mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 8e1ee1fb57
			
		
	
	
		8e1ee1fb57
		
	
	
	
	
		
			
			Signed-off-by: LIU Zhiwei <zhiwei_liu@c-sky.com> Signed-off-by: Frank Chang <frank.chang@sifive.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20211210075704.23951-8-frank.chang@sifive.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
		
			
				
	
	
		
			1160 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1160 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * RISC-V CPU helpers for qemu.
 | |
|  *
 | |
|  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
 | |
|  * Copyright (c) 2017-2018 SiFive, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "tcg/tcg-op.h"
 | |
| #include "trace.h"
 | |
| #include "semihosting/common-semi.h"
 | |
| 
 | |
| int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     return 0;
 | |
| #else
 | |
|     return env->priv;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static RISCVMXL cpu_get_xl(CPURISCVState *env)
 | |
| {
 | |
| #if defined(TARGET_RISCV32)
 | |
|     return MXL_RV32;
 | |
| #elif defined(CONFIG_USER_ONLY)
 | |
|     return MXL_RV64;
 | |
| #else
 | |
|     RISCVMXL xl = riscv_cpu_mxl(env);
 | |
| 
 | |
|     /*
 | |
|      * When emulating a 32-bit-only cpu, use RV32.
 | |
|      * When emulating a 64-bit cpu, and MXL has been reduced to RV32,
 | |
|      * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened
 | |
|      * back to RV64 for lower privs.
 | |
|      */
 | |
|     if (xl != MXL_RV32) {
 | |
|         switch (env->priv) {
 | |
|         case PRV_M:
 | |
|             break;
 | |
|         case PRV_U:
 | |
|             xl = get_field(env->mstatus, MSTATUS64_UXL);
 | |
|             break;
 | |
|         default: /* PRV_S | PRV_H */
 | |
|             xl = get_field(env->mstatus, MSTATUS64_SXL);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return xl;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
 | |
|                           target_ulong *cs_base, uint32_t *pflags)
 | |
| {
 | |
|     uint32_t flags = 0;
 | |
| 
 | |
|     *pc = env->pc;
 | |
|     *cs_base = 0;
 | |
| 
 | |
|     if (riscv_has_ext(env, RVV)) {
 | |
|         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
 | |
|         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl);
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, VILL,
 | |
|                     FIELD_EX64(env->vtype, VTYPE, VILL));
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, SEW,
 | |
|                     FIELD_EX64(env->vtype, VTYPE, VSEW));
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
 | |
|                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
 | |
|     } else {
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
 | |
|     }
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     flags |= TB_FLAGS_MSTATUS_FS;
 | |
|     flags |= TB_FLAGS_MSTATUS_VS;
 | |
| #else
 | |
|     flags |= cpu_mmu_index(env, 0);
 | |
|     if (riscv_cpu_fp_enabled(env)) {
 | |
|         flags |= env->mstatus & MSTATUS_FS;
 | |
|     }
 | |
| 
 | |
|     if (riscv_cpu_vector_enabled(env)) {
 | |
|         flags |= env->mstatus & MSTATUS_VS;
 | |
|     }
 | |
| 
 | |
|     if (riscv_has_ext(env, RVH)) {
 | |
|         if (env->priv == PRV_M ||
 | |
|             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
 | |
|             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
 | |
|                 get_field(env->hstatus, HSTATUS_HU))) {
 | |
|             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
 | |
|         }
 | |
| 
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
 | |
|                            get_field(env->mstatus_hs, MSTATUS_FS));
 | |
| 
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
 | |
|                            get_field(env->mstatus_hs, MSTATUS_VS));
 | |
|     }
 | |
|     if (riscv_has_ext(env, RVJ)) {
 | |
|         int priv = flags & TB_FLAGS_PRIV_MMU_MASK;
 | |
|         bool pm_enabled = false;
 | |
|         switch (priv) {
 | |
|         case PRV_U:
 | |
|             pm_enabled = env->mmte & U_PM_ENABLE;
 | |
|             break;
 | |
|         case PRV_S:
 | |
|             pm_enabled = env->mmte & S_PM_ENABLE;
 | |
|             break;
 | |
|         case PRV_M:
 | |
|             pm_enabled = env->mmte & M_PM_ENABLE;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env));
 | |
| 
 | |
|     *pflags = flags;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static int riscv_cpu_local_irq_pending(CPURISCVState *env)
 | |
| {
 | |
|     target_ulong virt_enabled = riscv_cpu_virt_enabled(env);
 | |
| 
 | |
|     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
 | |
|     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
 | |
| 
 | |
|     target_ulong pending = env->mip & env->mie;
 | |
| 
 | |
|     target_ulong mie    = env->priv < PRV_M ||
 | |
|                           (env->priv == PRV_M && mstatus_mie);
 | |
|     target_ulong sie    = env->priv < PRV_S ||
 | |
|                           (env->priv == PRV_S && mstatus_sie);
 | |
|     target_ulong hsie   = virt_enabled || sie;
 | |
|     target_ulong vsie   = virt_enabled && sie;
 | |
| 
 | |
|     target_ulong irqs =
 | |
|             (pending & ~env->mideleg & -mie) |
 | |
|             (pending &  env->mideleg & ~env->hideleg & -hsie) |
 | |
|             (pending &  env->mideleg &  env->hideleg & -vsie);
 | |
| 
 | |
|     if (irqs) {
 | |
|         return ctz64(irqs); /* since non-zero */
 | |
|     } else {
 | |
|         return RISCV_EXCP_NONE; /* indicates no pending interrupt */
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 | |
| {
 | |
|     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|         RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|         CPURISCVState *env = &cpu->env;
