mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 0e5aac18bc
			
		
	
	
		0e5aac18bc
		
	
	
	
	
		
			
			In commit ce4afed839 ("target/arm: Implement AArch32 HCR and HCR2")
the HCR_EL2 register has been changed from type NO_RAW (no underlying
state and does not support raw access for state saving/loading) to
type CONST (TCG can assume the value to be constant), removing the
read/write accessors.
We forgot to remove the previous type ARM_CP_NO_RAW. This is not
really a problem since the field is overwritten. However it makes
code review confuse, so remove it.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200812111223.7787-1-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
	
			
		
			
				
	
	
		
			13167 lines
		
	
	
		
			468 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			13167 lines
		
	
	
		
			468 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM generic helpers.
 | |
|  *
 | |
|  * This code is licensed under the GNU GPL v2 or later.
 | |
|  *
 | |
|  * SPDX-License-Identifier: GPL-2.0-or-later
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/units.h"
 | |
| #include "target/arm/idau.h"
 | |
| #include "trace.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/crc32c.h"
 | |
| #include "qemu/qemu-print.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include <zlib.h> /* For crc32 */
 | |
| #include "hw/irq.h"
 | |
| #include "hw/semihosting/semihost.h"
 | |
| #include "sysemu/cpus.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/tcg.h"
 | |
| #include "qemu/range.h"
 | |
| #include "qapi/qapi-commands-machine-target.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/guest-random.h"
 | |
| #ifdef CONFIG_TCG
 | |
| #include "arm_ldst.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #endif
 | |
| 
 | |
| #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | |
|                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                bool s1_is_el0,
 | |
|                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | |
|                                target_ulong *page_size_ptr,
 | |
|                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
 | |
|     __attribute__((nonnull));
 | |
| #endif
 | |
| 
 | |
| static void switch_mode(CPUARMState *env, int mode);
 | |
| 
 | |
| static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
 | |
| 
 | |
|     /* VFP data registers are always little-endian.  */
 | |
|     if (reg < nregs) {
 | |
|         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         /* Aliases for Q regs.  */
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
 | |
|             return gdb_get_reg128(buf, q[0], q[1]);
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
 | |
|     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
 | |
|     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
 | |
| 
 | |
|     if (reg < nregs) {
 | |
|         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
 | |
|             q[0] = ldq_le_p(buf);
 | |
|             q[1] = ldq_le_p(buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 | |
|     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
 | |
|     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0 ... 31:
 | |
|     {
 | |
|         /* 128 bit FP register - quads are in LE order */
 | |
|         uint64_t *q = aa64_vfp_qreg(env, reg);
 | |
|         return gdb_get_reg128(buf, q[1], q[0]);
 | |
|     }
 | |
|     case 32:
 | |
|         /* FPSR */
 | |
|         return gdb_get_reg32(buf, vfp_get_fpsr(env));
 | |
|     case 33:
 | |
|         /* FPCR */
 | |
|         return gdb_get_reg32(buf,vfp_get_fpcr(env));
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0 ... 31:
 | |
|         /* 128 bit FP register */
 | |
|         {
 | |
|             uint64_t *q = aa64_vfp_qreg(env, reg);
 | |
|             q[0] = ldq_le_p(buf);
 | |
|             q[1] = ldq_le_p(buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     case 32:
 | |
|         /* FPSR */
 | |
|         vfp_set_fpsr(env, ldl_p(buf));
 | |
|         return 4;
 | |
|     case 33:
 | |
|         /* FPCR */
 | |
|         vfp_set_fpcr(env, ldl_p(buf));
 | |
|         return 4;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     assert(ri->fieldoffset);
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         return CPREG_FIELD64(env, ri);
 | |
|     } else {
 | |
|         return CPREG_FIELD32(env, ri);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t value)
 | |
| {
 | |
|     assert(ri->fieldoffset);
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         CPREG_FIELD64(env, ri) = value;
 | |
|     } else {
 | |
|         CPREG_FIELD32(env, ri) = value;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return (char *)env + ri->fieldoffset;
 | |
| }
 | |
| 
 | |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Raw read of a coprocessor register (as needed for migration, etc). */
 | |
|     if (ri->type & ARM_CP_CONST) {
 | |
|         return ri->resetvalue;
 | |
|     } else if (ri->raw_readfn) {
 | |
|         return ri->raw_readfn(env, ri);
 | |
|     } else if (ri->readfn) {
 | |
|         return ri->readfn(env, ri);
 | |
|     } else {
 | |
|         return raw_read(env, ri);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t v)
 | |
| {
 | |
|     /* Raw write of a coprocessor register (as needed for migration, etc).
 | |
|      * Note that constant registers are treated as write-ignored; the
 | |
|      * caller should check for success by whether a readback gives the
 | |
|      * value written.
 | |
|      */
 | |
|     if (ri->type & ARM_CP_CONST) {
 | |
|         return;
 | |
|     } else if (ri->raw_writefn) {
 | |
|         ri->raw_writefn(env, ri, v);
 | |
|     } else if (ri->writefn) {
 | |
|         ri->writefn(env, ri, v);
 | |
|     } else {
 | |
|         raw_write(env, ri, v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * arm_get/set_gdb_*: get/set a gdb register
 | |
|  * @env: the CPU state
 | |
|  * @buf: a buffer to copy to/from
 | |
|  * @reg: register number (offset from start of group)
 | |
|  *
 | |
|  * We return the number of bytes copied
 | |
|  */
 | |
| 
 | |
| static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     const ARMCPRegInfo *ri;
 | |
|     uint32_t key;
 | |
| 
 | |
|     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
 | |
|     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
 | |
|     if (ri) {
 | |
|         if (cpreg_field_is_64bit(ri)) {
 | |
|             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
 | |
|         } else {
 | |
|             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     switch (reg) {
 | |
|     /* The first 32 registers are the zregs */
 | |
|     case 0 ... 31:
 | |
|     {
 | |
|         int vq, len = 0;
 | |
|         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 | |
|             len += gdb_get_reg128(buf,
 | |
|                                   env->vfp.zregs[reg].d[vq * 2 + 1],
 | |
|                                   env->vfp.zregs[reg].d[vq * 2]);
 | |
|         }
 | |
|         return len;
 | |
|     }
 | |
|     case 32:
 | |
|         return gdb_get_reg32(buf, vfp_get_fpsr(env));
 | |
|     case 33:
 | |
|         return gdb_get_reg32(buf, vfp_get_fpcr(env));
 | |
|     /* then 16 predicates and the ffr */
 | |
|     case 34 ... 50:
 | |
|     {
 | |
|         int preg = reg - 34;
 | |
|         int vq, len = 0;
 | |
|         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 | |
|             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
 | |
|         }
 | |
|         return len;
 | |
|     }
 | |
|     case 51:
 | |
|     {
 | |
|         /*
 | |
|          * We report in Vector Granules (VG) which is 64bit in a Z reg
 | |
|          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
 | |
|          */
 | |
|         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
 | |
|         return gdb_get_reg32(buf, vq * 2);
 | |
|     }
 | |
|     default:
 | |
|         /* gdbstub asked for something out our range */
 | |
|         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     /* The first 32 registers are the zregs */
 | |
|     switch (reg) {
 | |
|     /* The first 32 registers are the zregs */
 | |
|     case 0 ... 31:
 | |
|     {
 | |
|         int vq, len = 0;
 | |
|         uint64_t *p = (uint64_t *) buf;
 | |
|         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
 | |
|             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
 | |
|             env->vfp.zregs[reg].d[vq * 2] = *p++;
 | |
|             len += 16;
 | |
|         }
 | |
|         return len;
 | |
|     }
 | |
|     case 32:
 | |
|         vfp_set_fpsr(env, *(uint32_t *)buf);
 | |
|         return 4;
 | |
|     case 33:
 | |
|         vfp_set_fpcr(env, *(uint32_t *)buf);
 | |
|         return 4;
 | |
|     case 34 ... 50:
 | |
|     {
 | |
|         int preg = reg - 34;
 | |
|         int vq, len = 0;
 | |
|         uint64_t *p = (uint64_t *) buf;
 | |
|         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
 | |
|             env->vfp.pregs[preg].p[vq / 4] = *p++;
 | |
|             len += 8;
 | |
|         }
 | |
|         return len;
 | |
|     }
 | |
|     case 51:
 | |
|         /* cannot set vg via gdbstub */
 | |
|         return 0;
 | |
|     default:
 | |
|         /* gdbstub asked for something out our range */
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| #endif /* TARGET_AARCH64 */
 | |
| 
 | |
| static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 | |
| {
 | |
|    /* Return true if the regdef would cause an assertion if you called
 | |
|     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 | |
|     * program bug for it not to have the NO_RAW flag).
