mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 ff5b5d5b6d
			
		
	
	
		ff5b5d5b6d
		
	
	
	
	
		
			
			Tracked down with scripts/coccinelle/err-bad-newline.cocci. Cc: Peter Xu <peterx@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20200722084048.1726105-3-armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Peter Xu <peterx@redhat.com>
		
			
				
	
	
		
			1258 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1258 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *  Copyright (c) 2013 David Gibson, IBM Corporation
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/units.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/qemu-print.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "mmu-hash64.h"
 | |
| #include "exec/log.h"
 | |
| #include "hw/hw.h"
 | |
| #include "mmu-book3s-v3.h"
 | |
| 
 | |
| /* #define DEBUG_SLB */
 | |
| 
 | |
| #ifdef DEBUG_SLB
 | |
| #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
 | |
| #else
 | |
| #  define LOG_SLB(...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * SLB handling
 | |
|  */
 | |
| 
 | |
| static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     uint64_t esid_256M, esid_1T;
 | |
|     int n;
 | |
| 
 | |
|     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
 | |
| 
 | |
|     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
 | |
|     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
 | |
| 
 | |
|     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
 | |
|                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
 | |
|         /*
 | |
|          * We check for 1T matches on all MMUs here - if the MMU
 | |
|          * doesn't have 1T segment support, we will have prevented 1T
 | |
|          * entries from being inserted in the slbmte code.
 | |
|          */
 | |
|         if (((slb->esid == esid_256M) &&
 | |
|              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
 | |
|             || ((slb->esid == esid_1T) &&
 | |
|                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
 | |
|             return slb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void dump_slb(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int i;
 | |
|     uint64_t slbe, slbv;
 | |
| 
 | |
|     cpu_synchronize_state(CPU(cpu));
 | |
| 
 | |
|     qemu_printf("SLB\tESID\t\t\tVSID\n");
 | |
|     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
 | |
|         slbe = env->slb[i].esid;
 | |
|         slbv = env->slb[i].vsid;
 | |
|         if (slbe == 0 && slbv == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
 | |
|                     i, slbe, slbv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbia(CPUPPCState *env, uint32_t ih)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
|     int starting_entry;
 | |
|     int n;
 | |
| 
 | |
|     /*
 | |
|      * slbia must always flush all TLB (which is equivalent to ERAT in ppc
 | |
|      * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
 | |
|      * can overwrite a valid SLB without flushing its lookaside information.
 | |
|      *
 | |
|      * It would be possible to keep the TLB in synch with the SLB by flushing
 | |
|      * when a valid entry is overwritten by slbmte, and therefore slbia would
 | |
|      * not have to flush unless it evicts a valid SLB entry. However it is
 | |
|      * expected that slbmte is more common than slbia, and slbia is usually
 | |
|      * going to evict valid SLB entries, so that tradeoff is unlikely to be a
 | |
|      * good one.
 | |
|      *
 | |
|      * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
 | |
|      * the same SLB entries (everything but entry 0), but differ in what
 | |
|      * "lookaside information" is invalidated. TCG can ignore this and flush
 | |
|      * everything.
 | |
|      *
 | |
|      * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
 | |
|      * invalidated.
