mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 9a4670be7f
			
		
	
	
		9a4670be7f
		
	
	
	
	
		
			
			According to AArch64.TagCheckFault, none of the other ISS values are provided, so we do not need to go so far as merge_syn_data_abort. But we were missing the WnR bit. Tested-by: Andrey Konovalov <andreyknvl@google.com> Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20200813200816.3037186-3-richard.henderson@linaro.org Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			931 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			931 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM v8.5-MemTag Operations
 | |
|  *
 | |
|  * Copyright (c) 2020 Linaro, Ltd.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/guest-random.h"
 | |
| 
 | |
| 
 | |
| static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
 | |
| {
 | |
|     if (exclude == 0xffff) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (offset == 0) {
 | |
|         while (exclude & (1 << tag)) {
 | |
|             tag = (tag + 1) & 15;
 | |
|         }
 | |
|     } else {
 | |
|         do {
 | |
|             do {
 | |
|                 tag = (tag + 1) & 15;
 | |
|             } while (exclude & (1 << tag));
 | |
|         } while (--offset > 0);
 | |
|     }
 | |
|     return tag;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * allocation_tag_mem:
 | |
|  * @env: the cpu environment
 | |
|  * @ptr_mmu_idx: the addressing regime to use for the virtual address
 | |
|  * @ptr: the virtual address for which to look up tag memory
 | |
|  * @ptr_access: the access to use for the virtual address
 | |
|  * @ptr_size: the number of bytes in the normal memory access
 | |
|  * @tag_access: the access to use for the tag memory
 | |
|  * @tag_size: the number of bytes in the tag memory access
 | |
|  * @ra: the return address for exception handling
 | |
|  *
 | |
|  * Our tag memory is formatted as a sequence of little-endian nibbles.
 | |
|  * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
 | |
|  * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
 | |
|  * for the higher addr.
 | |
|  *
 | |
|  * Here, resolve the physical address from the virtual address, and return
 | |
|  * a pointer to the corresponding tag byte.  Exit with exception if the
 | |
|  * virtual address is not accessible for @ptr_access.
 | |
|  *
 | |
|  * The @ptr_size and @tag_size values may not have an obvious relation
 | |
|  * due to the alignment of @ptr, and the number of tag checks required.
 | |
|  *
 | |
|  * If there is no tag storage corresponding to @ptr, return NULL.
 | |
|  */
 | |
| static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
 | |
|                                    uint64_t ptr, MMUAccessType ptr_access,
 | |
|                                    int ptr_size, MMUAccessType tag_access,
 | |
|                                    int tag_size, uintptr_t ra)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     /* Tag storage not implemented.  */
 | |
|     return NULL;
 | |
| #else
 | |
|     uintptr_t index;
 | |
|     CPUIOTLBEntry *iotlbentry;
 | |
|     int in_page, flags;
 | |
|     ram_addr_t ptr_ra;
 | |
|     hwaddr ptr_paddr, tag_paddr, xlat;
 | |
|     MemoryRegion *mr;
 | |
|     ARMASIdx tag_asi;
 | |
|     AddressSpace *tag_as;
 | |
|     void *host;
 | |
| 
 | |
|     /*
 | |
|      * Probe the first byte of the virtual address.  This raises an
 | |
|      * exception for inaccessible pages, and resolves the virtual address
 | |
|      * into the softmmu tlb.
 | |
|      *
 | |
|      * When RA == 0, this is for mte_probe1.  The page is expected to be
 | |
|      * valid.  Indicate to probe_access_flags no-fault, then assert that
 | |
|      * we received a valid page.
 | |
|      */
 | |
|     flags = probe_access_flags(env, ptr, ptr_access, ptr_mmu_idx,
 | |
|                                ra == 0, &host, ra);
 | |
|     assert(!(flags & TLB_INVALID_MASK));
 | |
| 
 | |
|     /*
 | |
|      * Find the iotlbentry for ptr.  This *must* be present in the TLB
 | |
|      * because we just found the mapping.
 | |
|      * TODO: Perhaps there should be a cputlb helper that returns a
 | |
|      * matching tlb entry + iotlb entry.