 | |
|     * NB that returning false here doesn't necessarily mean that calling
 | |
|     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 | |
|     * read/write access functions which are safe for raw use" from "has
 | |
|     * read/write access functions which have side effects but has forgotten
 | |
|     * to provide raw access functions".
 | |
|     * The tests here line up with the conditions in read/write_raw_cp_reg()
 | |
|     * and assertions in raw_read()/raw_write().
 | |
|     */
 | |
|     if ((ri->type & ARM_CP_CONST) ||
 | |
|         ri->fieldoffset ||
 | |
|         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
 | |
| {
 | |
|     /* Write the coprocessor state from cpu->env to the (index,value) list. */
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | |
|         const ARMCPRegInfo *ri;
 | |
|         uint64_t newval;
 | |
| 
 | |
|         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
|         if (!ri) {
 | |
|             ok = false;
 | |
|             continue;
 | |
|         }
 | |
|         if (ri->type & ARM_CP_NO_RAW) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         newval = read_raw_cp_reg(&cpu->env, ri);
 | |
|         if (kvm_sync) {
 | |
|             /*
 | |
|              * Only sync if the previous list->cpustate sync succeeded.
 | |
|              * Rather than tracking the success/failure state for every
 | |
|              * item in the list, we just recheck "does the raw write we must
 | |
|              * have made in write_list_to_cpustate() read back OK" here.
 | |
|              */
 | |
|             uint64_t oldval = cpu->cpreg_values[i];
 | |
| 
 | |
|             if (oldval == newval) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             write_raw_cp_reg(&cpu->env, ri, oldval);
 | |
|             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             write_raw_cp_reg(&cpu->env, ri, newval);
 | |
|         }
 | |
|         cpu->cpreg_values[i] = newval;
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| bool write_list_to_cpustate(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | |
|         uint64_t v = cpu->cpreg_values[i];
 | |
|         const ARMCPRegInfo *ri;
 | |
| 
 | |
|         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
|         if (!ri) {
 | |
|             ok = false;
 | |
|             continue;
 | |
|         }
 | |
|         if (ri->type & ARM_CP_NO_RAW) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Write value and confirm it reads back as written
 | |
|          * (to catch read-only registers and partially read-only
 | |
|          * registers where the incoming migration value doesn't match)
 | |
|          */
 | |
|         write_raw_cp_reg(&cpu->env, ri, v);
 | |
|         if (read_raw_cp_reg(&cpu->env, ri) != v) {
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| static void add_cpreg_to_list(gpointer key, gpointer opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     uint64_t regidx;
 | |
|     const ARMCPRegInfo *ri;
 | |
| 
 | |
|     regidx = *(uint32_t *)key;
 | |
|     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
| 
 | |
|     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | |
|         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 | |
|         /* The value array need not be initialized at this point */
 | |
|         cpu->cpreg_array_len++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void count_cpreg(gpointer key, gpointer opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     uint64_t regidx;
 | |
|     const ARMCPRegInfo *ri;
 | |
| 
 | |
|     regidx = *(uint32_t *)key;
 | |
|     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
| 
 | |
|     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | |
|         cpu->cpreg_array_len++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 | |
|     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 | |
| 
 | |
|     if (aidx > bidx) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (aidx < bidx) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void init_cpreg_list(ARMCPU *cpu)
 | |
| {
 | |
|     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 | |
|      * Note that we require cpreg_tuples[] to be sorted by key ID.
 | |
|      */
 | |
|     GList *keys;
 | |
|     int arraylen;
 | |
| 
 | |
|     keys = g_hash_table_get_keys(cpu->cp_regs);
 | |
|     keys = g_list_sort(keys, cpreg_key_compare);
 | |
| 
 | |
|     cpu->cpreg_array_len = 0;
 | |
| 
 | |
|     g_list_foreach(keys, count_cpreg, cpu);
 | |
| 
 | |
|     arraylen = cpu->cpreg_array_len;
 | |
|     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_values = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 | |
|     cpu->cpreg_array_len = 0;
 | |
| 
 | |
|     g_list_foreach(keys, add_cpreg_to_list, cpu);
 | |
| 
 | |
|     assert(cpu->cpreg_array_len == arraylen);
 | |
| 
 | |
|     g_list_free(keys);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 | |
|  */
 | |
| static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri,
 | |
|                                         bool isread)
 | |
| {
 | |
|     if (!is_a64(env) && arm_current_el(env) == 3 &&
 | |
|         arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Some secure-only AArch32 registers trap to EL3 if used from
 | |
|  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 | |
|  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 | |
|  * We assume that the .access field is set to PL1_RW.
 | |
|  */
 | |
| static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 | |
|                                             const ARMCPRegInfo *ri,
 | |
|                                             bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 3) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     /* This will be EL1 NS and EL2 NS, which just UNDEF */
 | |
|     return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
| }
 | |
| 
 | |
| /* Check for traps to "powerdown debug" registers, which are controlled
 | |
|  * by MDCR.TDOSA
 | |
|  */
 | |
| static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
 | |
|         (env->cp15.mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps to "debug ROM" registers, which are controlled
 | |
|  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
 | |
|         (env->cp15.mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps to general debug registers, which are controlled
 | |
|  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
 | |
|         (env->cp15.mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps to performance monitor registers, which are controlled
 | |
|  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
 | |
| static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1) {
 | |
|         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
 | |
|         if (arm_hcr_el2_eff(env) & trap) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps from EL1 due to HCR_EL2.TSW.  */
 | |
| static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps from EL1 due to HCR_EL2.TACR.  */
 | |
| static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps from EL1 due to HCR_EL2.TTLB. */
 | |
| static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 | |
| }
 | |
| 
 | |
| static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (raw_read(env, ri) != value) {
 | |
|         /* Unlike real hardware the qemu TLB uses virtual addresses,
 | |
|          * not modified virtual addresses, so this causes a TLB flush.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu));
 | |
|         raw_write(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 | |
|         && !extended_addresses_enabled(env)) {
 | |
|         /* For VMSA (when not using the LPAE long descriptor page table
 | |
|          * format) this register includes the ASID, so do a TLB flush.
 | |
|          * For PMSA it is purely a process ID and no action is needed.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu));
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| /* IS variants of TLB operations must affect all cores */
 | |
| static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_all_cpus_synced(cs);
 | |
| }
 | |
| 
 | |
| static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_all_cpus_synced(cs);
 | |
| }
 | |
| 
 | |
| static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 | |
| }
 | |
| 
 | |
| static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Non-IS variants of TLB operations are upgraded to
 | |
|  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
 | |
|  * force broadcast of these operations.
 | |
|  */
 | |
| static bool tlb_force_broadcast(CPUARMState *env)
 | |
| {
 | |
|     return (env->cp15.hcr_el2 & HCR_FB) &&
 | |
|         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
 | |
| }
 | |
| 
 | |
| static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate all (TLBIALL) */
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_all_cpus_synced(cs);
 | |
|     } else {
 | |
|         tlb_flush(cs);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     value &= TARGET_PAGE_MASK;
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_page_all_cpus_synced(cs, value);
 | |
|     } else {
 | |
|         tlb_flush_page(cs, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Invalidate by ASID (TLBIASID) */
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_all_cpus_synced(cs);
 | |
|     } else {
 | |
|         tlb_flush(cs);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     value &= TARGET_PAGE_MASK;
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_page_all_cpus_synced(cs, value);
 | |
|     } else {
 | |
|         tlb_flush_page(cs, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs,
 | |
|                         ARMMMUIdxBit_E10_1 |
 | |
|                         ARMMMUIdxBit_E10_1_PAN |
 | |
|                         ARMMMUIdxBit_E10_0);
 | |
| }
 | |
| 
 | |
| static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | |
|                                         ARMMMUIdxBit_E10_1 |
 | |
|                                         ARMMMUIdxBit_E10_1_PAN |
 | |
|                                         ARMMMUIdxBit_E10_0);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
 | |
| }
 | |
| 
 | |
| static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
 | |
| }
 | |
| 
 | |
| static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
 | |
| }
 | |
| 
 | |
| static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | |
|                                              ARMMMUIdxBit_E2);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo cp_reginfo[] = {
 | |
|     /* Define the secure and non-secure FCSE identifier CP registers
 | |
|      * separately because there is no secure bank in V8 (no _EL3).  This allows
 | |
|      * the secure register to be properly reset and migrated. There is also no
 | |
|      * v8 EL1 version of the register so the non-secure instance stands alone.