 | |
|      */
 | |
| 
 | |
|     env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 | |
| 
 | |
|     starting_entry = 1; /* default for IH=0,1,2,6 */
 | |
| 
 | |
|     if (env->mmu_model == POWERPC_MMU_3_00) {
 | |
|         switch (ih) {
 | |
|         case 0x7:
 | |
|             /* invalidate no SLBs, but all lookaside information */
 | |
|             return;
 | |
| 
 | |
|         case 0x3:
 | |
|         case 0x4:
 | |
|             /* also considers SLB entry 0 */
 | |
|             starting_entry = 0;
 | |
|             break;
 | |
| 
 | |
|         case 0x5:
 | |
|             /* treat undefined values as ih==0, and warn */
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "slbia undefined IH field %u.\n", ih);
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             /* 0,1,2,6 */
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         if (!(slb->esid & SLB_ESID_V)) {
 | |
|             continue;
 | |
|         }
 | |
|         if (env->mmu_model == POWERPC_MMU_3_00) {
 | |
|             if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
 | |
|                 /* preserves entries with a class value of 0 */
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         slb->esid &= ~SLB_ESID_V;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void __helper_slbie(CPUPPCState *env, target_ulong addr,
 | |
|                            target_ulong global)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
|     ppc_slb_t *slb;
 | |
| 
 | |
|     slb = slb_lookup(cpu, addr);
 | |
|     if (!slb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (slb->esid & SLB_ESID_V) {
 | |
|         slb->esid &= ~SLB_ESID_V;
 | |
| 
 | |
|         /*
 | |
|          * XXX: given the fact that segment size is 256 MB or 1TB,
 | |
|          *      and we still don't have a tlb_flush_mask(env, n, mask)
 | |
|          *      in QEMU, we just invalidate all TLBs
 | |
|          */
 | |
|         env->tlb_need_flush |=
 | |
|             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbie(CPUPPCState *env, target_ulong addr)
 | |
| {
 | |
|     __helper_slbie(env, addr, false);
 | |
| }
 | |
| 
 | |
| void helper_slbieg(CPUPPCState *env, target_ulong addr)
 | |
| {
 | |
|     __helper_slbie(env, addr, true);
 | |
| }
 | |
| 
 | |
| int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 | |
|                   target_ulong esid, target_ulong vsid)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
|     const PPCHash64SegmentPageSizes *sps = NULL;
 | |
|     int i;
 | |
| 
 | |
|     if (slot >= cpu->hash64_opts->slb_size) {
 | |
|         return -1; /* Bad slot number */
 | |
|     }
 | |
|     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 | |
|         return -1; /* Reserved bits set */
 | |
|     }
 | |
|     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 | |
|         return -1; /* Bad segment size */
 | |
|     }
 | |
|     if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
 | |
|         return -1; /* 1T segment on MMU that doesn't support it */
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
 | |
| 
 | |
|         if (!sps1->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 | |
|             sps = sps1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!sps) {
 | |
|         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 | |
|                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 | |
|                      slot, esid, vsid);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     slb->esid = esid;
 | |
|     slb->vsid = vsid;
 | |
|     slb->sps = sps;
 | |
| 
 | |
|     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
 | |
|             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 | |
|             slb->esid, slb->vsid);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= cpu->hash64_opts->slb_size) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->esid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= cpu->hash64_opts->slb_size) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->vsid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb;
 | |
| 
 | |
|     if (!msr_is_64bit(env, env->msr)) {
 | |
|         rb &= 0xffffffff;
 | |
|     }
 | |
|     slb = slb_lookup(cpu, rb);
 | |
|     if (slb == NULL) {
 | |
|         *rt = (target_ulong)-1ul;
 | |
|     } else {
 | |
|         *rt = slb->vsid;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 | |
|         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 | |
|                                POWERPC_EXCP_INVAL, GETPC());
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 | |
|         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 | |
|                                POWERPC_EXCP_INVAL, GETPC());
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 | |
|         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 | |
|                                POWERPC_EXCP_INVAL, GETPC());
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 | |
|         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 | |
|                                POWERPC_EXCP_INVAL, GETPC());
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| /* Check No-Execute or Guarded Storage */
 | |
| static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
 | |
|                                               ppc_hash_pte64_t pte)
 | |
| {
 | |
|     /* Exec permissions CANNOT take away read or write permissions */
 | |
|     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
 | |
|             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
| }
 | |
| 
 | |
| /* Check Basic Storage Protection */
 | |
| static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 | |
|                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     unsigned pp, key;
 | |
|     /*
 | |
|      * Some pp bit combinations have undefined behaviour, so default
 | |
|      * to no access in those cases
 | |
|      */
 | |
|     int prot = 0;
 | |
| 
 | |
|     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 | |
|              : (slb->vsid & SLB_VSID_KS));
 | |
|     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 | |
| 
 | |
|     if (key == 0) {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x1:
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|             break;
 | |
| 
 | |
|         case 0x3:
 | |
|         case 0x6:
 | |
|             prot = PAGE_READ | PAGE_EXEC;
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x6:
 | |
|             break;
 | |
| 
 | |
|         case 0x1:
 | |
|         case 0x3:
 | |
|             prot = PAGE_READ | PAGE_EXEC;
 | |
|             break;
 | |
| 
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| /* Check the instruction access permissions specified in the IAMR */
 | |
| static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
 | |
| 
 | |
|     /*
 | |
|      * An instruction fetch is permitted if the IAMR bit is 0.
 | |
|      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
 | |
|      * can only take away EXEC permissions not READ or WRITE permissions.