 | |
|      */
 | |
|     index = tlb_index(env, ptr_mmu_idx, ptr);
 | |
| # ifdef CONFIG_DEBUG_TCG
 | |
|     {
 | |
|         CPUTLBEntry *entry = tlb_entry(env, ptr_mmu_idx, ptr);
 | |
|         target_ulong comparator = (ptr_access == MMU_DATA_LOAD
 | |
|                                    ? entry->addr_read
 | |
|                                    : tlb_addr_write(entry));
 | |
|         g_assert(tlb_hit(comparator, ptr));
 | |
|     }
 | |
| # endif
 | |
|     iotlbentry = &env_tlb(env)->d[ptr_mmu_idx].iotlb[index];
 | |
| 
 | |
|     /* If the virtual page MemAttr != Tagged, access unchecked. */
 | |
|     if (!arm_tlb_mte_tagged(&iotlbentry->attrs)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If not backed by host ram, there is no tag storage: access unchecked.
 | |
|      * This is probably a guest os bug though, so log it.
 | |
|      */
 | |
|     if (unlikely(flags & TLB_MMIO)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
 | |
|                       "but is not backed by host ram\n", ptr);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The Normal memory access can extend to the next page.  E.g. a single
 | |
|      * 8-byte access to the last byte of a page will check only the last
 | |
|      * tag on the first page.
 | |
|      * Any page access exception has priority over tag check exception.
 | |
|      */
 | |
|     in_page = -(ptr | TARGET_PAGE_MASK);
 | |
|     if (unlikely(ptr_size > in_page)) {
 | |
|         void *ignore;
 | |
|         flags |= probe_access_flags(env, ptr + in_page, ptr_access,
 | |
|                                     ptr_mmu_idx, ra == 0, &ignore, ra);
 | |
|         assert(!(flags & TLB_INVALID_MASK));
 | |
|     }
 | |
| 
 | |
|     /* Any debug exception has priority over a tag check exception. */
 | |
|     if (unlikely(flags & TLB_WATCHPOINT)) {
 | |
|         int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
 | |
|         assert(ra != 0);
 | |
|         cpu_check_watchpoint(env_cpu(env), ptr, ptr_size,
 | |
|                              iotlbentry->attrs, wp, ra);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Find the physical address within the normal mem space.
 | |
|      * The memory region lookup must succeed because TLB_MMIO was
 | |
|      * not set in the cputlb lookup above.
 | |
|      */
 | |
|     mr = memory_region_from_host(host, &ptr_ra);
 | |
|     tcg_debug_assert(mr != NULL);
 | |
|     tcg_debug_assert(memory_region_is_ram(mr));
 | |
|     ptr_paddr = ptr_ra;
 | |
|     do {
 | |
|         ptr_paddr += mr->addr;
 | |
|         mr = mr->container;
 | |
|     } while (mr);
 | |
| 
 | |
|     /* Convert to the physical address in tag space.  */
 | |
|     tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
 | |
| 
 | |
|     /* Look up the address in tag space. */
 | |
|     tag_asi = iotlbentry->attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
 | |
|     tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
 | |
|     mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
 | |
|                                  tag_access == MMU_DATA_STORE,
 | |
|                                  iotlbentry->attrs);
 | |
| 
 | |
|     /*
 | |
|      * Note that @mr will never be NULL.  If there is nothing in the address
 | |
|      * space at @tag_paddr, the translation will return the unallocated memory
 | |
|      * region.  For our purposes, the result must be ram.
 | |
|      */
 | |
|     if (unlikely(!memory_region_is_ram(mr))) {
 | |
|         /* ??? Failure is a board configuration error. */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
 | |
|                       "Normal Memory @ 0x%" HWADDR_PRIx "\n",
 | |
|                       tag_paddr, ptr_paddr);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Ensure the tag memory is dirty on write, for migration.
 | |
|      * Tag memory can never contain code or display memory (vga).