 | |
|      */
 | |
|     { .name = "FCSEIDR",
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 | |
|       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | |
|     { .name = "FCSEIDR_S",
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 | |
|       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | |
|     /* Define the secure and non-secure context identifier CP registers
 | |
|      * separately because there is no secure bank in V8 (no _EL3).  This allows
 | |
|      * the secure register to be properly reset and migrated.  In the
 | |
|      * non-secure case, the 32-bit register will have reset and migration
 | |
|      * disabled during registration as it is handled by the 64-bit instance.
 | |
|      */
 | |
|     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 | |
|       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | |
|     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 | |
|       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 | |
|     /* NB: Some of these registers exist in v8 but with more precise
 | |
|      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 | |
|      */
 | |
|     /* MMU Domain access control / MPU write buffer control */
 | |
|     { .name = "DACR",
 | |
|       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | |
|     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 | |
|      * For v6 and v5, these mappings are overly broad.
 | |
|      */
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     /* Cache maintenance ops; some of this space may be overridden later. */
 | |
|     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | |
|       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 | |
|     /* Not all pre-v6 cores implemented this WFI, so this is slightly
 | |
|      * over-broad.
 | |
|      */
 | |
|     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 | |
|     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 | |
|      * is UNPREDICTABLE; we choose to NOP as most implementations do).
 | |
|      */
 | |
|     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 | |
|      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 | |
|      * OMAPCP will override this space.
 | |
|      */
 | |
|     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 | |
|       .resetvalue = 0 },
 | |
|     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 | |
|     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 | |
|      * implementing it as RAZ means the "debug architecture version" bits
 | |
|      * will read as a reserved value, which should cause Linux to not try
 | |
|      * to use the debug hardware.
 | |
|      */
 | |
|     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* MMU TLB control. Note that the wildcarding means we cover not just
 | |
|      * the unified TLB ops but also the dside/iside/inner-shareable variants.
 | |
|      */
 | |
|     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 | |
|       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 | |
|       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     uint32_t mask = 0;
 | |
| 
 | |
|     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 | |
|          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 | |
|          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 | |
|          */
 | |
|         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
 | |
|             /* VFP coprocessor: cp10 & cp11 [23:20] */
 | |
|             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 | |
| 
 | |
|             if (!arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|                 /* ASEDIS [31] bit is RAO/WI */
 | |
|                 value |= (1 << 31);
 | |
|             }
 | |
| 
 | |
|             /* VFPv3 and upwards with NEON implement 32 double precision
 | |
|              * registers (D0-D31).
 | |
|              */
 | |
|             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
 | |
|                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 | |
|                 value |= (1 << 30);
 | |
|             }
 | |
|         }
 | |
|         value &= mask;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 | |
|      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 | |
|         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 | |
|         value &= ~(0xf << 20);
 | |
|         value |= env->cp15.cpacr_el1 & (0xf << 20);
 | |
|     }
 | |
| 
 | |
|     env->cp15.cpacr_el1 = value;
 | |
| }
 | |
| 
 | |
| static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /*
 | |
|      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
 | |
|      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
 | |
|      */
 | |
|     uint64_t value = env->cp15.cpacr_el1;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 | |
|         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 | |
|         value &= ~(0xf << 20);
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Call cpacr_write() so that we reset with the correct RAO bits set
 | |
|      * for our CPU features.
 | |
|      */
 | |
|     cpacr_write(env, ri, 0);
 | |
| }
 | |
| 
 | |
| static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* Check if CPACR accesses are to be trapped to EL2 */
 | |
|         if (arm_current_el(env) == 1 &&
 | |
|             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         /* Check if CPACR accesses are to be trapped to EL3 */
 | |
|         } else if (arm_current_el(env) < 3 &&
 | |
|                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | |
|             return CP_ACCESS_TRAP_EL3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     /* Check if CPTR accesses are set to trap to EL3 */
 | |
|     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v6_cp_reginfo[] = {
 | |
|     /* prefetch by MVA in v6, NOP in v7 */
 | |
|     { .name = "MVA_prefetch",
 | |
|       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* We need to break the TB after ISB to execute self-modifying code
 | |
|      * correctly and also to take any pending interrupts immediately.
 | |
|      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 | |
|      */
 | |
|     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 | |
|     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 | |
|                              offsetof(CPUARMState, cp15.ifar_ns) },
 | |
|       .resetvalue = 0, },
 | |
|     /* Watchpoint Fault Address Register : should actually only be present
 | |
|      * for 1136, 1176, 11MPCore.
 | |
|      */
 | |
|     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 | |
|     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 | |
|       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 | |
|       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Definitions for the PMU registers */
 | |
| #define PMCRN_MASK  0xf800
 | |
| #define PMCRN_SHIFT 11
 | |
| #define PMCRLC  0x40
 | |
| #define PMCRDP  0x20
 | |
| #define PMCRX   0x10
 | |
| #define PMCRD   0x8
 | |
| #define PMCRC   0x4
 | |
| #define PMCRP   0x2
 | |
| #define PMCRE   0x1
 | |
| /*
 | |
|  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
 | |
|  * which can be written as 1 to trigger behaviour but which stay RAZ).
 | |
|  */
 | |
| #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
 | |
| 
 | |
| #define PMXEVTYPER_P          0x80000000
 | |
| #define PMXEVTYPER_U          0x40000000
 | |
| #define PMXEVTYPER_NSK        0x20000000
 | |
| #define PMXEVTYPER_NSU        0x10000000
 | |
| #define PMXEVTYPER_NSH        0x08000000
 | |
| #define PMXEVTYPER_M          0x04000000
 | |
| #define PMXEVTYPER_MT         0x02000000
 | |
| #define PMXEVTYPER_EVTCOUNT   0x0000ffff
 | |
| #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
 | |
|                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
 | |
|                                PMXEVTYPER_M | PMXEVTYPER_MT | \
 | |
|                                PMXEVTYPER_EVTCOUNT)
 | |
| 
 | |
| #define PMCCFILTR             0xf8000000
 | |
| #define PMCCFILTR_M           PMXEVTYPER_M
 | |
| #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
 | |
| 
 | |
| static inline uint32_t pmu_num_counters(CPUARMState *env)
 | |
| {
 | |
|   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
 | |
| static inline uint64_t pmu_counter_mask(CPUARMState *env)
 | |
| {
 | |
|   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
 | |
| }
 | |
| 
 | |
| typedef struct pm_event {
 | |
|     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
 | |
|     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
 | |
|     bool (*supported)(CPUARMState *);
 | |
|     /*
 | |
|      * Retrieve the current count of the underlying event. The programmed
 | |
|      * counters hold a difference from the return value from this function
 | |
|      */
 | |
|     uint64_t (*get_count)(CPUARMState *);
 | |
|     /*
 | |
|      * Return how many nanoseconds it will take (at a minimum) for count events
 | |
|      * to occur. A negative value indicates the counter will never overflow, or
 | |
|      * that the counter has otherwise arranged for the overflow bit to be set
 | |
|      * and the PMU interrupt to be raised on overflow.
 | |
|      */
 | |
|     int64_t (*ns_per_count)(uint64_t);
 | |
| } pm_event;
 | |
| 
 | |
| static bool event_always_supported(CPUARMState *env)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static uint64_t swinc_get_count(CPUARMState *env)
 | |
| {
 | |
|     /*
 | |
|      * SW_INCR events are written directly to the pmevcntr's by writes to
 | |
|      * PMSWINC, so there is no underlying count maintained by the PMU itself
 | |
|      */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int64_t swinc_ns_per(uint64_t ignored)
 | |
| {
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the underlying cycle count for the PMU cycle counters. If we're in
 | |
|  * usermode, simply return 0.