 | |
|      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
 | |
|      * EXEC permissions are allowed.
 | |
|      */
 | |
|     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
 | |
|                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
| }
 | |
| 
 | |
| static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int key, amrbits;
 | |
|     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
| 
 | |
|     /* Only recent MMUs implement Virtual Page Class Key Protection */
 | |
|     if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
 | |
|         return prot;
 | |
|     }
 | |
| 
 | |
|     key = HPTE64_R_KEY(pte.pte1);
 | |
|     amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
 | |
| 
 | |
|     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 | |
|     /*         env->spr[SPR_AMR]); */
 | |
| 
 | |
|     /*
 | |
|      * A store is permitted if the AMR bit is 0. Remove write
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x2) {
 | |
|         prot &= ~PAGE_WRITE;
 | |
|     }
 | |
|     /*
 | |
|      * A load is permitted if the AMR bit is 0. Remove read
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x1) {
 | |
|         prot &= ~PAGE_READ;
 | |
|     }
 | |
| 
 | |
|     switch (env->mmu_model) {
 | |
|     /*
 | |
|      * MMU version 2.07 and later support IAMR
 | |
|      * Check if the IAMR allows the instruction access - it will return
 | |
|      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
 | |
|      * if it does (and prot will be unchanged indicating execution support).
 | |
|      */
 | |
|     case POWERPC_MMU_2_07:
 | |
|     case POWERPC_MMU_3_00:
 | |
|         prot &= ppc_hash64_iamr_prot(cpu, key);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
 | |
|                                              hwaddr ptex, int n)
 | |
| {
 | |
|     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 | |
|     hwaddr base;
 | |
|     hwaddr plen = n * HASH_PTE_SIZE_64;
 | |
|     const ppc_hash_pte64_t *hptes;
 | |
| 
 | |
|     if (cpu->vhyp) {
 | |
|         PPCVirtualHypervisorClass *vhc =
 | |
|             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 | |
|         return vhc->map_hptes(cpu->vhyp, ptex, n);
 | |
|     }
 | |
|     base = ppc_hash64_hpt_base(cpu);
 | |
| 
 | |
|     if (!base) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
 | |
|                               MEMTXATTRS_UNSPECIFIED);
 | |
|     if (plen < (n * HASH_PTE_SIZE_64)) {
 | |
|         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
 | |
|     }
 | |
|     return hptes;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
 | |
|                             hwaddr ptex, int n)
 | |
| {
 | |
|     if (cpu->vhyp) {
 | |
|         PPCVirtualHypervisorClass *vhc =
 | |
|             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 | |
|         vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
 | |
|                         false, n * HASH_PTE_SIZE_64);
 | |
| }
 | |
| 
 | |
| static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
 | |
|                                 uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (!(pte0 & HPTE64_V_LARGE)) {
 | |
|         if (sps->page_shift != 12) {
 | |
|             /* 4kiB page in a non 4kiB segment */
 | |
|             return 0;
 | |
|         }
 | |
|         /* Normal 4kiB page */
 | |
|         return 12;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const PPCHash64PageSize *ps = &sps->enc[i];
 | |
|         uint64_t mask;
 | |
| 
 | |
|         if (!ps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (ps->page_shift == 12) {
 | |
|             /* L bit is set so this can't be a 4kiB page */
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 | |
| 
 | |
|         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 | |
|             return ps->page_shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0; /* Bad page size encoding */
 | |
| }
 | |
| 
 | |
| static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
 | |
| {
 | |
|     /* Insert B into pte0 */
 | |
|     *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
 | |
|             ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
 | |
|              (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
 | |
| 
 | |
|     /* Remove B from pte1 */
 | |
|     *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 | |
|                                      const PPCHash64SegmentPageSizes *sps,
 | |
|                                      target_ulong ptem,
 | |
|                                      ppc_hash_pte64_t *pte, unsigned *pshift)
 | |
| {
 | |
|     int i;
 | |
|     const ppc_hash_pte64_t *pteg;
 | |
|     target_ulong pte0, pte1;
 | |
|     target_ulong ptex;
 | |
| 
 | |
|     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
 | |
|     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 | |
|     if (!pteg) {
 | |
|         return -1;
 | |
|     }
 | |
|     for (i = 0; i < HPTES_PER_GROUP; i++) {
 | |
|         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
 | |
|         /*
 | |
|          * pte0 contains the valid bit and must be read before pte1,
 | |
|          * otherwise we might see an old pte1 with a new valid bit and
 | |
|          * thus an inconsistent hpte value
 | |
|          */
 | |
|         smp_rmb();
 | |
|         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
 | |
| 
 | |
|         /* Convert format if necessary */
 | |
|         if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
 | |
|             ppc64_v3_new_to_old_hpte(&pte0, &pte1);
 | |
|         }
 | |
| 
 | |
|         /* This compares V, B, H (secondary) and the AVPN */
 | |
|         if (HPTE64_V_COMPARE(pte0, ptem)) {
 | |
|             *pshift = hpte_page_shift(sps, pte0, pte1);
 | |
|             /*
 | |
|              * If there is no match, ignore the PTE, it could simply
 | |
|              * be for a different segment size encoding and the
 | |
|              * architecture specifies we should not match. Linux will
 | |
|              * potentially leave behind PTEs for the wrong base page
 | |
|              * size when demoting segments.
