvm_signal_mask *sigmask;
 | |
|     int r;
 | |
| 
 | |
|     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
 | |
| 
 | |
|     sigmask->len = s->sigmask_len;
 | |
|     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
 | |
|     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
 | |
|     g_free(sigmask);
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void kvm_ipi_signal(int sig)
 | |
| {
 | |
|     if (current_cpu) {
 | |
|         assert(kvm_immediate_exit);
 | |
|         kvm_cpu_kick(current_cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_init_cpu_signals(CPUState *cpu)
 | |
| {
 | |
|     int r;
 | |
|     sigset_t set;
 | |
|     struct sigaction sigact;
 | |
| 
 | |
|     memset(&sigact, 0, sizeof(sigact));
 | |
|     sigact.sa_handler = kvm_ipi_signal;
 | |
|     sigaction(SIG_IPI, &sigact, NULL);
 | |
| 
 | |
|     pthread_sigmask(SIG_BLOCK, NULL, &set);
 | |
| #if defined KVM_HAVE_MCE_INJECTION
 | |
|     sigdelset(&set, SIGBUS);
 | |
|     pthread_sigmask(SIG_SETMASK, &set, NULL);
 | |
| #endif
 | |
|     sigdelset(&set, SIG_IPI);
 | |
|     if (kvm_immediate_exit) {
 | |
|         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
 | |
|     } else {
 | |
|         r = kvm_set_signal_mask(cpu, &set);
 | |
|     }
 | |
|     if (r) {
 | |
|         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Called asynchronously in VCPU thread.  */
 | |
| int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
 | |
| {
 | |
| #ifdef KVM_HAVE_MCE_INJECTION
 | |
|     if (have_sigbus_pending) {
 | |
|         return 1;
 | |
|     }
 | |
|     have_sigbus_pending = true;
 | |
|     pending_sigbus_addr = addr;
 | |
|     pending_sigbus_code = code;
 | |
|     qatomic_set(&cpu->exit_request, 1);
 | |
|     return 0;
 | |
| #else
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Called synchronously (via signalfd) in main thread.  */
 | |
| int kvm_on_sigbus(int code, void *addr)
 | |
| {
 | |
| #ifdef KVM_HAVE_MCE_INJECTION
 | |
|     /* Action required MCE kills the process if SIGBUS is blocked.  Because
 | |
|      * that's what happens in the I/O thread, where we handle MCE via signalfd,
 | |
|      * we can only get action optional here.
 | |
|      */
 | |
|     assert(code != BUS_MCEERR_AR);
 | |
|     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
 | |
|     return 0;
 | |
| #else
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int kvm_create_device(KVMState *s, uint64_t type, bool test)
 | |
| {
 | |
|     int ret;
 | |
|     struct kvm_create_device create_dev;
 | |
| 
 | |
|     create_dev.type = type;
 | |
|     create_dev.fd = -1;
 | |
|     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
 | |
| 
 | |
|     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
 | |
|         return -ENOTSUP;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return test ? 0 : create_dev.fd;
 | |
| }
 | |
| 
 | |
| bool kvm_device_supported(int vmfd, uint64_t type)
 | |
| {
 | |
|     struct kvm_create_device create_dev = {
 | |
|         .type = type,
 | |
|         .fd = -1,
 | |
|         .flags = KVM_CREATE_DEVICE_TEST,
 | |
|     };
 | |
| 
 | |
|     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
 | |
| }
 | |
| 
 | |
| int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     int r;
 | |
| 
 | |
|     reg.id = id;
 | |
|     reg.addr = (uintptr_t) source;
 | |
|     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (r) {
 | |
|         trace_kvm_failed_reg_set(id, strerror(-r));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     int r;
 | |
| 
 | |
|     reg.id = id;
 | |
|     reg.addr = (uintptr_t) target;
 | |
|     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (r) {
 | |
|         trace_kvm_failed_reg_get(id, strerror(-r));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
 | |
|                                  hwaddr start_addr, hwaddr size)
 | |
| {
 | |
|     KVMState *kvm = KVM_STATE(ms->accelerator);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < kvm->nr_as; ++i) {
 | |
|         if (kvm->as[i].as == as && kvm->as[i].ml) {
 | |
|             size = MIN(kvm_max_slot_size, size);
 | |
|             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
 | |
|                                                     start_addr, size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
 | |
|                                    const char *name, void *opaque,
 | |
|                                    Error **errp)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
|     int64_t value = s->kvm_shadow_mem;
 | |
| 
 | |
|     visit_type_int(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
 | |
|                                    const char *name, void *opaque,
 | |
|                                    Error **errp)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
|     int64_t value;
 | |
| 
 | |
|     if (s->fd != -1) {
 | |
|         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!visit_type_int(v, name, &value, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->kvm_shadow_mem = value;
 | |
| }
 | |
| 
 | |
| static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
 | |
|                                    const char *name, void *opaque,
 | |
|                                    Error **errp)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
|     OnOffSplit mode;
 | |
| 
 | |
|     if (s->fd != -1) {
 | |
|         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
 | |
|         return;
 | |
|     }
 | |
|     switch (mode) {
 | |
|     case ON_OFF_SPLIT_ON:
 | |
|         s->kernel_irqchip_allowed = true;
 | |
|         s->kernel_irqchip_required = true;
 | |
|         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
 | |
|         break;
 | |
|     case ON_OFF_SPLIT_OFF:
 | |
|         s->kernel_irqchip_allowed = false;
 | |
|         s->kernel_irqchip_required = false;
 | |
|         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
 | |
|         break;
 | |
|     case ON_OFF_SPLIT_SPLIT:
 | |
|         s->kernel_irqchip_allowed = true;
 | |
|         s->kernel_irqchip_required = true;
 | |
|         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
 | |
|         break;
 | |
|     default:
 | |
|         /* The value was checked in visit_type_OnOffSplit() above. If
 | |
|          * we get here, then something is wrong in QEMU.