 | |
|         int interruptno = riscv_cpu_local_irq_pending(env);
 | |
|         if (interruptno >= 0) {
 | |
|             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
 | |
|             riscv_cpu_do_interrupt(cs);
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Return true is floating point support is currently enabled */
 | |
| bool riscv_cpu_fp_enabled(CPURISCVState *env)
 | |
| {
 | |
|     if (env->mstatus & MSTATUS_FS) {
 | |
|         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
 | |
|             return false;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Return true is vector support is currently enabled */
 | |
| bool riscv_cpu_vector_enabled(CPURISCVState *env)
 | |
| {
 | |
|     if (env->mstatus & MSTATUS_VS) {
 | |
|         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
 | |
|             return false;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
 | |
| {
 | |
|     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
 | |
|                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
 | |
|                             MSTATUS64_UXL | MSTATUS_VS;
 | |
|     bool current_virt = riscv_cpu_virt_enabled(env);
 | |
| 
 | |
|     g_assert(riscv_has_ext(env, RVH));
 | |
| 
 | |
|     if (current_virt) {
 | |
|         /* Current V=1 and we are about to change to V=0 */
 | |
|         env->vsstatus = env->mstatus & mstatus_mask;
 | |
|         env->mstatus &= ~mstatus_mask;
 | |
|         env->mstatus |= env->mstatus_hs;
 | |
| 
 | |
|         env->vstvec = env->stvec;
 | |
|         env->stvec = env->stvec_hs;
 | |
| 
 | |
|         env->vsscratch = env->sscratch;
 | |
|         env->sscratch = env->sscratch_hs;
 | |
| 
 | |
|         env->vsepc = env->sepc;
 | |
|         env->sepc = env->sepc_hs;
 | |
| 
 | |
|         env->vscause = env->scause;
 | |
|         env->scause = env->scause_hs;
 | |
| 
 | |
|         env->vstval = env->stval;
 | |
|         env->stval = env->stval_hs;
 | |
| 
 | |
|         env->vsatp = env->satp;
 | |
|         env->satp = env->satp_hs;
 | |
|     } else {
 | |
|         /* Current V=0 and we are about to change to V=1 */
 | |
|         env->mstatus_hs = env->mstatus & mstatus_mask;
 | |
|         env->mstatus &= ~mstatus_mask;
 | |
|         env->mstatus |= env->vsstatus;
 | |
| 
 | |
|         env->stvec_hs = env->stvec;
 | |
|         env->stvec = env->vstvec;
 | |
| 
 | |
|         env->sscratch_hs = env->sscratch;
 | |
|         env->sscratch = env->vsscratch;
 | |
| 
 | |
|         env->sepc_hs = env->sepc;
 | |
|         env->sepc = env->vsepc;
 | |
| 
 | |
|         env->scause_hs = env->scause;
 | |
|         env->scause = env->vscause;
 | |
| 
 | |
|         env->stval_hs = env->stval;
 | |
|         env->stval = env->vstval;
 | |
| 
 | |
|         env->satp_hs = env->satp;
 | |
|         env->satp = env->vsatp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool riscv_cpu_virt_enabled(CPURISCVState *env)
 | |
| {
 | |
|     if (!riscv_has_ext(env, RVH)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return get_field(env->virt, VIRT_ONOFF);
 | |
| }
 | |
| 
 | |
| void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
 | |
| {
 | |
|     if (!riscv_has_ext(env, RVH)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Flush the TLB on all virt mode changes. */
 | |
|     if (get_field(env->virt, VIRT_ONOFF) != enable) {
 | |
|         tlb_flush(env_cpu(env));
 | |
|     }
 | |
| 
 | |
|     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
 | |
| }
 | |
| 
 | |
| bool riscv_cpu_two_stage_lookup(int mmu_idx)
 | |
| {
 | |
|     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
 | |
| }
 | |
| 
 | |
| int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
 | |
| {
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     if (env->miclaim & interrupts) {
 | |
|         return -1;
 | |
|     } else {
 | |
|         env->miclaim |= interrupts;
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
 | |
| {
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint32_t old = env->mip;
 | |
|     bool locked = false;
 | |
| 
 | |
|     if (!qemu_mutex_iothread_locked()) {
 | |
|         locked = true;
 | |
|         qemu_mutex_lock_iothread();
 | |
|     }
 | |
| 
 | |
|     env->mip = (env->mip & ~mask) | (value & mask);
 | |
| 
 | |
|     if (env->mip) {
 | |
|         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 | |
|     } else {
 | |
|         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 | |
|     }
 | |
| 
 | |
|     if (locked) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
| 
 | |
|     return old;
 | |
| }
 | |
| 
 | |
| void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
 | |
|                              uint32_t arg)
 | |
| {
 | |
|     env->rdtime_fn = fn;
 | |
|     env->rdtime_fn_arg = arg;
 | |
| }
 | |
| 
 | |
| void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
 | |
| {
 | |
|     if (newpriv > PRV_M) {
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     if (newpriv == PRV_H) {
 | |
|         newpriv = PRV_U;
 | |
|     }
 | |
|     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
 | |
|     env->priv = newpriv;
 | |
| 
 | |
|     /*
 | |
|      * Clear the load reservation - otherwise a reservation placed in one
 | |
|      * context/process can be used by another, resulting in an SC succeeding
 | |
|      * incorrectly. Version 2.2 of the ISA specification explicitly requires
 | |
|      * this behaviour, while later revisions say that the kernel "should" use
 | |
|      * an SC instruction to force the yielding of a load reservation on a
 | |
|      * preemptive context switch. As a result, do both.