 | |
|              */
 | |
|             if (*pshift == 0) {
 | |
|                 continue;
 | |
|             }
 | |
|             /*
 | |
|              * We don't do anything with pshift yet as qemu TLB only
 | |
|              * deals with 4K pages anyway
 | |
|              */
 | |
|             pte->pte0 = pte0;
 | |
|             pte->pte1 = pte1;
 | |
|             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 | |
|             return ptex + i;
 | |
|         }
 | |
|     }
 | |
|     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 | |
|     /*
 | |
|      * We didn't find a valid entry.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 | |
|                                      ppc_slb_t *slb, target_ulong eaddr,
 | |
|                                      ppc_hash_pte64_t *pte, unsigned *pshift)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     hwaddr hash, ptex;
 | |
|     uint64_t vsid, epnmask, epn, ptem;
 | |
|     const PPCHash64SegmentPageSizes *sps = slb->sps;
 | |
| 
 | |
|     /*
 | |
|      * The SLB store path should prevent any bad page size encodings
 | |
|      * getting in there, so:
 | |
|      */
 | |
|     assert(sps);
 | |
| 
 | |
|     /* If ISL is set in LPCR we need to clamp the page size to 4K */
 | |
|     if (env->spr[SPR_LPCR] & LPCR_ISL) {
 | |
|         /* We assume that when using TCG, 4k is first entry of SPS */
 | |
|         sps = &cpu->hash64_opts->sps[0];
 | |
|         assert(sps->page_shift == 12);
 | |
|     }
 | |
| 
 | |
|     epnmask = ~((1ULL << sps->page_shift) - 1);
 | |
| 
 | |
|     if (slb->vsid & SLB_VSID_B) {
 | |
|         /* 1TB segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 | |
|         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 | |
|     } else {
 | |
|         /* 256M segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 | |
|         hash = vsid ^ (epn >> sps->page_shift);
 | |
|     }
 | |
|     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 | |
|     ptem |= HPTE64_V_VALID;
 | |
| 
 | |
|     /* Page address translation */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 | |
|             " hash " TARGET_FMT_plx "\n",
 | |
|             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
 | |
| 
 | |
|     /* Primary PTEG lookup */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 | |
|             " hash=" TARGET_FMT_plx "\n",
 | |
|             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
 | |
|             vsid, ptem,  hash);
 | |
|     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 | |
| 
 | |
|     if (ptex == -1) {
 | |
|         /* Secondary PTEG lookup */
 | |
|         ptem |= HPTE64_V_SECONDARY;
 | |
|         qemu_log_mask(CPU_LOG_MMU,
 | |
|                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 | |
|                 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
 | |
|                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
 | |
| 
 | |
|         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 | |
|     }
 | |
| 
 | |
|     return ptex;
 | |
| }
 | |
| 
 | |
| unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 | |
|                                           uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (!(pte0 & HPTE64_V_LARGE)) {
 | |
|         return 12;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The encodings in env->sps need to be carefully chosen so that
 | |
|      * this gives an unambiguous result.