 | |
|  */
 | |
| static uint64_t cycles_get_count(CPUARMState *env)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | |
|                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | |
| #else
 | |
|     return cpu_get_host_ticks();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static int64_t cycles_ns_per(uint64_t cycles)
 | |
| {
 | |
|     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
 | |
| }
 | |
| 
 | |
| static bool instructions_supported(CPUARMState *env)
 | |
| {
 | |
|     return use_icount == 1 /* Precise instruction counting */;
 | |
| }
 | |
| 
 | |
| static uint64_t instructions_get_count(CPUARMState *env)
 | |
| {
 | |
|     return (uint64_t)cpu_get_icount_raw();
 | |
| }
 | |
| 
 | |
| static int64_t instructions_ns_per(uint64_t icount)
 | |
| {
 | |
|     return cpu_icount_to_ns((int64_t)icount);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool pmu_8_1_events_supported(CPUARMState *env)
 | |
| {
 | |
|     /* For events which are supported in any v8.1 PMU */
 | |
|     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
 | |
| }
 | |
| 
 | |
| static bool pmu_8_4_events_supported(CPUARMState *env)
 | |
| {
 | |
|     /* For events which are supported in any v8.1 PMU */
 | |
|     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
 | |
| }
 | |
| 
 | |
| static uint64_t zero_event_get_count(CPUARMState *env)
 | |
| {
 | |
|     /* For events which on QEMU never fire, so their count is always zero */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int64_t zero_event_ns_per(uint64_t cycles)
 | |
| {
 | |
|     /* An event which never fires can never overflow */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static const pm_event pm_events[] = {
 | |
|     { .number = 0x000, /* SW_INCR */
 | |
|       .supported = event_always_supported,
 | |
|       .get_count = swinc_get_count,
 | |
|       .ns_per_count = swinc_ns_per,
 | |
|     },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
 | |
|       .supported = instructions_supported,
 | |
|       .get_count = instructions_get_count,
 | |
|       .ns_per_count = instructions_ns_per,
 | |
|     },
 | |
|     { .number = 0x011, /* CPU_CYCLES, Cycle */
 | |
|       .supported = event_always_supported,
 | |
|       .get_count = cycles_get_count,
 | |
|       .ns_per_count = cycles_ns_per,
 | |
|     },
 | |
| #endif
 | |
|     { .number = 0x023, /* STALL_FRONTEND */
 | |
|       .supported = pmu_8_1_events_supported,
 | |
|       .get_count = zero_event_get_count,
 | |
|       .ns_per_count = zero_event_ns_per,
 | |
|     },
 | |
|     { .number = 0x024, /* STALL_BACKEND */
 | |
|       .supported = pmu_8_1_events_supported,
 | |
|       .get_count = zero_event_get_count,
 | |
|       .ns_per_count = zero_event_ns_per,
 | |
|     },
 | |
|     { .number = 0x03c, /* STALL */
 | |
|       .supported = pmu_8_4_events_supported,
 | |
|       .get_count = zero_event_get_count,
 | |
|       .ns_per_count = zero_event_ns_per,
 | |
|     },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
 | |
|  * events (i.e. the statistical profiling extension), this implementation
 | |
|  * should first be updated to something sparse instead of the current
 | |
|  * supported_event_map[] array.
 | |
|  */
 | |
| #define MAX_EVENT_ID 0x3c
 | |
| #define UNSUPPORTED_EVENT UINT16_MAX
 | |
| static uint16_t supported_event_map[MAX_EVENT_ID + 1];
 | |
| 
 | |
| /*
 | |
|  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
 | |
|  * of ARM event numbers to indices in our pm_events array.
 | |
|  *
 | |
|  * Note: Events in the 0x40XX range are not currently supported.
 | |
|  */
 | |
| void pmu_init(ARMCPU *cpu)
 | |
| {
 | |
|     unsigned int i;
 | |
| 
 | |
|     /*
 | |
|      * Empty supported_event_map and cpu->pmceid[01] before adding supported
 | |
|      * events to them
 | |
|      */
 | |
|     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
 | |
|         supported_event_map[i] = UNSUPPORTED_EVENT;
 | |
|     }
 | |
|     cpu->pmceid0 = 0;
 | |
|     cpu->pmceid1 = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
 | |
|         const pm_event *cnt = &pm_events[i];
 | |
|         assert(cnt->number <= MAX_EVENT_ID);
 | |
|         /* We do not currently support events in the 0x40xx range */
 | |
|         assert(cnt->number <= 0x3f);
 | |
| 
 | |
|         if (cnt->supported(&cpu->env)) {
 | |
|             supported_event_map[cnt->number] = i;
 | |
|             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
 | |
|             if (cnt->number & 0x20) {
 | |
|                 cpu->pmceid1 |= event_mask;
 | |
|             } else {
 | |
|                 cpu->pmceid0 |= event_mask;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check at runtime whether a PMU event is supported for the current machine
 | |
|  */
 | |
| static bool event_supported(uint16_t number)
 | |
| {
 | |
|     if (number > MAX_EVENT_ID) {
 | |
|         return false;
 | |
|     }
 | |
|     return supported_event_map[number] != UNSUPPORTED_EVENT;
 | |
| }
 | |
| 
 | |
| static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     /* Performance monitor registers user accessibility is controlled
 | |
|      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
 | |
|      * trapping to EL2 or EL3 for other accesses.
 | |
|      */
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
 | |
|                                            const ARMCPRegInfo *ri,
 | |
|                                            bool isread)
 | |
| {
 | |
|     /* ER: event counter read trap control */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)
 | |
|         && arm_current_el(env) == 0
 | |
|         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
 | |
|         && isread) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
| 
 | |
|     return pmreg_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult pmreg_access_swinc(CPUARMState *env,
 | |
|                                          const ARMCPRegInfo *ri,
 | |
|                                          bool isread)
 | |
| {
 | |
|     /* SW: software increment write trap control */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)
 | |
|         && arm_current_el(env) == 0
 | |
|         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
 | |
|         && !isread) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
| 
 | |
|     return pmreg_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult pmreg_access_selr(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri,
 | |
|                                         bool isread)
 | |
| {
 | |
|     /* ER: event counter read trap control */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)
 | |
|         && arm_current_el(env) == 0
 | |
|         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
| 
 | |
|     return pmreg_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
 | |
|                                          const ARMCPRegInfo *ri,
 | |
|                                          bool isread)
 | |
| {
 | |
|     /* CR: cycle counter read trap control */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)
 | |
|         && arm_current_el(env) == 0
 | |
|         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
 | |
|         && isread) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
| 
 | |
|     return pmreg_access(env, ri, isread);
 | |
| }
 | |
| 
 | |
| /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
 | |
|  * the current EL, security state, and register configuration.
 | |
|  */
 | |
| static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
 | |
| {
 | |
|     uint64_t filter;
 | |
|     bool e, p, u, nsk, nsu, nsh, m;
 | |
|     bool enabled, prohibited, filtered;
 | |
|     bool secure = arm_is_secure(env);
 | |
|     int el = arm_current_el(env);
 | |
|     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_PMU)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2) ||
 | |
|             (counter < hpmn || counter == 31)) {
 | |
|         e = env->cp15.c9_pmcr & PMCRE;
 | |
|     } else {
 | |
|         e = env->cp15.mdcr_el2 & MDCR_HPME;
 | |
|     }
 | |
|     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
 | |
| 
 | |
|     if (!secure) {
 | |
|         if (el == 2 && (counter < hpmn || counter == 31)) {
 | |
|             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
 | |
|         } else {
 | |
|             prohibited = false;
 | |
|         }
 | |
|     } else {
 | |
|         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|            (env->cp15.mdcr_el3 & MDCR_SPME);
 | |
|     }
 | |
| 
 | |
|     if (prohibited && counter == 31) {
 | |
|         prohibited = env->cp15.c9_pmcr & PMCRDP;
 | |
|     }
 | |
| 
 | |
|     if (counter == 31) {
 | |
|         filter = env->cp15.pmccfiltr_el0;
 | |
|     } else {
 | |
|         filter = env->cp15.c14_pmevtyper[counter];
 | |
|     }
 | |
| 
 | |
|     p   = filter & PMXEVTYPER_P;
 | |
|     u   = filter & PMXEVTYPER_U;
 | |
|     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
 | |
|     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
 | |
|     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
 | |
|     m   = arm_el_is_aa64(env, 1) &&
 | |
|               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
 | |
| 
 | |
|     if (el == 0) {
 | |
|         filtered = secure ? u : u != nsu;
 | |
|     } else if (el == 1) {
 | |
|         filtered = secure ? p : p != nsk;
 | |
|     } else if (el == 2) {
 | |
|         filtered = !nsh;
 | |
|     } else { /* EL3 */
 | |
|         filtered = m != p;
 | |
|     }
 | |
| 
 | |
|     if (counter != 31) {
 | |
|         /*
 | |
|          * If not checking PMCCNTR, ensure the counter is setup to an event we
 | |
|          * support
 | |
|          */
 | |
|         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
 | |
|         if (!event_supported(event)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return enabled && !prohibited && !filtered;
 | |
| }
 | |
| 
 | |
| static void pmu_update_irq(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
 | |
|             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure c15_ccnt is the guest-visible count so that operations such as
 | |
|  * enabling/disabling the counter or filtering, modifying the count itself,
 | |
|  * etc. can be done logically. This is essentially a no-op if the counter is
 | |
|  * not enabled at the time of the call.