 | |
|      */
 | |
|     env->load_res = -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_physical_address_pmp - check PMP permission for this physical address
 | |
|  *
 | |
|  * Match the PMP region and check permission for this physical address and it's
 | |
|  * TLB page. Returns 0 if the permission checking was successful
 | |
|  *
 | |
|  * @env: CPURISCVState
 | |
|  * @prot: The returned protection attributes
 | |
|  * @tlb_size: TLB page size containing addr. It could be modified after PMP
 | |
|  *            permission checking. NULL if not set TLB page for addr.
 | |
|  * @addr: The physical address to be checked permission
 | |
|  * @access_type: The type of MMU access
 | |
|  * @mode: Indicates current privilege level.
 | |
|  */
 | |
| static int get_physical_address_pmp(CPURISCVState *env, int *prot,
 | |
|                                     target_ulong *tlb_size, hwaddr addr,
 | |
|                                     int size, MMUAccessType access_type,
 | |
|                                     int mode)
 | |
| {
 | |
|     pmp_priv_t pmp_priv;
 | |
|     target_ulong tlb_size_pmp = 0;
 | |
| 
 | |
|     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         return TRANSLATE_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
 | |
|                             mode)) {
 | |
|         *prot = 0;
 | |
|         return TRANSLATE_PMP_FAIL;
 | |
|     }
 | |
| 
 | |
|     *prot = pmp_priv_to_page_prot(pmp_priv);
 | |
|     if (tlb_size != NULL) {
 | |
|         if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
 | |
|             *tlb_size = tlb_size_pmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return TRANSLATE_SUCCESS;
 | |
| }
 | |
| 
 | |
| /* get_physical_address - get the physical address for this virtual address
 | |
|  *
 | |
|  * Do a page table walk to obtain the physical address corresponding to a
 | |
|  * virtual address. Returns 0 if the translation was successful
 | |
|  *
 | |
|  * Adapted from Spike's mmu_t::translate and mmu_t::walk
 | |
|  *
 | |
|  * @env: CPURISCVState
 | |
|  * @physical: This will be set to the calculated physical address
 | |
|  * @prot: The returned protection attributes
 | |
|  * @addr: The virtual address to be translated
 | |
|  * @fault_pte_addr: If not NULL, this will be set to fault pte address
 | |
|  *                  when a error occurs on pte address translation.
 | |
|  *                  This will already be shifted to match htval.
 | |
|  * @access_type: The type of MMU access
 | |
|  * @mmu_idx: Indicates current privilege level
 | |
|  * @first_stage: Are we in first stage translation?
 | |
|  *               Second stage is used for hypervisor guest translation
 | |
|  * @two_stage: Are we going to perform two stage translation
 | |
|  * @is_debug: Is this access from a debugger or the monitor?
 | |
|  */
 | |
| static int get_physical_address(CPURISCVState *env, hwaddr *physical,
 | |
|                                 int *prot, target_ulong addr,
 | |
|                                 target_ulong *fault_pte_addr,
 | |
|                                 int access_type, int mmu_idx,
 | |
|                                 bool first_stage, bool two_stage,
 | |
|                                 bool is_debug)
 | |
| {
 | |
|     /* NOTE: the env->pc value visible here will not be
 | |
|      * correct, but the value visible to the exception handler
 | |
|      * (riscv_cpu_do_interrupt) is correct */
 | |
|     MemTxResult res;
 | |
|     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
 | |
|     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
 | |
|     bool use_background = false;
 | |
| 
 | |
|     /*
 | |
|      * Check if we should use the background registers for the two
 | |
|      * stage translation. We don't need to check if we actually need
 | |
|      * two stage translation as that happened before this function
 | |
|      * was called. Background registers will be used if the guest has
 | |
|      * forced a two stage translation to be on (in HS or M mode).