 | |
|      */
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
 | |
|         unsigned shift;
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         shift = hpte_page_shift(sps, pte0, pte1);
 | |
|         if (shift) {
 | |
|             return shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool ppc_hash64_use_vrma(CPUPPCState *env)
 | |
| {
 | |
|     switch (env->mmu_model) {
 | |
|     case POWERPC_MMU_3_00:
 | |
|         /*
 | |
|          * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
 | |
|          * register no longer exist
 | |
|          */
 | |
|         return true;
 | |
| 
 | |
|     default:
 | |
|         return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
 | |
| {
 | |
|     CPUPPCState *env = &POWERPC_CPU(cs)->env;
 | |
|     bool vpm;
 | |
| 
 | |
|     if (msr_ir) {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 | |
|     } else {
 | |
|         vpm = ppc_hash64_use_vrma(env);
 | |
|     }
 | |
|     if (vpm && !msr_hv) {
 | |
|         cs->exception_index = POWERPC_EXCP_HISI;
 | |
|     } else {
 | |
|         cs->exception_index = POWERPC_EXCP_ISI;
 | |
|     }
 | |
|     env->error_code = error_code;
 | |
| }
 | |
| 
 | |
| static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
 | |
| {
 | |
|     CPUPPCState *env = &POWERPC_CPU(cs)->env;
 | |
|     bool vpm;
 | |
| 
 | |
|     if (msr_dr) {
 | |
|         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 | |
|     } else {
 | |
|         vpm = ppc_hash64_use_vrma(env);
 | |
|     }
 | |
|     if (vpm && !msr_hv) {
 | |
|         cs->exception_index = POWERPC_EXCP_HDSI;
 | |
|         env->spr[SPR_HDAR] = dar;
 | |
|         env->spr[SPR_HDSISR] = dsisr;
 | |
|     } else {
 | |
|         cs->exception_index = POWERPC_EXCP_DSI;
 | |
|         env->spr[SPR_DAR] = dar;
 | |
|         env->spr[SPR_DSISR] = dsisr;
 | |
|    }
 | |
|     env->error_code = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
 | |
| {
 | |
|     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;
 | |
| 
 | |
|     if (cpu->vhyp) {
 | |
|         PPCVirtualHypervisorClass *vhc =
 | |
|             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 | |
|         vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
 | |
|         return;
 | |
|     }
 | |
|     base = ppc_hash64_hpt_base(cpu);
 | |
| 
 | |
| 
 | |
|     /* The HW performs a non-atomic byte update */
 | |
|     stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
 | |
| }
 | |
| 
 | |
| static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
 | |
| {
 | |
|     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;
 | |
| 
 | |
|     if (cpu->vhyp) {
 | |
|         PPCVirtualHypervisorClass *vhc =
 | |
|             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 | |
|         vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
 | |
|         return;
 | |
|     }
 | |
|     base = ppc_hash64_hpt_base(cpu);
 | |
| 
 | |
|     /* The HW performs a non-atomic byte update */
 | |
|     stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
 | |
| }
 | |
| 
 | |
| static target_ulong rmls_limit(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     /*
 | |
|      * In theory the meanings of RMLS values are implementation
 | |
|      * dependent.  In practice, this seems to have been the set from
 | |
|      * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
 | |
|      *
 | |
|      * Unsupported values mean the OS has shot itself in the
 | |
|      * foot. Return a 0-sized RMA in this case, which we expect
 | |
|      * to trigger an immediate DSI or ISI
 | |
|      */
 | |
|     static const target_ulong rma_sizes[16] = {
 | |
|         [0] = 256 * GiB,
 | |
|         [1] = 16 * GiB,
 | |
|         [2] = 1 * GiB,
 | |
|         [3] = 64 * MiB,
 | |
|         [4] = 256 * MiB,
 | |
|         [7] = 128 * MiB,
 | |
|         [8] = 32 * MiB,
 | |
|     };
 | |
|     target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
 | |
| 
 | |
|     return rma_sizes[rmls];
 | |
| }
 | |
| 
 | |
| static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     target_ulong lpcr = env->spr[SPR_LPCR];
 | |
|     uint32_t vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
 | |
|     target_ulong vsid = SLB_VSID_VRMA | ((vrmasd << 4) & SLB_VSID_LLP_MASK);
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 | |
|         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
 | |
|             slb->esid = SLB_ESID_V;
 | |
|             slb->vsid = vsid;
 | |
|             slb->sps = sps;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     error_report("Bad page size encoding in LPCR[VRMASD]; LPCR=0x"
 | |
|                  TARGET_FMT_lx, lpcr);
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 | |
|                                 int rwx, int mmu_idx)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t vrma_slbe;
 | |
|     ppc_slb_t *slb;
 | |
|     unsigned apshift;
 | |
|     hwaddr ptex;
 | |
|     ppc_hash_pte64_t pte;
 | |
|     int exec_prot, pp_prot, amr_prot, prot;
 | |
|     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 | |
|     hwaddr raddr;
 | |
| 
 | |
|     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 | |
| 
 | |
|     /*
 | |
|      * Note on LPCR usage: 970 uses HID4, but our special variant of
 | |
|      * store_spr copies relevant fields into env->spr[SPR_LPCR].