 | |
|  */
 | |
| static void pmccntr_op_start(CPUARMState *env)
 | |
| {
 | |
|     uint64_t cycles = cycles_get_count(env);
 | |
| 
 | |
|     if (pmu_counter_enabled(env, 31)) {
 | |
|         uint64_t eff_cycles = cycles;
 | |
|         if (env->cp15.c9_pmcr & PMCRD) {
 | |
|             /* Increment once every 64 processor clock cycles */
 | |
|             eff_cycles /= 64;
 | |
|         }
 | |
| 
 | |
|         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
 | |
| 
 | |
|         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
 | |
|                                  1ull << 63 : 1ull << 31;
 | |
|         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
 | |
|             env->cp15.c9_pmovsr |= (1 << 31);
 | |
|             pmu_update_irq(env);
 | |
|         }
 | |
| 
 | |
|         env->cp15.c15_ccnt = new_pmccntr;
 | |
|     }
 | |
|     env->cp15.c15_ccnt_delta = cycles;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If PMCCNTR is enabled, recalculate the delta between the clock and the
 | |
|  * guest-visible count. A call to pmccntr_op_finish should follow every call to
 | |
|  * pmccntr_op_start.
 | |
|  */
 | |
| static void pmccntr_op_finish(CPUARMState *env)
 | |
| {
 | |
|     if (pmu_counter_enabled(env, 31)) {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         /* Calculate when the counter will next overflow */
 | |
|         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
 | |
|         if (!(env->cp15.c9_pmcr & PMCRLC)) {
 | |
|             remaining_cycles = (uint32_t)remaining_cycles;
 | |
|         }
 | |
|         int64_t overflow_in = cycles_ns_per(remaining_cycles);
 | |
| 
 | |
|         if (overflow_in > 0) {
 | |
|             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|                 overflow_in;
 | |
|             ARMCPU *cpu = env_archcpu(env);
 | |
|             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
 | |
|         if (env->cp15.c9_pmcr & PMCRD) {
 | |
|             /* Increment once every 64 processor clock cycles */
 | |
|             prev_cycles /= 64;
 | |
|         }
 | |
|         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
 | |
| {
 | |
| 
 | |
|     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
 | |
|     uint64_t count = 0;
 | |
|     if (event_supported(event)) {
 | |
|         uint16_t event_idx = supported_event_map[event];
 | |
|         count = pm_events[event_idx].get_count(env);
 | |
|     }
 | |
| 
 | |
|     if (pmu_counter_enabled(env, counter)) {
 | |
|         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
 | |
| 
 | |
|         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
 | |
|             env->cp15.c9_pmovsr |= (1 << counter);
 | |
|             pmu_update_irq(env);
 | |
|         }
 | |
|         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
 | |
|     }
 | |
|     env->cp15.c14_pmevcntr_delta[counter] = count;
 | |
| }
 | |
| 
 | |
| static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
 | |
| {
 | |
|     if (pmu_counter_enabled(env, counter)) {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
 | |
|         uint16_t event_idx = supported_event_map[event];
 | |
|         uint64_t delta = UINT32_MAX -
 | |
|             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
 | |
|         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
 | |
| 
 | |
|         if (overflow_in > 0) {
 | |
|             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|                 overflow_in;
 | |
|             ARMCPU *cpu = env_archcpu(env);
 | |
|             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         env->cp15.c14_pmevcntr_delta[counter] -=
 | |
|             env->cp15.c14_pmevcntr[counter];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void pmu_op_start(CPUARMState *env)
 | |
| {
 | |
|     unsigned int i;
 | |
|     pmccntr_op_start(env);
 | |
|     for (i = 0; i < pmu_num_counters(env); i++) {
 | |
|         pmevcntr_op_start(env, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void pmu_op_finish(CPUARMState *env)
 | |
| {
 | |
|     unsigned int i;
 | |
|     pmccntr_op_finish(env);
 | |
|     for (i = 0; i < pmu_num_counters(env); i++) {
 | |
|         pmevcntr_op_finish(env, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
 | |
| {
 | |
|     pmu_op_start(&cpu->env);
 | |
| }
 | |
| 
 | |
| void pmu_post_el_change(ARMCPU *cpu, void *ignored)
 | |
| {
 | |
|     pmu_op_finish(&cpu->env);
 | |
| }
 | |
| 
 | |
| void arm_pmu_timer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     /*
 | |
|      * Update all the counter values based on the current underlying counts,
 | |
|      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
 | |
|      * has the effect of setting the cpu->pmu_timer to the next earliest time a
 | |
|      * counter may expire.
 | |
|      */
 | |
|     pmu_op_start(&cpu->env);
 | |
|     pmu_op_finish(&cpu->env);
 | |
| }
 | |
| 
 | |
| static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t value)
 | |
| {
 | |
|     pmu_op_start(env);
 | |
| 
 | |
|     if (value & PMCRC) {
 | |
|         /* The counter has been reset */
 | |
|         env->cp15.c15_ccnt = 0;
 | |
|     }
 | |
| 
 | |
|     if (value & PMCRP) {
 | |
|         unsigned int i;
 | |
|         for (i = 0; i < pmu_num_counters(env); i++) {
 | |
|             env->cp15.c14_pmevcntr[i] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
 | |
|     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
 | |
| 
 | |
|     pmu_op_finish(env);
 | |
| }
 | |
| 
 | |
| static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     unsigned int i;
 | |
|     for (i = 0; i < pmu_num_counters(env); i++) {
 | |
|         /* Increment a counter's count iff: */
 | |
|         if ((value & (1 << i)) && /* counter's bit is set */
 | |
|                 /* counter is enabled and not filtered */
 | |
|                 pmu_counter_enabled(env, i) &&
 | |
|                 /* counter is SW_INCR */
 | |
|                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
 | |
|             pmevcntr_op_start(env, i);
 | |
| 
 | |
|             /*
 | |
|              * Detect if this write causes an overflow since we can't predict
 | |
|              * PMSWINC overflows like we can for other events
 | |
|              */
 | |
|             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
 | |
| 
 | |
|             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
 | |
|                 env->cp15.c9_pmovsr |= (1 << i);
 | |
|                 pmu_update_irq(env);
 | |
|             }
 | |
| 
 | |
|             env->cp15.c14_pmevcntr[i] = new_pmswinc;
 | |
| 
 | |
|             pmevcntr_op_finish(env, i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint64_t ret;
 | |
|     pmccntr_op_start(env);
 | |
|     ret = env->cp15.c15_ccnt;
 | |
|     pmccntr_op_finish(env);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
 | |
|      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
 | |
|      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
 | |
|      * accessed.
 | |
|      */
 | |
|     env->cp15.c9_pmselr = value & 0x1f;
 | |
| }
 | |
| 
 | |
| static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     pmccntr_op_start(env);
 | |
|     env->cp15.c15_ccnt = value;
 | |
|     pmccntr_op_finish(env);
 | |
| }
 | |
| 
 | |
| static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     uint64_t cur_val = pmccntr_read(env, NULL);
 | |
| 
 | |
|     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
 | |
| }
 | |
| 
 | |
| static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     pmccntr_op_start(env);
 | |
|     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
 | |
|     pmccntr_op_finish(env);
 | |
| }
 | |
| 
 | |
| static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     pmccntr_op_start(env);
 | |
|     /* M is not accessible from AArch32 */
 | |
|     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
 | |
|         (value & PMCCFILTR);
 | |
|     pmccntr_op_finish(env);
 | |
| }
 | |
| 
 | |
| static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* M is not visible in AArch32 */
 | |
|     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
 | |
| }
 | |
| 
 | |
| static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pmcnten |= value;
 | |
| }
 | |
| 
 | |
| static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pmcnten &= ~value;
 | |
| }
 | |
| 
 | |
| static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pmovsr &= ~value;
 | |
|     pmu_update_irq(env);
 | |
| }
 | |
| 
 | |
| static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pmovsr |= value;
 | |
|     pmu_update_irq(env);
 | |
| }
 | |
| 
 | |
| static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value, const uint8_t counter)
 | |
| {
 | |
|     if (counter == 31) {
 | |
|         pmccfiltr_write(env, ri, value);
 | |
|     } else if (counter < pmu_num_counters(env)) {
 | |
|         pmevcntr_op_start(env, counter);
 | |
| 
 | |
|         /*
 | |
|          * If this counter's event type is changing, store the current
 | |
|          * underlying count for the new type in c14_pmevcntr_delta[counter] so
 | |
|          * pmevcntr_op_finish has the correct baseline when it converts back to
 | |
|          * a delta.