 | |
|      */
 | |
|     if (!riscv_cpu_virt_enabled(env) && two_stage) {
 | |
|         use_background = true;
 | |
|     }
 | |
| 
 | |
|     /* MPRV does not affect the virtual-machine load/store
 | |
|        instructions, HLV, HLVX, and HSV. */
 | |
|     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
 | |
|         mode = get_field(env->hstatus, HSTATUS_SPVP);
 | |
|     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 | |
|         if (get_field(env->mstatus, MSTATUS_MPRV)) {
 | |
|             mode = get_field(env->mstatus, MSTATUS_MPP);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (first_stage == false) {
 | |
|         /* We are in stage 2 translation, this is similar to stage 1. */
 | |
|         /* Stage 2 is always taken as U-mode */
 | |
|         mode = PRV_U;
 | |
|     }
 | |
| 
 | |
|     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
 | |
|         *physical = addr;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         return TRANSLATE_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     *prot = 0;
 | |
| 
 | |
|     hwaddr base;
 | |
|     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
 | |
| 
 | |
|     if (first_stage == true) {
 | |
|         mxr = get_field(env->mstatus, MSTATUS_MXR);
 | |
|     } else {
 | |
|         mxr = get_field(env->vsstatus, MSTATUS_MXR);
 | |
|     }
 | |
| 
 | |
|     if (first_stage == true) {
 | |
|         if (use_background) {
 | |
|             if (riscv_cpu_mxl(env) == MXL_RV32) {
 | |
|                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
 | |
|                 vm = get_field(env->vsatp, SATP32_MODE);
 | |
|             } else {
 | |
|                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
 | |
|                 vm = get_field(env->vsatp, SATP64_MODE);
 | |
|             }
 | |
|         } else {
 | |
|             if (riscv_cpu_mxl(env) == MXL_RV32) {
 | |
|                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
 | |
|                 vm = get_field(env->satp, SATP32_MODE);
 | |
|             } else {
 | |
|                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
 | |
|                 vm = get_field(env->satp, SATP64_MODE);
 | |
|             }
 | |
|         }
 | |
|         widened = 0;
 | |
|     } else {
 | |
|         if (riscv_cpu_mxl(env) == MXL_RV32) {
 | |
|             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
 | |
|             vm = get_field(env->hgatp, SATP32_MODE);
 | |
|         } else {
 | |
|             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
 | |
|             vm = get_field(env->hgatp, SATP64_MODE);
 | |
|         }
 | |
|         widened = 2;
 | |
|     }
 | |
|     /* status.SUM will be ignored if execute on background */
 | |
|     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
 | |
|     switch (vm) {
 | |
|     case VM_1_10_SV32:
 | |
|       levels = 2; ptidxbits = 10; ptesize = 4; break;
 | |
|     case VM_1_10_SV39:
 | |
|       levels = 3; ptidxbits = 9; ptesize = 8; break;
 | |
|     case VM_1_10_SV48:
 | |
|       levels = 4; ptidxbits = 9; ptesize = 8; break;
 | |
|     case VM_1_10_SV57:
 | |
|       levels = 5; ptidxbits = 9; ptesize = 8; break;
 | |
|     case VM_1_10_MBARE:
 | |
|         *physical = addr;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         return TRANSLATE_SUCCESS;
 | |
|     default:
 | |
|       g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int va_bits = PGSHIFT + levels * ptidxbits + widened;
 | |
|     target_ulong mask, masked_msbs;
 | |
| 
 | |
|     if (TARGET_LONG_BITS > (va_bits - 1)) {
 | |
|         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
 | |
|     } else {
 | |
|         mask = 0;
 | |
|     }
 | |
|     masked_msbs = (addr >> (va_bits - 1)) & mask;
 | |
| 
 | |
|     if (masked_msbs != 0 && masked_msbs != mask) {
 | |
|         return TRANSLATE_FAIL;
 | |
|     }
 | |
| 
 | |
|     int ptshift = (levels - 1) * ptidxbits;
 | |
|     int i;
 | |
| 
 | |
| #if !TCG_OVERSIZED_GUEST
 | |
| restart:
 | |
| #endif
 | |
|     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
 | |
|         target_ulong idx;
 | |
|         if (i == 0) {
 | |
|             idx = (addr >> (PGSHIFT + ptshift)) &
 | |
|                            ((1 << (ptidxbits + widened)) - 1);
 | |
|         } else {
 | |
|             idx = (addr >> (PGSHIFT + ptshift)) &
 | |
|                            ((1 << ptidxbits) - 1);
 | |
|         }
 | |
| 
 | |
|         /* check that physical address of PTE is legal */
 | |
|         hwaddr pte_addr;
 | |
| 
 | |
|         if (two_stage && first_stage) {
 | |
|             int vbase_prot;
 | |
|             hwaddr vbase;
 | |
| 
 | |
|             /* Do the second stage translation on the base PTE address. */
 | |
|             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
 | |
|                                                  base, NULL, MMU_DATA_LOAD,
 | |
|                                                  mmu_idx, false, true,
 | |
|                                                  is_debug);
 | |
| 
 | |
|             if (vbase_ret != TRANSLATE_SUCCESS) {
 | |
|                 if (fault_pte_addr) {
 | |
|                     *fault_pte_addr = (base + idx * ptesize) >> 2;
 | |
|                 }
 | |
|                 return TRANSLATE_G_STAGE_FAIL;
 | |
|             }
 | |
| 
 | |
|             pte_addr = vbase + idx * ptesize;
 | |
|         } else {
 | |
|             pte_addr = base + idx * ptesize;
 | |
|         }
 | |
| 
 | |
|         int pmp_prot;
 | |
|         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
 | |
|                                                sizeof(target_ulong),
 | |
|                                                MMU_DATA_LOAD, PRV_S);
 | |
|         if (pmp_ret != TRANSLATE_SUCCESS) {
 | |
|             return TRANSLATE_PMP_FAIL;
 | |
|         }
 | |
| 
 | |
|         target_ulong pte;
 | |
|         if (riscv_cpu_mxl(env) == MXL_RV32) {
 | |
|             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