 | |
|      * Similarily we filter unimplemented bits when storing into LPCR
 | |
|      * depending on the MMU version. This code can thus just use the
 | |
|      * LPCR "as-is".
 | |
|      */
 | |
| 
 | |
|     /* 1. Handle real mode accesses */
 | |
|     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 | |
|         /*
 | |
|          * Translation is supposedly "off", but in real mode the top 4
 | |
|          * effective address bits are (mostly) ignored
 | |
|          */
 | |
|         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 | |
| 
 | |
|         if (cpu->vhyp) {
 | |
|             /*
 | |
|              * In virtual hypervisor mode, there's nothing to do:
 | |
|              *   EA == GPA == qemu guest address
 | |
|              */
 | |
|         } else if (msr_hv || !env->has_hv_mode) {
 | |
|             /* In HV mode, add HRMOR if top EA bit is clear */
 | |
|             if (!(eaddr >> 63)) {
 | |
|                 raddr |= env->spr[SPR_HRMOR];
 | |
|             }
 | |
|         } else if (ppc_hash64_use_vrma(env)) {
 | |
|             /* Emulated VRMA mode */
 | |
|             slb = &vrma_slbe;
 | |
|             if (build_vrma_slbe(cpu, slb) != 0) {
 | |
|                 /* Invalid VRMA setup, machine check */
 | |
|                 cs->exception_index = POWERPC_EXCP_MCHECK;
 | |
|                 env->error_code = 0;
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             goto skip_slb_search;
 | |
|         } else {
 | |
|             target_ulong limit = rmls_limit(cpu);
 | |
| 
 | |
|             /* Emulated old-style RMO mode, bounds check against RMLS */
 | |
|             if (raddr >= limit) {
 | |
|                 if (rwx == 2) {
 | |
|                     ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
 | |
|                 } else {
 | |
|                     int dsisr = DSISR_PROTFAULT;
 | |
|                     if (rwx == 1) {
 | |
|                         dsisr |= DSISR_ISSTORE;
 | |
|                     }
 | |
|                     ppc_hash64_set_dsi(cs, eaddr, dsisr);
 | |
|                 }
 | |
|                 return 1;
 | |
|             }
 | |
| 
 | |
|             raddr |= env->spr[SPR_RMOR];
 | |
|         }
 | |
|         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 | |
|                      TARGET_PAGE_SIZE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* 2. Translation is on, so look up the SLB */
 | |
|     slb = slb_lookup(cpu, eaddr);
 | |
|     if (!slb) {
 | |
|         /* No entry found, check if in-memory segment tables are in use */
 | |
|         if (ppc64_use_proc_tbl(cpu)) {
 | |
|             /* TODO - Unsupported */
 | |
|             error_report("Segment Table Support Unimplemented");
 | |
|             exit(1);
 | |
|         }
 | |
|         /* Segment still not found, generate the appropriate interrupt */
 | |
|         if (rwx == 2) {
 | |
|             cs->exception_index = POWERPC_EXCP_ISEG;
 | |
|             env->error_code = 0;
 | |
|         } else {
 | |
|             cs->exception_index = POWERPC_EXCP_DSEG;
 | |
|             env->error_code = 0;
 | |
|             env->spr[SPR_DAR] = eaddr;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
| skip_slb_search:
 | |
| 
 | |
|     /* 3. Check for segment level no-execute violation */
 | |
|     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 | |
|         ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* 4. Locate the PTE in the hash table */
 | |
|     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 | |
|     if (ptex == -1) {
 | |
|         if (rwx == 2) {
 | |
|             ppc_hash64_set_isi(cs, SRR1_NOPTE);
 | |
|         } else {
 | |
|             int dsisr = DSISR_NOPTE;
 | |
|             if (rwx == 1) {
 | |
|                 dsisr |= DSISR_ISSTORE;
 | |
|             }
 | |
|             ppc_hash64_set_dsi(cs, eaddr, dsisr);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
 | |
| 
 | |
|     /* 5. Check access permissions */
 | |
| 
 | |
|     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
 | |
|     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 | |
|     amr_prot = ppc_hash64_amr_prot(cpu, pte);
 | |
|     prot = exec_prot & pp_prot & amr_prot;