 | |
|      */
 | |
|     if (tag_access == MMU_DATA_STORE) {
 | |
|         ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
 | |
|         cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
 | |
|     }
 | |
| 
 | |
|     return memory_region_get_ram_ptr(mr) + xlat;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
 | |
| {
 | |
|     uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
 | |
|     int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
 | |
|     int start = extract32(env->cp15.rgsr_el1, 0, 4);
 | |
|     int seed = extract32(env->cp15.rgsr_el1, 8, 16);
 | |
|     int offset, i, rtag;
 | |
| 
 | |
|     /*
 | |
|      * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
 | |
|      * deterministic algorithm.  Except that with RRND==1 the kernel is
 | |
|      * not required to have set RGSR_EL1.SEED != 0, which is required for
 | |
|      * the deterministic algorithm to function.  So we force a non-zero
 | |
|      * SEED for that case.
 | |
|      */
 | |
|     if (unlikely(seed == 0) && rrnd) {
 | |
|         do {
 | |
|             Error *err = NULL;
 | |
|             uint16_t two;
 | |
| 
 | |
|             if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
 | |
|                 /*
 | |
|                  * Failed, for unknown reasons in the crypto subsystem.
 | |
|                  * Best we can do is log the reason and use a constant seed.
 | |
|                  */
 | |
|                 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
 | |
|                               error_get_pretty(err));
 | |
|                 error_free(err);
 | |
|                 two = 1;
 | |
|             }
 | |
|             seed = two;
 | |
|         } while (seed == 0);
 | |
|     }
 | |
| 
 | |
|     /* RandomTag */
 | |
|     for (i = offset = 0; i < 4; ++i) {
 | |
|         /* NextRandomTagBit */
 | |
|         int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
 | |
|                    extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
 | |
|         seed = (top << 15) | (seed >> 1);
 | |
|         offset |= top << i;
 | |
|     }
 | |
|     rtag = choose_nonexcluded_tag(start, offset, exclude);
 | |
|     env->cp15.rgsr_el1 = rtag | (seed << 8);
 | |
| 
 | |
|     return address_with_allocation_tag(rn, rtag);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
 | |
|                          int32_t offset, uint32_t tag_offset)
 | |
| {
 | |
|     int start_tag = allocation_tag_from_addr(ptr);
 | |
|     uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
 | |
|     int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
 | |
| 
 | |
|     return address_with_allocation_tag(ptr + offset, rtag);
 | |
| }
 | |
| 
 | |
| static int load_tag1(uint64_t ptr, uint8_t *mem)
 | |
| {
 | |
|     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 | |
|     return extract32(*mem, ofs, 4);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uint8_t *mem;
 | |
|     int rtag = 0;
 | |
| 
 | |
|     /* Trap if accessing an invalid page.  */
 | |
|     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
 | |
|                              MMU_DATA_LOAD, 1, GETPC());
 | |
| 
 | |
|     /* Load if page supports tags. */
 | |
|     if (mem) {
 | |
|         rtag = load_tag1(ptr, mem);
 | |
|     }
 | |
| 
 | |
|     return address_with_allocation_tag(xt, rtag);
 | |
| }
 | |
| 
 | |
| static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
 | |
| {
 | |
|     if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
 | |
|         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
 | |
|                                     cpu_mmu_index(env, false), ra);
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* For use in a non-parallel context, store to the given nibble.  */
 | |
| static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
 | |
| {
 | |
|     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 | |
|     *mem = deposit32(*mem, ofs, 4, tag);
 | |
| }
 | |
| 
 | |
| /* For use in a parallel context, atomically store to the given nibble.  */
 | |
| static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
 | |
| {
 | |
|     int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
 | |
|     uint8_t old = atomic_read(mem);
 | |
| 
 | |
|     while (1) {
 | |
|         uint8_t new = deposit32(old, ofs, 4, tag);
 | |
|         uint8_t cmp = atomic_cmpxchg(mem, old, new);
 | |
|         if (likely(cmp == old)) {
 | |
|             return;
 | |
|         }
 | |
|         old = cmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef void stg_store1(uint64_t, uint8_t *, int);
 | |
| 
 | |
| static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
 | |
|                           uintptr_t ra, stg_store1 store1)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uint8_t *mem;
 | |
| 
 | |
|     check_tag_aligned(env, ptr, ra);
 | |
| 
 | |
|     /* Trap if accessing an invalid page.  */
 | |
|     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
 | |
|                              MMU_DATA_STORE, 1, ra);
 | |
| 
 | |
|     /* Store if page supports tags. */
 | |
|     if (mem) {
 | |
|         store1(ptr, mem, allocation_tag_from_addr(xt));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 | |
| {
 | |
|     do_stg(env, ptr, xt, GETPC(), store_tag1);
 | |
| }
 | |
| 
 | |
| void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 | |
| {
 | |
|     do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
 | |
| }
 | |
| 
 | |
| void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uintptr_t ra = GETPC();
 | |
| 
 | |
|     check_tag_aligned(env, ptr, ra);
 | |
|     probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 | |
| }
 | |
| 
 | |
| static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
 | |
|                            uintptr_t ra, stg_store1 store1)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     int tag = allocation_tag_from_addr(xt);
 | |
|     uint8_t *mem1, *mem2;
 | |
| 
 | |
|     check_tag_aligned(env, ptr, ra);
 | |
| 
 | |
|     /*
 | |
|      * Trap if accessing an invalid page(s).