 | |
|          */
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool kvm_kernel_irqchip_allowed(void)
 | |
| {
 | |
|     return kvm_state->kernel_irqchip_allowed;
 | |
| }
 | |
| 
 | |
| bool kvm_kernel_irqchip_required(void)
 | |
| {
 | |
|     return kvm_state->kernel_irqchip_required;
 | |
| }
 | |
| 
 | |
| bool kvm_kernel_irqchip_split(void)
 | |
| {
 | |
|     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
 | |
| }
 | |
| 
 | |
| static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
 | |
|                                     const char *name, void *opaque,
 | |
|                                     Error **errp)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
|     uint32_t value = s->kvm_dirty_ring_size;
 | |
| 
 | |
|     visit_type_uint32(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
 | |
|                                     const char *name, void *opaque,
 | |
|                                     Error **errp)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
|     Error *error = NULL;
 | |
|     uint32_t value;
 | |
| 
 | |
|     if (s->fd != -1) {
 | |
|         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     visit_type_uint32(v, name, &value, &error);
 | |
|     if (error) {
 | |
|         error_propagate(errp, error);
 | |
|         return;
 | |
|     }
 | |
|     if (value & (value - 1)) {
 | |
|         error_setg(errp, "dirty-ring-size must be a power of two.");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->kvm_dirty_ring_size = value;
 | |
| }
 | |
| 
 | |
| static void kvm_accel_instance_init(Object *obj)
 | |
| {
 | |
|     KVMState *s = KVM_STATE(obj);
 | |
| 
 | |
|     s->fd = -1;
 | |
|     s->vmfd = -1;
 | |
|     s->kvm_shadow_mem = -1;
 | |
|     s->kernel_irqchip_allowed = true;
 | |
|     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
 | |
|     /* KVM dirty ring is by default off */
 | |
|     s->kvm_dirty_ring_size = 0;
 | |
| }
 | |
| 
 | |
| static void kvm_accel_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     AccelClass *ac = ACCEL_CLASS(oc);
 | |
|     ac->name = "KVM";
 | |
|     ac->init_machine = kvm_init;
 | |
|     ac->has_memory = kvm_accel_has_memory;
 | |
|     ac->allowed = &kvm_allowed;
 | |
| 
 | |
|     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
 | |
|         NULL, kvm_set_kernel_irqchip,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, "kernel-irqchip",
 | |
|         "Configure KVM in-kernel irqchip");
 | |
| 
 | |
|     object_class_property_add(oc, "kvm-shadow-mem", "int",
 | |
|         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, "kvm-shadow-mem",
 | |
|         "KVM shadow MMU size");
 | |
| 
 | |
|     object_class_property_add(oc, "dirty-ring-size", "uint32",
 | |
|         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, "dirty-ring-size",
 | |
|         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
 | |
| }
 | |
| 
 | |
| static const TypeInfo kvm_accel_type = {
 | |
|     .name = TYPE_KVM_ACCEL,
 | |
|     .parent = TYPE_ACCEL,
 | |
|     .instance_init = kvm_accel_instance_init,
 | |
|     .class_init = kvm_accel_class_init,
 | |
|     .instance_size = sizeof(KVMState),
 | |
| };
 | |
| 
 | |
| static void kvm_type_init(void)
 | |
| {
 | |
|     type_register_static(&kvm_accel_type);
 | |
| }
 | |
| 
 | |
| type_init(kvm_type_init);
 |