 | |
|         } else {
 | |
|             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
 | |
|         }
 | |
| 
 | |
|         if (res != MEMTX_OK) {
 | |
|             return TRANSLATE_FAIL;
 | |
|         }
 | |
| 
 | |
|         hwaddr ppn = pte >> PTE_PPN_SHIFT;
 | |
| 
 | |
|         if (!(pte & PTE_V)) {
 | |
|             /* Invalid PTE */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
 | |
|             /* Inner PTE, continue walking */
 | |
|             base = ppn << PGSHIFT;
 | |
|         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
 | |
|             /* Reserved leaf PTE flags: PTE_W */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
 | |
|             /* Reserved leaf PTE flags: PTE_W + PTE_X */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
 | |
|                    (!sum || access_type == MMU_INST_FETCH))) {
 | |
|             /* User PTE flags when not U mode and mstatus.SUM is not set,
 | |
|                or the access type is an instruction fetch */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
 | |
|             /* Supervisor PTE flags when not S mode */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (ppn & ((1ULL << ptshift) - 1)) {
 | |
|             /* Misaligned PPN */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
 | |
|                    ((pte & PTE_X) && mxr))) {
 | |
|             /* Read access check failed */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
 | |
|             /* Write access check failed */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
 | |
|             /* Fetch access check failed */
 | |
|             return TRANSLATE_FAIL;
 | |
|         } else {
 | |
|             /* if necessary, set accessed and dirty bits. */
 | |
|             target_ulong updated_pte = pte | PTE_A |
 | |
|                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
 | |
| 
 | |
|             /* Page table updates need to be atomic with MTTCG enabled */
 | |
|             if (updated_pte != pte) {
 | |
|                 /*
 | |
|                  * - if accessed or dirty bits need updating, and the PTE is
 | |
|                  *   in RAM, then we do so atomically with a compare and swap.
 | |
|                  * - if the PTE is in IO space or ROM, then it can't be updated
 | |
|                  *   and we return TRANSLATE_FAIL.
 | |
|                  * - if the PTE changed by the time we went to update it, then
 | |
|                  *   it is no longer valid and we must re-walk the page table.
 | |
|                  */
 | |
|                 MemoryRegion *mr;
 | |
|                 hwaddr l = sizeof(target_ulong), addr1;
 | |
|                 mr = address_space_translate(cs->as, pte_addr,
 | |
|                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
 | |
|                 if (memory_region_is_ram(mr)) {
 | |
|                     target_ulong *pte_pa =
 | |
|                         qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
| #if TCG_OVERSIZED_GUEST
 | |
|                     /* MTTCG is not enabled on oversized TCG guests so
 | |
|                      * page table updates do not need to be atomic */
 | |
|                     *pte_pa = pte = updated_pte;
 | |
| #else
 | |
|                     target_ulong old_pte =
 | |
|                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
 | |
|                     if (old_pte != pte) {
 | |
|                         goto restart;
 | |
|                     } else {
 | |
|                         pte = updated_pte;
 | |
|                     }
 | |
| #endif
 | |
|                 } else {
 | |
|                     /* misconfigured PTE in ROM (AD bits are not preset) or
 | |
|                      * PTE is in IO space and can't be updated atomically */
 | |
|                     return TRANSLATE_FAIL;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* for superpage mappings, make a fake leaf PTE for the TLB's
 | |
|                benefit. */
 | |
|             target_ulong vpn = addr >> PGSHIFT;
 | |
|             *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
 | |
|                         (addr & ~TARGET_PAGE_MASK);
 | |
| 
 | |
|             /* set permissions on the TLB entry */
 | |
|             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
 | |
|                 *prot |= PAGE_READ;
 | |
|             }
 | |
|             if ((pte & PTE_X)) {
 | |
|                 *prot |= PAGE_EXEC;
 | |
|             }
 | |
|             /* add write permission on stores or if the page is already dirty,
 | |
|                so that we TLB miss on later writes to update the dirty bit */
 | |
|             if ((pte & PTE_W) &&
 | |
|                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
 | |
|                 *prot |= PAGE_WRITE;
 | |
|             }
 | |
|             return TRANSLATE_SUCCESS;
 | |
|         }
 | |
|     }
 | |
|     return TRANSLATE_FAIL;
 | |
| }
 | |
| 
 | |
| static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
 | |
|                                 MMUAccessType access_type, bool pmp_violation,
 | |
|                                 bool first_stage, bool two_stage)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int page_fault_exceptions, vm;
 | |
|     uint64_t stap_mode;
 | |
| 
 | |
|     if (riscv_cpu_mxl(env) == MXL_RV32) {
 | |
|         stap_mode = SATP32_MODE;
 | |
|     } else {
 | |
|         stap_mode = SATP64_MODE;
 | |
|     }
 | |
| 
 | |
|     if (first_stage) {
 | |
|         vm = get_field(env->satp, stap_mode);
 | |
|     } else {
 | |
|         vm = get_field(env->hgatp, stap_mode);
 | |
|     }
 | |
| 
 | |
|     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
 | |
| 
 | |
|     switch (access_type) {
 | |
|     case MMU_INST_FETCH:
 | |
|         if (riscv_cpu_virt_enabled(env) && !first_stage) {
 | |
|             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
 | |
|         } else {
 | |
|             cs->exception_index = page_fault_exceptions ?