 | |
|      * This takes priority over !allocation_tag_access_enabled.
 | |
|      */
 | |
|     if (ptr & TAG_GRANULE) {
 | |
|         /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
 | |
|         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 | |
|                                   TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 | |
|         mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
 | |
|                                   MMU_DATA_STORE, TAG_GRANULE,
 | |
|                                   MMU_DATA_STORE, 1, ra);
 | |
| 
 | |
|         /* Store if page(s) support tags. */
 | |
|         if (mem1) {
 | |
|             store1(TAG_GRANULE, mem1, tag);
 | |
|         }
 | |
|         if (mem2) {
 | |
|             store1(0, mem2, tag);
 | |
|         }
 | |
|     } else {
 | |
|         /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
 | |
|         mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 | |
|                                   2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
 | |
|         if (mem1) {
 | |
|             tag |= tag << 4;
 | |
|             atomic_set(mem1, tag);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 | |
| {
 | |
|     do_st2g(env, ptr, xt, GETPC(), store_tag1);
 | |
| }
 | |
| 
 | |
| void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
 | |
| {
 | |
|     do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
 | |
| }
 | |
| 
 | |
| void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uintptr_t ra = GETPC();
 | |
|     int in_page = -(ptr | TARGET_PAGE_MASK);
 | |
| 
 | |
|     check_tag_aligned(env, ptr, ra);
 | |
| 
 | |
|     if (likely(in_page >= 2 * TAG_GRANULE)) {
 | |
|         probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
 | |
|     } else {
 | |
|         probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
 | |
|         probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define LDGM_STGM_SIZE  (4 << GMID_EL1_BS)
 | |
| 
 | |
| uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uintptr_t ra = GETPC();
 | |
|     void *tag_mem;
 | |
| 
 | |
|     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 | |
| 
 | |
|     /* Trap if accessing an invalid page.  */
 | |
|     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
 | |
|                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
 | |
|                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 | |
| 
 | |
|     /* The tag is squashed to zero if the page does not support tags.  */
 | |
|     if (!tag_mem) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 | |
|     /*
 | |
|      * We are loading 64-bits worth of tags.  The ordering of elements
 | |
|      * within the word corresponds to a 64-bit little-endian operation.
 | |
|      */
 | |
|     return ldq_le_p(tag_mem);
 | |
| }
 | |
| 
 | |
| void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
 | |
| {
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     uintptr_t ra = GETPC();
 | |
|     void *tag_mem;
 | |
| 
 | |
|     ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE);
 | |
| 
 | |
|     /* Trap if accessing an invalid page.  */
 | |
|     tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
 | |
|                                  LDGM_STGM_SIZE, MMU_DATA_LOAD,
 | |
|                                  LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra);
 | |
| 
 | |
|     /*
 | |
|      * Tag store only happens if the page support tags,
 | |
|      * and if the OS has enabled access to the tags.
 | |
|      */
 | |
|     if (!tag_mem) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6);
 | |
|     /*
 | |
|      * We are storing 64-bits worth of tags.  The ordering of elements
 | |
|      * within the word corresponds to a 64-bit little-endian operation.