 | |
| 
 | |
|     if ((need_prot[rwx] & ~prot) != 0) {
 | |
|         /* Access right violation */
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 | |
|         if (rwx == 2) {
 | |
|             int srr1 = 0;
 | |
|             if (PAGE_EXEC & ~exec_prot) {
 | |
|                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
 | |
|             } else if (PAGE_EXEC & ~pp_prot) {
 | |
|                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
 | |
|             }
 | |
|             if (PAGE_EXEC & ~amr_prot) {
 | |
|                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
 | |
|             }
 | |
|             ppc_hash64_set_isi(cs, srr1);
 | |
|         } else {
 | |
|             int dsisr = 0;
 | |
|             if (need_prot[rwx] & ~pp_prot) {
 | |
|                 dsisr |= DSISR_PROTFAULT;
 | |
|             }
 | |
|             if (rwx == 1) {
 | |
|                 dsisr |= DSISR_ISSTORE;
 | |
|             }
 | |
|             if (need_prot[rwx] & ~amr_prot) {
 | |
|                 dsisr |= DSISR_AMR;
 | |
|             }
 | |
|             ppc_hash64_set_dsi(cs, eaddr, dsisr);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 | |
| 
 | |
|     /* 6. Update PTE referenced and changed bits if necessary */
 | |
| 
 | |
|     if (!(pte.pte1 & HPTE64_R_R)) {
 | |
|         ppc_hash64_set_r(cpu, ptex, pte.pte1);
 | |
|     }
 | |
|     if (!(pte.pte1 & HPTE64_R_C)) {
 | |
|         if (rwx == 1) {
 | |
|             ppc_hash64_set_c(cpu, ptex, pte.pte1);
 | |
|         } else {
 | |
|             /*
 | |
|              * Treat the page as read-only for now, so that a later write
 | |
|              * will pass through this function again to set the C bit
 | |
|              */
 | |
|             prot &= ~PAGE_WRITE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* 7. Determine the real address from the PTE */
 | |
| 
 | |
|     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
 | |
| 
 | |
|     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                  prot, mmu_idx, 1ULL << apshift);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t vrma_slbe;
 | |
|     ppc_slb_t *slb;
 | |
|     hwaddr ptex, raddr;
 | |
|     ppc_hash_pte64_t pte;
 | |
|     unsigned apshift;
 | |
| 
 | |
|     /* Handle real mode */
 | |
|     if (msr_dr == 0) {
 | |
|         /* In real mode the top 4 effective address bits are ignored */
 | |
|         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
 | |
| 
 | |
|         if (cpu->vhyp) {
 | |
|             /*
 | |
|              * In virtual hypervisor mode, there's nothing to do:
 | |
|              *   EA == GPA == qemu guest address
 | |
|              */
 | |
|             return raddr;
 | |
|         } else if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
 | |
|             /* In HV mode, add HRMOR if top EA bit is clear */
 | |
|             return raddr | env->spr[SPR_HRMOR];
 | |
|         } else if (ppc_hash64_use_vrma(env)) {
 | |
|             /* Emulated VRMA mode */
 | |
|             slb = &vrma_slbe;
 | |
|             if (build_vrma_slbe(cpu, slb) != 0) {
 | |
|                 return -1;
 | |
|             }
 | |
|         } else {
 | |
|             target_ulong limit = rmls_limit(cpu);
 | |
| 
 | |
|             /* Emulated old-style RMO mode, bounds check against RMLS */
 | |
|             if (raddr >= limit) {
 | |
|                 return -1;
 | |
|             }
 | |
|             return raddr | env->spr[SPR_RMOR];
 | |
|         }
 | |
|     } else {
 | |
|         slb = slb_lookup(cpu, addr);
 | |
|         if (!slb) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
 | |
|     if (ptex == -1) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
 | |
|         & TARGET_PAGE_MASK;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
 | |
|                                target_ulong pte0, target_ulong pte1)
 | |
| {
 | |
|     /*
 | |
|      * XXX: given the fact that there are too many segments to
 | |
|      * invalidate, and we still don't have a tlb_flush_mask(env, n,
 | |
|      * mask) in QEMU, we just invalidate all TLBs
 | |
|      */
 | |
|     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