 | |
|                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
 | |
|         }
 | |
|         break;
 | |
|     case MMU_DATA_LOAD:
 | |
|         if (two_stage && !first_stage) {
 | |
|             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
 | |
|         } else {
 | |
|             cs->exception_index = page_fault_exceptions ?
 | |
|                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
 | |
|         }
 | |
|         break;
 | |
|     case MMU_DATA_STORE:
 | |
|         if (two_stage && !first_stage) {
 | |
|             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
 | |
|         } else {
 | |
|             cs->exception_index = page_fault_exceptions ?
 | |
|                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     env->badaddr = address;
 | |
|     env->two_stage_lookup = two_stage;
 | |
| }
 | |
| 
 | |
| hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 | |
| {
 | |
|     RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     hwaddr phys_addr;
 | |
|     int prot;
 | |
|     int mmu_idx = cpu_mmu_index(&cpu->env, false);
 | |
| 
 | |
|     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
 | |
|                              true, riscv_cpu_virt_enabled(env), true)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (riscv_cpu_virt_enabled(env)) {
 | |
|         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
 | |
|                                  0, mmu_idx, false, true, true)) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return phys_addr & TARGET_PAGE_MASK;
 | |
| }
 | |
| 
 | |
| void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 | |
|                                      vaddr addr, unsigned size,
 | |
|                                      MMUAccessType access_type,
 | |
|                                      int mmu_idx, MemTxAttrs attrs,
 | |
|                                      MemTxResult response, uintptr_t retaddr)
 | |
| {
 | |
|     RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|     CPURISCVState *env = &cpu->env;
 | |
| 
 | |
|     if (access_type == MMU_DATA_STORE) {
 | |
|         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 | |
|     } else if (access_type == MMU_DATA_LOAD) {
 | |
|         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
 | |
|     } else {
 | |
|         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
 | |
|     }
 | |
| 
 | |
|     env->badaddr = addr;
 | |
|     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
 | |
|                             riscv_cpu_two_stage_lookup(mmu_idx);
 | |
|     riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
 | |
| }
 | |
| 
 | |
| void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 | |
|                                    MMUAccessType access_type, int mmu_idx,
 | |
|                                    uintptr_t retaddr)
 | |
| {
 | |
|     RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     switch (access_type) {
 | |
|     case MMU_INST_FETCH:
 | |
|         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
 | |
|         break;
 | |
|     case MMU_DATA_LOAD:
 | |
|         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
 | |
|         break;
 | |
|     case MMU_DATA_STORE:
 | |
|         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     env->badaddr = addr;
 | |
|     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
 | |
|                             riscv_cpu_two_stage_lookup(mmu_idx);
 | |
|     riscv_raise_exception(env, cs->exception_index, retaddr);
 | |
| }
 | |
| 
 | |
| bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 | |
|                         MMUAccessType access_type, int mmu_idx,
 | |
|                         bool probe, uintptr_t retaddr)
 | |
| {
 | |
|     RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     vaddr im_address;
 | |
|     hwaddr pa = 0;
 | |
|     int prot, prot2, prot_pmp;
 | |
|     bool pmp_violation = false;
 | |
|     bool first_stage_error = true;
 | |
|     bool two_stage_lookup = false;
 | |
|     int ret = TRANSLATE_FAIL;
 | |
|     int mode = mmu_idx;
 | |
|     /* default TLB page size */
 | |
|     target_ulong tlb_size = TARGET_PAGE_SIZE;
 | |
| 
 | |
|     env->guest_phys_fault_addr = 0;
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
 | |
|                   __func__, address, access_type, mmu_idx);
 | |
| 
 | |
|     /* MPRV does not affect the virtual-machine load/store
 | |
|        instructions, HLV, HLVX, and HSV. */
 | |
|     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
 | |
|         mode = get_field(env->hstatus, HSTATUS_SPVP);
 | |
|     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
 | |
|                get_field(env->mstatus, MSTATUS_MPRV)) {
 | |
|         mode = get_field(env->mstatus, MSTATUS_MPP);
 | |
|         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
 | |
|             two_stage_lookup = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (riscv_cpu_virt_enabled(env) ||
 | |
|         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
 | |
|          access_type != MMU_INST_FETCH)) {
 | |
|         /* Two stage lookup */
 | |
|         ret = get_physical_address(env, &pa, &prot, address,
 | |
|                                    &env->guest_phys_fault_addr, access_type,
 | |
|                                    mmu_idx, true, true, false);
 | |
| 
 | |
|         /*
 | |
|          * A G-stage exception may be triggered during two state lookup.
 | |
|          * And the env->guest_phys_fault_addr has already been set in
 | |
|          * get_physical_address().