 | |
|      */
 | |
|     stq_le_p(tag_mem, val);
 | |
| }
 | |
| 
 | |
| void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
 | |
| {
 | |
|     uintptr_t ra = GETPC();
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     int log2_dcz_bytes, log2_tag_bytes;
 | |
|     intptr_t dcz_bytes, tag_bytes;
 | |
|     uint8_t *mem;
 | |
| 
 | |
|     /*
 | |
|      * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
 | |
|      * i.e. 32 bytes, which is an unreasonably small dcz anyway,
 | |
|      * to make sure that we can access one complete tag byte here.
 | |
|      */
 | |
|     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 | |
|     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 | |
|     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 | |
|     tag_bytes = (intptr_t)1 << log2_tag_bytes;
 | |
|     ptr &= -dcz_bytes;
 | |
| 
 | |
|     mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
 | |
|                              MMU_DATA_STORE, tag_bytes, ra);
 | |
|     if (mem) {
 | |
|         int tag_pair = (val & 0xf) * 0x11;
 | |
|         memset(mem, tag_pair, tag_bytes);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Record a tag check failure.  */
 | |
| static void mte_check_fail(CPUARMState *env, uint32_t desc,
 | |
|                            uint64_t dirty_ptr, uintptr_t ra)
 | |
| {
 | |
|     int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 | |
|     ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
 | |
|     int el, reg_el, tcf, select, is_write, syn;
 | |
|     uint64_t sctlr;
 | |
| 
 | |
|     reg_el = regime_el(env, arm_mmu_idx);
 | |
|     sctlr = env->cp15.sctlr_el[reg_el];
 | |
| 
 | |
|     switch (arm_mmu_idx) {
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|         el = 0;
 | |
|         tcf = extract64(sctlr, 38, 2);
 | |
|         break;
 | |
|     default:
 | |
|         el = reg_el;
 | |
|         tcf = extract64(sctlr, 40, 2);
 | |
|     }
 | |
| 
 | |
|     switch (tcf) {
 | |
|     case 1:
 | |
|         /*
 | |
|          * Tag check fail causes a synchronous exception.
 | |
|          *
 | |
|          * In restore_state_to_opc, we set the exception syndrome
 | |
|          * for the load or store operation.  Unwind first so we
 | |
|          * may overwrite that with the syndrome for the tag check.
 | |
|          */
 | |
|         cpu_restore_state(env_cpu(env), ra, true);
 | |
|         env->exception.vaddress = dirty_ptr;
 | |
| 
 | |
|         is_write = FIELD_EX32(desc, MTEDESC, WRITE);
 | |
|         syn = syn_data_abort_no_iss(el != 0, 0, 0, 0, 0, is_write, 0x11);
 | |
|         raise_exception(env, EXCP_DATA_ABORT, syn, exception_target_el(env));
 | |
|         /* noreturn, but fall through to the assert anyway */
 | |
| 
 | |
|     case 0:
 | |
|         /*
 | |
|          * Tag check fail does not affect the PE.
 | |
|          * We eliminate this case by not setting MTE_ACTIVE
 | |
|          * in tb_flags, so that we never make this runtime call.
 | |
|          */
 | |
|         g_assert_not_reached();
 | |
| 
 | |
|     case 2:
 | |
|         /* Tag check fail causes asynchronous flag set.  */
 | |
|         mmu_idx = arm_mmu_idx_el(env, el);
 | |
|         if (regime_has_2_ranges(mmu_idx)) {
 | |
|             select = extract64(dirty_ptr, 55, 1);
 | |
|         } else {
 | |
|             select = 0;
 | |
|         }
 | |
|         env->cp15.tfsr_el[el] |= 1 << select;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         /* Case 3: Reserved. */
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "Tag check failure with SCTLR_EL%d.TCF%s "
 | |
|                       "set to reserved value %d\n",
 | |
|                       reg_el, el ? "" : "0", tcf);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform an MTE checked access for a single logical or atomic access.
 | |
|  */
 | |
| static bool mte_probe1_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
 | |
|                            uintptr_t ra, int bit55)
 | |
| {
 | |
|     int mem_tag, mmu_idx, ptr_tag, size;
 | |
|     MMUAccessType type;
 | |
|     uint8_t *mem;
 | |
| 
 | |
|     ptr_tag = allocation_tag_from_addr(ptr);
 | |
| 
 | |
|     if (tcma_check(desc, bit55, ptr_tag)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 | |
|     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     size = FIELD_EX32(desc, MTEDESC, ESIZE);
 | |
| 
 | |
|     mem = allocation_tag_mem(env, mmu_idx, ptr, type, size,
 | |
|                              MMU_DATA_LOAD, 1, ra);
 | |
|     if (!mem) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     mem_tag = load_tag1(ptr, mem);
 | |
|     return ptr_tag == mem_tag;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No-fault version of mte_check1, to be used by SVE for MemSingleNF.