 | |
|          */
 | |
|         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
 | |
|             PMXEVTYPER_EVTCOUNT;
 | |
|         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
 | |
|         if (old_event != new_event) {
 | |
|             uint64_t count = 0;
 | |
|             if (event_supported(new_event)) {
 | |
|                 uint16_t event_idx = supported_event_map[new_event];
 | |
|                 count = pm_events[event_idx].get_count(env);
 | |
|             }
 | |
|             env->cp15.c14_pmevcntr_delta[counter] = count;
 | |
|         }
 | |
| 
 | |
|         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
 | |
|         pmevcntr_op_finish(env, counter);
 | |
|     }
 | |
|     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
 | |
|      * PMSELR value is equal to or greater than the number of implemented
 | |
|      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
 | |
|      */
 | |
| }
 | |
| 
 | |
| static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                const uint8_t counter)
 | |
| {
 | |
|     if (counter == 31) {
 | |
|         return env->cp15.pmccfiltr_el0;
 | |
|     } else if (counter < pmu_num_counters(env)) {
 | |
|         return env->cp15.c14_pmevtyper[counter];
 | |
|     } else {
 | |
|       /*
 | |
|        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
 | |
|        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
 | |
|        */
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     pmevtyper_write(env, ri, value, counter);
 | |
| }
 | |
| 
 | |
| static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     env->cp15.c14_pmevtyper[counter] = value;
 | |
| 
 | |
|     /*
 | |
|      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
 | |
|      * pmu_op_finish calls when loading saved state for a migration. Because
 | |
|      * we're potentially updating the type of event here, the value written to
 | |
|      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
 | |
|      * different counter type. Therefore, we need to set this value to the
 | |
|      * current count for the counter type we're writing so that pmu_op_finish
 | |
|      * has the correct count for its calculation.
 | |
|      */
 | |
|     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
 | |
|     if (event_supported(event)) {
 | |
|         uint16_t event_idx = supported_event_map[event];
 | |
|         env->cp15.c14_pmevcntr_delta[counter] =
 | |
|             pm_events[event_idx].get_count(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     return pmevtyper_read(env, ri, counter);
 | |
| }
 | |
| 
 | |
| static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
 | |
| }
 | |
| 
 | |
| static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
 | |
| }
 | |
| 
 | |
| static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value, uint8_t counter)
 | |
| {
 | |
|     if (counter < pmu_num_counters(env)) {
 | |
|         pmevcntr_op_start(env, counter);
 | |
|         env->cp15.c14_pmevcntr[counter] = value;
 | |
|         pmevcntr_op_finish(env, counter);
 | |
|     }
 | |
|     /*
 | |
|      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
 | |
|      * are CONSTRAINED UNPREDICTABLE.
 | |
|      */
 | |
| }
 | |
| 
 | |
| static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint8_t counter)
 | |
| {
 | |
|     if (counter < pmu_num_counters(env)) {
 | |
|         uint64_t ret;
 | |
|         pmevcntr_op_start(env, counter);
 | |
|         ret = env->cp15.c14_pmevcntr[counter];
 | |
|         pmevcntr_op_finish(env, counter);
 | |
|         return ret;
 | |
|     } else {
 | |
|       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
 | |
|        * are CONSTRAINED UNPREDICTABLE. */
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     pmevcntr_write(env, ri, value, counter);
 | |
| }
 | |
| 
 | |
| static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     return pmevcntr_read(env, ri, counter);
 | |
| }
 | |
| 
 | |
| static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     assert(counter < pmu_num_counters(env));
 | |
|     env->cp15.c14_pmevcntr[counter] = value;
 | |
|     pmevcntr_write(env, ri, value, counter);
 | |
| }
 | |
| 
 | |
| static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
 | |
|     assert(counter < pmu_num_counters(env));
 | |
|     return env->cp15.c14_pmevcntr[counter];
 | |
| }
 | |
| 
 | |
| static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
 | |
| }
 | |
| 
 | |
| static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
 | |
| }
 | |
| 
 | |
| static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         env->cp15.c9_pmuserenr = value & 0xf;
 | |
|     } else {
 | |
|         env->cp15.c9_pmuserenr = value & 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     /* We have no event counters so only the C bit can be changed */
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pminten |= value;
 | |
|     pmu_update_irq(env);
 | |
| }
 | |
| 
 | |
| static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     value &= pmu_counter_mask(env);
 | |
|     env->cp15.c9_pminten &= ~value;
 | |
|     pmu_update_irq(env);
 | |
| }
 | |
| 
 | |
| static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t value)
 | |
| {
 | |
|     /* Note that even though the AArch64 view of this register has bits
 | |
|      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
 | |
|      * architectural requirements for bits which are RES0 only in some
 | |
|      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
 | |
|      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
 | |
|      */
 | |
|     raw_write(env, ri, value & ~0x1FULL);
 | |
| }
 | |
| 
 | |
| static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     /* Begin with base v8.0 state.  */
 | |
|     uint32_t valid_mask = 0x3fff;
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (ri->state == ARM_CP_STATE_AA64) {
 | |
|         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
 | |
|         valid_mask &= ~SCR_NET;
 | |
| 
 | |
|         if (cpu_isar_feature(aa64_lor, cpu)) {
 | |
|             valid_mask |= SCR_TLOR;
 | |
|         }
 | |
|         if (cpu_isar_feature(aa64_pauth, cpu)) {
 | |
|             valid_mask |= SCR_API | SCR_APK;
 | |
|         }
 | |
|         if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|             valid_mask |= SCR_ATA;
 | |
|         }
 | |
|     } else {
 | |
|         valid_mask &= ~(SCR_RW | SCR_ST);
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         valid_mask &= ~SCR_HCE;
 | |
| 
 | |
|         /* On ARMv7, SMD (or SCD as it is called in v7) is only
 | |
|          * supported if EL2 exists. The bit is UNK/SBZP when
 | |
|          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
 | |
|          * when EL2 is unavailable.
 | |
|          * On ARMv8, this bit is always available.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_V7) &&
 | |
|             !arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             valid_mask &= ~SCR_SMD;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear all-context RES0 bits.  */
 | |
|     value &= valid_mask;
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_aa64_tid2(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
 | |
|      * bank
 | |
|      */
 | |
|     uint32_t index = A32_BANKED_REG_GET(env, csselr,
 | |
|                                         ri->secure & ARM_CP_SECSTATE_S);
 | |
| 
 | |
|     return cpu->ccsidr[index];
 | |
| }
 | |
| 
 | |
| static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     raw_write(env, ri, value & 0xf);
 | |
| }
 | |
| 
 | |
| static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 | |
|     uint64_t ret = 0;
 | |
|     bool allow_virt = (arm_current_el(env) == 1 &&
 | |
|                        (!arm_is_secure_below_el3(env) ||
 | |
|                         (env->cp15.scr_el3 & SCR_EEL2)));
 | |
| 
 | |
|     if (allow_virt && (hcr_el2 & HCR_IMO)) {
 | |
|         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
 | |
|             ret |= CPSR_I;
 | |
|         }
 | |
|     } else {
 | |
|         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|             ret |= CPSR_I;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (allow_virt && (hcr_el2 & HCR_FMO)) {
 | |
|         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
 | |
|             ret |= CPSR_F;
 | |
|         }
 | |
|     } else {
 | |
|         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
 | |
|             ret |= CPSR_F;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* External aborts are not possible in QEMU so A bit is always clear */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         return access_aa64_tid1(env, ri, isread);
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v7_cp_reginfo[] = {
 | |
|     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
 | |
|     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* Performance monitors are implementation defined in v7,
 | |
|      * but with an ARM recommended set of registers, which we
 | |
|      * follow.