 | |
|          */
 | |
|         if (ret == TRANSLATE_G_STAGE_FAIL) {
 | |
|             first_stage_error = false;
 | |
|             access_type = MMU_DATA_LOAD;
 | |
|         }
 | |
| 
 | |
|         qemu_log_mask(CPU_LOG_MMU,
 | |
|                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
 | |
|                       TARGET_FMT_plx " prot %d\n",
 | |
|                       __func__, address, ret, pa, prot);
 | |
| 
 | |
|         if (ret == TRANSLATE_SUCCESS) {
 | |
|             /* Second stage lookup */
 | |
|             im_address = pa;
 | |
| 
 | |
|             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
 | |
|                                        access_type, mmu_idx, false, true,
 | |
|                                        false);
 | |
| 
 | |
|             qemu_log_mask(CPU_LOG_MMU,
 | |
|                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
 | |
|                     TARGET_FMT_plx " prot %d\n",
 | |
|                     __func__, im_address, ret, pa, prot2);
 | |
| 
 | |
|             prot &= prot2;
 | |
| 
 | |
|             if (ret == TRANSLATE_SUCCESS) {
 | |
|                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
 | |
|                                                size, access_type, mode);
 | |
| 
 | |
|                 qemu_log_mask(CPU_LOG_MMU,
 | |
|                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
 | |
|                               " %d tlb_size " TARGET_FMT_lu "\n",
 | |
|                               __func__, pa, ret, prot_pmp, tlb_size);
 | |
| 
 | |
|                 prot &= prot_pmp;
 | |
|             }
 | |
| 
 | |
|             if (ret != TRANSLATE_SUCCESS) {
 | |
|                 /*
 | |
|                  * Guest physical address translation failed, this is a HS
 | |
|                  * level exception
 | |
|                  */
 | |
|                 first_stage_error = false;
 | |
|                 env->guest_phys_fault_addr = (im_address |
 | |
|                                               (address &
 | |
|                                                (TARGET_PAGE_SIZE - 1))) >> 2;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* Single stage lookup */
 | |
|         ret = get_physical_address(env, &pa, &prot, address, NULL,
 | |
|                                    access_type, mmu_idx, true, false, false);
 | |
| 
 | |
|         qemu_log_mask(CPU_LOG_MMU,
 | |
|                       "%s address=%" VADDR_PRIx " ret %d physical "
 | |
|                       TARGET_FMT_plx " prot %d\n",
 | |
|                       __func__, address, ret, pa, prot);
 | |
| 
 | |
|         if (ret == TRANSLATE_SUCCESS) {
 | |
|             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
 | |
|                                            size, access_type, mode);
 | |
| 
 | |
|             qemu_log_mask(CPU_LOG_MMU,
 | |
|                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
 | |
|                           " %d tlb_size " TARGET_FMT_lu "\n",
 | |
|                           __func__, pa, ret, prot_pmp, tlb_size);
 | |
| 
 | |
|             prot &= prot_pmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ret == TRANSLATE_PMP_FAIL) {
 | |
|         pmp_violation = true;
 | |
|     }
 | |
| 
 | |
|     if (ret == TRANSLATE_SUCCESS) {
 | |
|         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
 | |
|                      prot, mmu_idx, tlb_size);
 | |
|         return true;
 | |
|     } else if (probe) {
 | |
|         return false;
 | |
|     } else {
 | |
|         raise_mmu_exception(env, address, access_type, pmp_violation,
 | |
|                             first_stage_error,
 | |
|                             riscv_cpu_virt_enabled(env) ||
 | |
|                                 riscv_cpu_two_stage_lookup(mmu_idx));
 | |
|         riscv_raise_exception(env, cs->exception_index, retaddr);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| /*
 | |
|  * Handle Traps
 | |
|  *
 | |
|  * Adapted from Spike's processor_t::take_trap.
 | |
|  *
 | |
|  */
 | |
| void riscv_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
|     RISCVCPU *cpu = RISCV_CPU(cs);
 | |
|     CPURISCVState *env = &cpu->env;
 | |
|     uint64_t s;
 | |
| 
 | |
|     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
 | |
|      * so we mask off the MSB and separate into trap type and cause.