 | |
|  * Returns false if the access is Checked and the check failed.  This
 | |
|  * is only intended to probe the tag -- the validity of the page must
 | |
|  * be checked beforehand.
 | |
|  */
 | |
| bool mte_probe1(CPUARMState *env, uint32_t desc, uint64_t ptr)
 | |
| {
 | |
|     int bit55 = extract64(ptr, 55, 1);
 | |
| 
 | |
|     /* If TBI is disabled, the access is unchecked. */
 | |
|     if (unlikely(!tbi_check(desc, bit55))) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return mte_probe1_int(env, desc, ptr, 0, bit55);
 | |
| }
 | |
| 
 | |
| uint64_t mte_check1(CPUARMState *env, uint32_t desc,
 | |
|                     uint64_t ptr, uintptr_t ra)
 | |
| {
 | |
|     int bit55 = extract64(ptr, 55, 1);
 | |
| 
 | |
|     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 | |
|     if (unlikely(!tbi_check(desc, bit55))) {
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(!mte_probe1_int(env, desc, ptr, ra, bit55))) {
 | |
|         mte_check_fail(env, desc, ptr, ra);
 | |
|     }
 | |
| 
 | |
|     return useronly_clean_ptr(ptr);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(mte_check1)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 | |
| {
 | |
|     return mte_check1(env, desc, ptr, GETPC());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform an MTE checked access for multiple logical accesses.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * checkN:
 | |
|  * @tag: tag memory to test
 | |
|  * @odd: true to begin testing at tags at odd nibble
 | |
|  * @cmp: the tag to compare against
 | |
|  * @count: number of tags to test
 | |
|  *
 | |
|  * Return the number of successful tests.
 | |
|  * Thus a return value < @count indicates a failure.
 | |
|  *
 | |
|  * A note about sizes: count is expected to be small.
 | |
|  *
 | |
|  * The most common use will be LDP/STP of two integer registers,
 | |
|  * which means 16 bytes of memory touching at most 2 tags, but
 | |
|  * often the access is aligned and thus just 1 tag.
 | |
|  *
 | |
|  * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
 | |
|  * touching at most 5 tags.  SVE LDR/STR (vector) with the default
 | |
|  * vector length is also 64 bytes; the maximum architectural length
 | |
|  * is 256 bytes touching at most 9 tags.
 | |
|  *
 | |
|  * The loop below uses 7 logical operations and 1 memory operation
 | |
|  * per tag pair.  An implementation that loads an aligned word and
 | |
|  * uses masking to ignore adjacent tags requires 18 logical operations
 | |
|  * and thus does not begin to pay off until 6 tags.
 | |
|  * Which, according to the survey above, is unlikely to be common.