 | |
|      *
 | |
|      * Performance registers fall into three categories:
 | |
|      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
 | |
|      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
 | |
|      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
 | |
|      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
 | |
|      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
 | |
|      */
 | |
|     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | |
|       .writefn = pmcntenset_write,
 | |
|       .accessfn = pmreg_access,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
 | |
|       .writefn = pmcntenset_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmcntenclr_write,
 | |
|       .type = ARM_CP_ALIAS },
 | |
|     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 | |
|       .writefn = pmcntenclr_write },
 | |
|     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_RW, .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmovsr_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | |
|       .writefn = pmovsr_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .accessfn = pmreg_access_swinc,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .writefn = pmswinc_write },
 | |
|     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
 | |
|       .access = PL0_W, .accessfn = pmreg_access_swinc,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .writefn = pmswinc_write },
 | |
|     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
 | |
|       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
 | |
|       .raw_writefn = raw_write},
 | |
|     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access_selr,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
 | |
|       .writefn = pmselr_write, .raw_writefn = raw_write, },
 | |
|     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .readfn = pmccntr_read, .writefn = pmccntr_write32,
 | |
|       .accessfn = pmreg_access_ccntr },
 | |
|     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
 | |
|       .readfn = pmccntr_read, .writefn = pmccntr_write,
 | |
|       .raw_readfn = raw_read, .raw_writefn = raw_write, },
 | |
|     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
 | |
|       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
 | |
|       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
 | |
|     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
 | |
|       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
 | |
|     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = pmreg_access_xevcntr,
 | |
|       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
 | |
|     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = pmreg_access_xevcntr,
 | |
|       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
 | |
|     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
 | |
|       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tpm,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmintenset_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tpm,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .writefn = pmintenset_write, .raw_writefn = raw_write,
 | |
|       .resetvalue = 0x0 },
 | |
|     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tpm,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .writefn = pmintenclr_write, },
 | |
|     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tpm,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .writefn = pmintenclr_write },
 | |
|     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
 | |
|       .access = PL1_R,
 | |
|       .accessfn = access_aa64_tid2,
 | |
|       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
 | |
|     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .accessfn = access_aa64_tid2,
 | |
|       .writefn = csselr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
 | |
|                              offsetof(CPUARMState, cp15.csselr_ns) } },
 | |
|     /* Auxiliary ID register: this actually has an IMPDEF value but for now
 | |
|      * just RAZ for all cores:
 | |
|      */
 | |
|     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST,
 | |
|       .accessfn = access_aa64_tid1,
 | |
|       .resetvalue = 0 },
 | |
|     /* Auxiliary fault status registers: these also are IMPDEF, and we
 | |
|      * choose to RAZ/WI for all cores.
 | |
|      */
 | |
|     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* MAIR can just read-as-written because we don't implement caches
 | |
|      * and so don't need to care about memory attributes.
 | |
|      */
 | |
|     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
 | |
|       .resetvalue = 0 },
 | |
|     /* For non-long-descriptor page tables these are PRRR and NMRR;
 | |
|      * regardless they still act as reads-as-written for QEMU.
 | |
|      */
 | |
|      /* MAIR0/1 are defined separately from their 64-bit counterpart which
 | |
|       * allows them to assign the correct fieldoffset based on the endianness
 | |
|       * handled in the field definitions.
 | |
|       */
 | |
|     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
 | |
|                              offsetof(CPUARMState, cp15.mair0_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
 | |
|                              offsetof(CPUARMState, cp15.mair1_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
 | |
|     /* 32 bit ITLB invalidates */
 | |
|     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiall_write },
 | |
|     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_write },
 | |
|     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiasid_write },
 | |
|     /* 32 bit DTLB invalidates */
 | |
|     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiall_write },
 | |
|     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_write },
 | |
|     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiasid_write },
 | |
|     /* 32 bit TLB invalidates */
 | |
|     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiall_write },
 | |
|     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_write },
 | |
|     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiasid_write },
 | |
|     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimvaa_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo v7mp_cp_reginfo[] = {
 | |
|     /* 32 bit TLB invalidates, Inner Shareable */
 | |
|     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiall_is_write },
 | |
|     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_is_write },
 | |
|     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbiasid_is_write },
 | |
|     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimvaa_is_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
 | |
|     /* PMOVSSET is not implemented in v7 before v7ve */
 | |
|     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
 | |
|       .writefn = pmovsset_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | |
|       .writefn = pmovsset_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     value &= 1;
 | |
|     env->teecr = value;
 | |
| }
 | |
| 
 | |
| static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = {
 | |
|     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = teecr_write },
 | |
|     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
 | |
|       .accessfn = teehbr_access, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo v6k_cp_reginfo[] = {
 | |
|     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
 | |
|     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
 | |
|       .access = PL0_R|PL1_W,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
 | |
|       .resetvalue = 0},
 | |
|     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R|PL1_W,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
 | |
|     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_RW,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
 | |
|      * Writable only at the highest implemented exception level.
 | |
|      */
 | |
|     int el = arm_current_el(env);
 | |
|     uint64_t hcr;
 | |
|     uint32_t cntkctl;
 | |
| 
 | |
|     switch (el) {
 | |
|     case 0:
 | |
|         hcr = arm_hcr_el2_eff(env);
 | |
|         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|             cntkctl = env->cp15.cnthctl_el2;
 | |
|         } else {
 | |
|             cntkctl = env->cp15.c14_cntkctl;
 | |
|         }
 | |
|         if (!extract32(cntkctl, 0, 2)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
 | |
|             arm_is_secure_below_el3(env)) {
 | |
|             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
 | |
|             return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|     case 3:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (!isread && el < arm_highest_el(env)) {
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
 | |
|                                         bool isread)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     uint64_t hcr = arm_hcr_el2_eff(env);
 | |
| 
 | |
|     switch (cur_el) {
 | |
|     case 0:
 | |
|         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
 | |
|         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
 | |
|                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
 | |
|         }
 | |
| 
 | |
|         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
 | |
|         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
| 
 | |
|         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
 | |
|         if (hcr & HCR_E2H) {
 | |
|             if (timeridx == GTIMER_PHYS &&
 | |
|                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
 | |
|                 return CP_ACCESS_TRAP_EL2;
 | |
|             }
 | |
|         } else {
 | |
|             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
 | |
|             if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|                 timeridx == GTIMER_PHYS && !secure &&
 | |
|                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
 | |
|                 return CP_ACCESS_TRAP_EL2;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 1:
 | |
|         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|             timeridx == GTIMER_PHYS && !secure &&
 | |
|             (hcr & HCR_E2H
 | |
|              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
 | |
|              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
 | |
|                                       bool isread)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     uint64_t hcr = arm_hcr_el2_eff(env);
 | |
| 
 | |
|     switch (cur_el) {
 | |
|     case 0:
 | |
|         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
 | |
|             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
 | |
|                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
 | |
|          * EL0 if EL0[PV]TEN is zero.
 | |
|          */
 | |
|         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         /* fall through */
 | |
| 
 | |
|     case 1:
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|             timeridx == GTIMER_PHYS && !secure) {
 | |
|             if (hcr & HCR_E2H) {
 | |
|                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
 | |
|                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
 | |
|                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_pct_access(CPUARMState *env,
 | |
|                                     const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     return gt_counter_access(env, GTIMER_PHYS, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_vct_access(CPUARMState *env,
 | |
|                                     const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     return gt_counter_access(env, GTIMER_VIRT, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     return gt_timer_access(env, GTIMER_PHYS, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     return gt_timer_access(env, GTIMER_VIRT, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_stimer_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     /* The AArch64 register view of the secure physical timer is
 | |
|      * always accessible from EL3, and configurably accessible from
 | |
|      * Secure EL1.
 | |
|      */
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 1:
 | |
|         if (!arm_is_secure(env)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         if (!(env->cp15.scr_el3 & SCR_ST)) {
 | |
|             return CP_ACCESS_TRAP_EL3;
 | |
|         }
 | |
|         return CP_ACCESS_OK;
 | |
|     case 0:
 | |
|     case 2:
 | |
|         return CP_ACCESS_TRAP;
 | |
|     case 3:
 | |
|         return CP_ACCESS_OK;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t gt_get_countervalue(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
 | |
| }
 | |
| 
 | |
| static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
 | |
| {
 | |
|     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
 | |
| 
 | |
|     if (gt->ctl & 1) {
 | |
|         /* Timer enabled: calculate and set current ISTATUS, irq, and
 | |
|          * reset timer to when ISTATUS next has to change
 | |
|          */
 | |
|         uint64_t offset = timeridx == GTIMER_VIRT ?