 | |
|      */
 | |
|     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
 | |
|     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
 | |
|     target_ulong deleg = async ? env->mideleg : env->medeleg;
 | |
|     bool write_tval = false;
 | |
|     target_ulong tval = 0;
 | |
|     target_ulong htval = 0;
 | |
|     target_ulong mtval2 = 0;
 | |
| 
 | |
|     if  (cause == RISCV_EXCP_SEMIHOST) {
 | |
|         if (env->priv >= PRV_S) {
 | |
|             env->gpr[xA0] = do_common_semihosting(cs);
 | |
|             env->pc += 4;
 | |
|             return;
 | |
|         }
 | |
|         cause = RISCV_EXCP_BREAKPOINT;
 | |
|     }
 | |
| 
 | |
|     if (!async) {
 | |
|         /* set tval to badaddr for traps with address information */
 | |
|         switch (cause) {
 | |
|         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
 | |
|         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
 | |
|         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
 | |
|         case RISCV_EXCP_INST_ADDR_MIS:
 | |
|         case RISCV_EXCP_INST_ACCESS_FAULT:
 | |
|         case RISCV_EXCP_LOAD_ADDR_MIS:
 | |
|         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
 | |
|         case RISCV_EXCP_LOAD_ACCESS_FAULT:
 | |
|         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
 | |
|         case RISCV_EXCP_INST_PAGE_FAULT:
 | |
|         case RISCV_EXCP_LOAD_PAGE_FAULT:
 | |
|         case RISCV_EXCP_STORE_PAGE_FAULT:
 | |
|             write_tval  = true;
 | |
|             tval = env->badaddr;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|         /* ecall is dispatched as one cause so translate based on mode */
 | |
|         if (cause == RISCV_EXCP_U_ECALL) {
 | |
|             assert(env->priv <= 3);
 | |
| 
 | |
|             if (env->priv == PRV_M) {
 | |
|                 cause = RISCV_EXCP_M_ECALL;
 | |
|             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
 | |
|                 cause = RISCV_EXCP_VS_ECALL;
 | |
|             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
 | |
|                 cause = RISCV_EXCP_S_ECALL;
 | |
|             } else if (env->priv == PRV_U) {
 | |
|                 cause = RISCV_EXCP_U_ECALL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
 | |
|                      riscv_cpu_get_trap_name(cause, async));
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_INT,
 | |
|                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
 | |
|                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
 | |
|                   __func__, env->mhartid, async, cause, env->pc, tval,
 | |
|                   riscv_cpu_get_trap_name(cause, async));
 | |
| 
 | |
|     if (env->priv <= PRV_S &&
 | |
|             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
 | |
|         /* handle the trap in S-mode */
 | |
|         if (riscv_has_ext(env, RVH)) {
 | |
|             target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
 | |
| 
 | |
|             if (env->two_stage_lookup && write_tval) {
 | |
|                 /*
 | |
|                  * If we are writing a guest virtual address to stval, set
 | |
|                  * this to 1. If we are trapping to VS we will set this to 0
 | |
|                  * later.
 | |
|                  */
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
 | |
|             } else {
 | |
|                 /* For other HS-mode traps, we set this to 0. */
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
 | |
|             }
 | |
| 
 | |
|             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
 | |
|                 /* Trap to VS mode */
 | |
|                 /*
 | |
|                  * See if we need to adjust cause. Yes if its VS mode interrupt
 | |
|                  * no if hypervisor has delegated one of hs mode's interrupt
 | |
|                  */
 | |
|                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
 | |
|                     cause == IRQ_VS_EXT) {
 | |
|                     cause = cause - 1;
 | |
|                 }
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
 | |
|             } else if (riscv_cpu_virt_enabled(env)) {
 | |
|                 /* Trap into HS mode, from virt */
 | |
|                 riscv_cpu_swap_hypervisor_regs(env);
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
 | |
|                                          env->priv);
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
 | |
|                                          riscv_cpu_virt_enabled(env));
 | |
| 
 | |
|                 htval = env->guest_phys_fault_addr;
 | |
| 
 | |
|                 riscv_cpu_set_virt_enabled(env, 0);
 | |
|             } else {
 | |
|                 /* Trap into HS mode */
 | |
|                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
 | |
|                 htval = env->guest_phys_fault_addr;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         s = env->mstatus;
 | |
|         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
 | |
|         s = set_field(s, MSTATUS_SPP, env->priv);
 | |
|         s = set_field(s, MSTATUS_SIE, 0);
 | |
|         env->mstatus = s;
 | |
|         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
 | |
|         env->sepc = env->pc;
 | |
|         env->stval = tval;
 | |
|         env->htval = htval;
 | |
|         env->pc = (env->stvec >> 2 << 2) +
 | |
|             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
 | |
|         riscv_cpu_set_mode(env, PRV_S);
 | |
|     } else {
 | |
|         /* handle the trap in M-mode */
 | |
|         if (riscv_has_ext(env, RVH)) {
 | |
|             if (riscv_cpu_virt_enabled(env)) {
 | |
|                 riscv_cpu_swap_hypervisor_regs(env);
 | |
|             }
 | |
|             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
 | |
|                                      riscv_cpu_virt_enabled(env));
 | |
|             if (riscv_cpu_virt_enabled(env) && tval) {
 | |
|                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
 | |
|             }
 | |
| 
 | |
|             mtval2 = env->guest_phys_fault_addr;
 | |
| 
 | |
|             /* Trapping to M mode, virt is disabled */
 | |
|             riscv_cpu_set_virt_enabled(env, 0);
 | |
|         }
 | |
| 
 | |
|         s = env->mstatus;
 | |
|         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
 | |
|         s = set_field(s, MSTATUS_MPP, env->priv);
 | |
|         s = set_field(s, MSTATUS_MIE, 0);
 | |
|         env->mstatus = s;
 | |
|         env->mcause = cause | ~(((target_ulong)-1) >> async);
 | |
|         env->mepc = env->pc;
 | |
|         env->mtval = tval;
 | |
|         env->mtval2 = mtval2;
 | |
|         env->pc = (env->mtvec >> 2 << 2) +
 | |
|             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
 | |
|         riscv_cpu_set_mode(env, PRV_M);
 | |
|     }
 | |
| 
 | |
|     /* NOTE: it is not necessary to yield load reservations here. It is only
 | |
|      * necessary for an SC from "another hart" to cause a load reservation
 | |
|      * to be yielded. Refer to the memory consistency model section of the
 | |
|      * RISC-V ISA Specification.
 | |
|      */
 | |
| 
 | |
|     env->two_stage_lookup = false;
 | |
| #endif
 | |
|     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
 | |
| }
 |