 | |
|  */
 | |
| static int checkN(uint8_t *mem, int odd, int cmp, int count)
 | |
| {
 | |
|     int n = 0, diff;
 | |
| 
 | |
|     /* Replicate the test tag and compare.  */
 | |
|     cmp *= 0x11;
 | |
|     diff = *mem++ ^ cmp;
 | |
| 
 | |
|     if (odd) {
 | |
|         goto start_odd;
 | |
|     }
 | |
| 
 | |
|     while (1) {
 | |
|         /* Test even tag. */
 | |
|         if (unlikely((diff) & 0x0f)) {
 | |
|             break;
 | |
|         }
 | |
|         if (++n == count) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     start_odd:
 | |
|         /* Test odd tag. */
 | |
|         if (unlikely((diff) & 0xf0)) {
 | |
|             break;
 | |
|         }
 | |
|         if (++n == count) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         diff = *mem++ ^ cmp;
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| uint64_t mte_checkN(CPUARMState *env, uint32_t desc,
 | |
|                     uint64_t ptr, uintptr_t ra)
 | |
| {
 | |
|     int mmu_idx, ptr_tag, bit55;
 | |
|     uint64_t ptr_last, ptr_end, prev_page, next_page;
 | |
|     uint64_t tag_first, tag_end;
 | |
|     uint64_t tag_byte_first, tag_byte_end;
 | |
|     uint32_t esize, total, tag_count, tag_size, n, c;
 | |
|     uint8_t *mem1, *mem2;
 | |
|     MMUAccessType type;
 | |
| 
 | |
|     bit55 = extract64(ptr, 55, 1);
 | |
| 
 | |
|     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 | |
|     if (unlikely(!tbi_check(desc, bit55))) {
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     ptr_tag = allocation_tag_from_addr(ptr);
 | |
| 
 | |
|     if (tcma_check(desc, bit55, ptr_tag)) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 | |
|     type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     esize = FIELD_EX32(desc, MTEDESC, ESIZE);
 | |
|     total = FIELD_EX32(desc, MTEDESC, TSIZE);
 | |
| 
 | |
|     /* Find the addr of the end of the access, and of the last element. */
 | |
|     ptr_end = ptr + total;
 | |
|     ptr_last = ptr_end - esize;
 | |
| 
 | |
|     /* Round the bounds to the tag granule, and compute the number of tags. */
 | |
|     tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
 | |
|     tag_end = QEMU_ALIGN_UP(ptr_last, TAG_GRANULE);
 | |
|     tag_count = (tag_end - tag_first) / TAG_GRANULE;
 | |
| 
 | |
|     /* Round the bounds to twice the tag granule, and compute the bytes. */
 | |
|     tag_byte_first = QEMU_ALIGN_DOWN(ptr, 2 * TAG_GRANULE);
 | |
|     tag_byte_end = QEMU_ALIGN_UP(ptr_last, 2 * TAG_GRANULE);
 | |
| 
 | |
|     /* Locate the page boundaries. */
 | |
|     prev_page = ptr & TARGET_PAGE_MASK;
 | |
|     next_page = prev_page + TARGET_PAGE_SIZE;
 | |
| 
 | |
|     if (likely(tag_end - prev_page <= TARGET_PAGE_SIZE)) {
 | |
|         /* Memory access stays on one page. */
 | |
|         tag_size = (tag_byte_end - tag_byte_first) / (2 * TAG_GRANULE);
 | |
|         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, total,
 | |
|                                   MMU_DATA_LOAD, tag_size, ra);
 | |
|         if (!mem1) {
 | |
|             goto done;
 | |
|         }
 | |
|         /* Perform all of the comparisons. */
 | |
|         n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
 | |
|     } else {
 | |
|         /* Memory access crosses to next page. */
 | |
|         tag_size = (next_page - tag_byte_first) / (2 * TAG_GRANULE);
 | |
|         mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
 | |
|                                   MMU_DATA_LOAD, tag_size, ra);
 | |
| 
 | |
|         tag_size = (tag_byte_end - next_page) / (2 * TAG_GRANULE);
 | |
|         mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
 | |
|                                   ptr_end - next_page,
 | |
|                                   MMU_DATA_LOAD, tag_size, ra);
 | |
| 
 | |
|         /*
 | |
|          * Perform all of the comparisons.
 | |
|          * Note the possible but unlikely case of the operation spanning
 | |
|          * two pages that do not both have tagging enabled.
 | |
|          */
 | |
|         n = c = (next_page - tag_first) / TAG_GRANULE;
 | |
|         if (mem1) {
 | |
|             n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
 | |
|         }
 | |
|         if (n == c) {
 | |
|             if (!mem2) {
 | |
|                 goto done;
 | |
|             }
 | |
|             n += checkN(mem2, 0, ptr_tag, tag_count - c);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If we failed, we know which granule.  Compute the element that
 | |
|      * is first in that granule, and signal failure on that element.
 | |
|      */
 | |
|     if (unlikely(n < tag_count)) {
 | |
|         uint64_t fail_ofs;
 | |
| 
 | |
|         fail_ofs = tag_first + n * TAG_GRANULE - ptr;
 | |
|         fail_ofs = ROUND_UP(fail_ofs, esize);
 | |
|         mte_check_fail(env, desc, ptr + fail_ofs, ra);
 | |
|     }
 | |
| 
 | |
|  done:
 | |
|     return useronly_clean_ptr(ptr);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(mte_checkN)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 | |
| {
 | |
|     return mte_checkN(env, desc, ptr, GETPC());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform an MTE checked access for DC_ZVA.