 | |
| }
 | |
| 
 | |
| void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
 | |
| {
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
| 
 | |
|     env->spr[SPR_LPCR] = val & pcc->lpcr_mask;
 | |
| }
 | |
| 
 | |
| void helper_store_lpcr(CPUPPCState *env, target_ulong val)
 | |
| {
 | |
|     PowerPCCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     ppc_store_lpcr(cpu, val);
 | |
| }
 | |
| 
 | |
| void ppc_hash64_init(PowerPCCPU *cpu)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     if (!pcc->hash64_opts) {
 | |
|         assert(!(env->mmu_model & POWERPC_MMU_64));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
 | |
| }
 | |
| 
 | |
| void ppc_hash64_finalize(PowerPCCPU *cpu)
 | |
| {
 | |
|     g_free(cpu->hash64_opts);
 | |
| }
 | |
| 
 | |
| const PPCHash64Options ppc_hash64_opts_basic = {
 | |
|     .flags = 0,
 | |
|     .slb_size = 64,
 | |
|     .sps = {
 | |
|         { .page_shift = 12, /* 4K */
 | |
|           .slb_enc = 0,
 | |
|           .enc = { { .page_shift = 12, .pte_enc = 0 } }
 | |
|         },
 | |
|         { .page_shift = 24, /* 16M */
 | |
|           .slb_enc = 0x100,
 | |
|           .enc = { { .page_shift = 24, .pte_enc = 0 } }
 | |
|         },
 | |
|     },
 | |
| };
 | |
| 
 | |
| const PPCHash64Options ppc_hash64_opts_POWER7 = {
 | |
|     .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
 | |
|     .slb_size = 32,
 | |
|     .sps = {
 | |
|         {
 | |
|             .page_shift = 12, /* 4K */
 | |
|             .slb_enc = 0,
 | |
|             .enc = { { .page_shift = 12, .pte_enc = 0 },
 | |
|                      { .page_shift = 16, .pte_enc = 0x7 },
 | |
|                      { .page_shift = 24, .pte_enc = 0x38 }, },
 | |
|         },
 | |
|         {
 | |
|             .page_shift = 16, /* 64K */
 | |
|             .slb_enc = SLB_VSID_64K,
 | |
|             .enc = { { .page_shift = 16, .pte_enc = 0x1 },
 | |
|                      { .page_shift = 24, .pte_enc = 0x8 }, },
 | |
|         },
 | |
|         {
 | |
|             .page_shift = 24, /* 16M */
 | |
|             .slb_enc = SLB_VSID_16M,
 | |
|             .enc = { { .page_shift = 24, .pte_enc = 0 }, },
 | |
|         },
 | |
|         {
 | |
|             .page_shift = 34, /* 16G */
 | |
|             .slb_enc = SLB_VSID_16G,
 | |
|             .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
 | |
|         },
 | |
|     }
 | |
| };
 | |
| 
 | |
| void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
 | |
|                                  bool (*cb)(void *, uint32_t, uint32_t),
 | |
|                                  void *opaque)
 | |
| {
 | |
|     PPCHash64Options *opts = cpu->hash64_opts;
 | |
|     int i;
 | |
|     int n = 0;
 | |
|     bool ci_largepage = false;
 | |
| 
 | |
|     assert(opts);
 | |
| 
 | |
|     n = 0;
 | |
|     for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
 | |
|         PPCHash64SegmentPageSizes *sps = &opts->sps[i];
 | |
|         int j;
 | |
|         int m = 0;
 | |
| 
 | |
|         assert(n <= i);
 | |
| 
 | |
|         if (!sps->page_shift) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
 | |
|             PPCHash64PageSize *ps = &sps->enc[j];
 | |
| 
 | |
|             assert(m <= j);
 | |
|             if (!ps->page_shift) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (cb(opaque, sps->page_shift, ps->page_shift)) {
 | |
|                 if (ps->page_shift >= 16) {
 | |
|                     ci_largepage = true;
 | |
|                 }
 | |
|                 sps->enc[m++] = *ps;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Clear rest of the row */
 | |
|         for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
 | |
|             memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
 | |
|         }
 | |
| 
 | |
|         if (m) {
 | |
|             n++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the rest of the table */
 | |
|     for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
 | |
|         memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
 | |
|     }
 | |
| 
 | |
|     if (!ci_largepage) {
 | |
|         opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
 | |
|     }
 | |
| }
 |