 | |
|  */
 | |
| uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
 | |
| {
 | |
|     uintptr_t ra = GETPC();
 | |
|     int log2_dcz_bytes, log2_tag_bytes;
 | |
|     int mmu_idx, bit55;
 | |
|     intptr_t dcz_bytes, tag_bytes, i;
 | |
|     void *mem;
 | |
|     uint64_t ptr_tag, mem_tag, align_ptr;
 | |
| 
 | |
|     bit55 = extract64(ptr, 55, 1);
 | |
| 
 | |
|     /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
 | |
|     if (unlikely(!tbi_check(desc, bit55))) {
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     ptr_tag = allocation_tag_from_addr(ptr);
 | |
| 
 | |
|     if (tcma_check(desc, bit55, ptr_tag)) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
 | |
|      * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
 | |
|      * sure that we can access one complete tag byte here.
 | |
|      */
 | |
|     log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
 | |
|     log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
 | |
|     dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
 | |
|     tag_bytes = (intptr_t)1 << log2_tag_bytes;
 | |
|     align_ptr = ptr & -dcz_bytes;
 | |
| 
 | |
|     /*
 | |
|      * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 | |
|      * the original pointer for an invalid page.  But watchpoints require
 | |
|      * that we probe the actual space.  So do both.
 | |
|      */
 | |
|     mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
 | |
|     (void) probe_write(env, ptr, 1, mmu_idx, ra);
 | |
|     mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
 | |
|                              dcz_bytes, MMU_DATA_LOAD, tag_bytes, ra);
 | |
|     if (!mem) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
 | |
|      * it is quite easy to perform all of the comparisons at once without
 | |
|      * any extra masking.
 | |
|      *
 | |
|      * The most common zva block size is 64; some of the thunderx cpus use
 | |
|      * a block size of 128.  For user-only, aarch64_max_initfn will set the
 | |
|      * block size to 512.  Fill out the other cases for future-proofing.
 | |
|      *
 | |
|      * In order to be able to find the first miscompare later, we want the
 | |
|      * tag bytes to be in little-endian order.
 | |
|      */
 | |
|     switch (log2_tag_bytes) {
 | |
|     case 0: /* zva_blocksize 32 */
 | |
|         mem_tag = *(uint8_t *)mem;
 | |
|         ptr_tag *= 0x11u;
 | |
|         break;
 | |
|     case 1: /* zva_blocksize 64 */
 | |
|         mem_tag = cpu_to_le16(*(uint16_t *)mem);
 | |
|         ptr_tag *= 0x1111u;
 | |
|         break;
 | |
|     case 2: /* zva_blocksize 128 */
 | |
|         mem_tag = cpu_to_le32(*(uint32_t *)mem);
 | |
|         ptr_tag *= 0x11111111u;
 | |
|         break;
 | |
|     case 3: /* zva_blocksize 256 */
 | |
|         mem_tag = cpu_to_le64(*(uint64_t *)mem);
 | |
|         ptr_tag *= 0x1111111111111111ull;
 | |
|         break;
 | |
| 
 | |
|     default: /* zva_blocksize 512, 1024, 2048 */
 | |
|         ptr_tag *= 0x1111111111111111ull;
 | |
|         i = 0;
 | |
|         do {
 | |
|             mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
 | |
|             if (unlikely(mem_tag != ptr_tag)) {
 | |
|                 goto fail;
 | |
|             }
 | |
|             i += 8;
 | |
|             align_ptr += 16 * TAG_GRANULE;
 | |
|         } while (i < tag_bytes);
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (likely(mem_tag == ptr_tag)) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|  fail:
 | |
|     /* Locate the first nibble that differs. */
 | |
|     i = ctz64(mem_tag ^ ptr_tag) >> 4;
 | |
|     mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
 | |
| 
 | |
|  done:
 | |
|     return useronly_clean_ptr(ptr);
 | |
| }
 |