 | |
|                                       cpu->env.cp15.cntvoff_el2 : 0;
 | |
|         uint64_t count = gt_get_countervalue(&cpu->env);
 | |
|         /* Note that this must be unsigned 64 bit arithmetic: */
 | |
|         int istatus = count - offset >= gt->cval;
 | |
|         uint64_t nexttick;
 | |
|         int irqstate;
 | |
| 
 | |
|         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
 | |
| 
 | |
|         irqstate = (istatus && !(gt->ctl & 2));
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
 | |
| 
 | |
|         if (istatus) {
 | |
|             /* Next transition is when count rolls back over to zero */
 | |
|             nexttick = UINT64_MAX;
 | |
|         } else {
 | |
|             /* Next transition is when we hit cval */
 | |
|             nexttick = gt->cval + offset;
 | |
|         }
 | |
|         /* Note that the desired next expiry time might be beyond the
 | |
|          * signed-64-bit range of a QEMUTimer -- in this case we just
 | |
|          * set the timer for as far in the future as possible. When the
 | |
|          * timer expires we will reset the timer for any remaining period.
 | |
|          */
 | |
|         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
 | |
|             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
 | |
|         } else {
 | |
|             timer_mod(cpu->gt_timer[timeridx], nexttick);
 | |
|         }
 | |
|         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
 | |
|     } else {
 | |
|         /* Timer disabled: ISTATUS and timer output always clear */
 | |
|         gt->ctl &= ~4;
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
 | |
|         timer_del(cpu->gt_timer[timeridx]);
 | |
|         trace_arm_gt_recalc_disabled(timeridx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            int timeridx)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     timer_del(cpu->gt_timer[timeridx]);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_get_countervalue(env);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_cnt_offset(CPUARMState *env)
 | |
| {
 | |
|     uint64_t hcr;
 | |
| 
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 2:
 | |
|         hcr = arm_hcr_el2_eff(env);
 | |
|         if (hcr & HCR_E2H) {
 | |
|             return 0;
 | |
|         }
 | |
|         break;
 | |
|     case 0:
 | |
|         hcr = arm_hcr_el2_eff(env);
 | |
|         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|             return 0;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return env->cp15.cntvoff_el2;
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
 | |
| }
 | |
| 
 | |
| static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           int timeridx,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     trace_arm_gt_cval_write(timeridx, value);
 | |
|     env->cp15.c14_timer[timeridx].cval = value;
 | |
|     gt_recalc_timer(env_archcpu(env), timeridx);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              int timeridx)
 | |
| {
 | |
|     uint64_t offset = 0;
 | |
| 
 | |
|     switch (timeridx) {
 | |
|     case GTIMER_VIRT:
 | |
|     case GTIMER_HYPVIRT:
 | |
|         offset = gt_virt_cnt_offset(env);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
 | |
|                       (gt_get_countervalue(env) - offset));
 | |
| }
 | |
| 
 | |
| static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           int timeridx,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     uint64_t offset = 0;
 | |
| 
 | |
|     switch (timeridx) {
 | |
|     case GTIMER_VIRT:
 | |
|     case GTIMER_HYPVIRT:
 | |
|         offset = gt_virt_cnt_offset(env);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     trace_arm_gt_tval_write(timeridx, value);
 | |
|     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
 | |
|                                          sextract64(value, 0, 32);
 | |
|     gt_recalc_timer(env_archcpu(env), timeridx);
 | |
| }
 | |
| 
 | |
| static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          int timeridx,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
 | |
| 
 | |
|     trace_arm_gt_ctl_write(timeridx, value);
 | |
|     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
 | |
|     if ((oldval ^ value) & 1) {
 | |
|         /* Enable toggled */
 | |
|         gt_recalc_timer(cpu, timeridx);
 | |
|     } else if ((oldval ^ value) & 2) {
 | |
|         /* IMASK toggled: don't need to recalculate,
 | |
|          * just set the interrupt line based on ISTATUS
 | |
|          */
 | |
|         int irqstate = (oldval & 4) && !(value & 2);
 | |
| 
 | |
|         trace_arm_gt_imask_toggle(timeridx, irqstate);
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static int gt_phys_redir_timeridx(CPUARMState *env)
 | |
| {
 | |
|     switch (arm_mmu_idx(env)) {
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|         return GTIMER_HYP;
 | |
|     default:
 | |
|         return GTIMER_PHYS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int gt_virt_redir_timeridx(CPUARMState *env)
 | |
| {
 | |
|     switch (arm_mmu_idx(env)) {
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|         return GTIMER_HYPVIRT;
 | |
|     default:
 | |
|         return GTIMER_VIRT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     return env->cp15.c14_timer[timeridx].cval;
 | |
| }
 | |
| 
 | |
| static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     gt_cval_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     return gt_tval_read(env, ri, timeridx);
 | |
| }
 | |
| 
 | |
| static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     gt_tval_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     return env->cp15.c14_timer[timeridx].ctl;
 | |
| }
 | |
| 
 | |
| static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_phys_redir_timeridx(env);
 | |
|     gt_ctl_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     trace_arm_gt_cntvoff_write(value);
 | |
|     raw_write(env, ri, value);
 | |
|     gt_recalc_timer(cpu, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     return env->cp15.c14_timer[timeridx].cval;
 | |
| }
 | |
| 
 | |
| static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     gt_cval_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     return gt_tval_read(env, ri, timeridx);
 | |
| }
 | |
| 
 | |
| static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     gt_tval_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     return env->cp15.c14_timer[timeridx].ctl;
 | |
| }
 | |
| 
 | |
| static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     int timeridx = gt_virt_redir_timeridx(env);
 | |
|     gt_ctl_write(env, ri, timeridx, value);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
 | |
| }
 | |
| 
 | |
| static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
 | |
| }
 | |
| 
 | |
| static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
 | |
| }
 | |
| 
 | |
| static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
 | |
| }
 | |
| 
 | |
| void arm_gt_ptimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| void arm_gt_vtimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| void arm_gt_htimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| void arm_gt_stimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| void arm_gt_hvtimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
 | |
| }
 | |
| 
 | |
| static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | |
|     /* Note that CNTFRQ is purely reads-as-written for the benefit
 | |
|      * of software; writing it doesn't actually change the timer frequency.
 | |
|      * Our reset value matches the fixed frequency we implement the timer at.
 | |
|      */
 | |
|     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
 | |
|     },
 | |
|     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
 | |
|       .resetfn = arm_gt_cntfrq_reset,
 | |
|     },
 | |
|     /* overall control: mostly access permissions */
 | |
|     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
 | |
|       .resetvalue = 0,
 | |
|     },
 | |
|     /* per-timer control */
 | |
|     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_PHYS].ctl),
 | |
|       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CTL_S",
 | |
|       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_SEC].ctl),
 | |
|       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_VIRT].ctl),
 | |
|       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     /* TimerValue views: a 32 bit downcounting view of the underlying state */
 | |
|     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
 | |
|     },
 | |
|     { .name = "CNTP_TVAL_S",
 | |
|       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
 | |
|     },
 | |
|     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
 | |
|       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
 | |
|     },
 | |
|     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
 | |
|     },
 | |
|     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
 | |
|       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
 | |
|       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
 | |
|     },
 | |
|     /* The counter itself */
 | |
|     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_pct_access,
 | |
|       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | |
|     },
 | |
|     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
 | |
|     },
 | |
|     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
 | |
|       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_vct_access,
 | |
|       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | |
|     },
 | |
|     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
 | |
|     },
 | |
|     /* Comparison value, indicating when the timer goes off */
 | |
|     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .access = PL0_RW,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .access = PL0_RW,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | |
|       .resetvalue = 0, .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
 | |
|       .access = PL0_RW,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | |
|       .resetvalue = 0, .accessfn = gt_vtimer_access,
 | |
|       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
 | |
|       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     /* Secure timer -- this is actually restricted to only EL3
 | |
|      * and configurably Secure-EL1 via the accessfn.
 | |
|      */
 | |
|     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .readfn = gt_sec_tval_read,
 | |
|       .writefn = gt_sec_tval_write,
 | |
|       .resetfn = gt_sec_timer_reset,
 | |
|     },
 | |
|     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | |
|       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* In user-mode most of the generic timer registers are inaccessible
 | |
|  * however modern kernels (4.12+) allow access to cntvct_el0
 | |
|  */
 | |
| 
 | |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     /* Currently we have no support for QEMUTimer in linux-user so we
 | |
|      * can't call gt_get_countervalue(env), instead we directly
 | |
|      * call the lower level functions.
 | |
|      */
 | |
|     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | |
|     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
 | |
|       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
 | |
|       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
 | |
|     },
 | |
|     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .readfn = gt_virt_cnt_read,
 | |
|     },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         raw_write(env, ri, value);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         raw_write(env, ri, value & 0xfffff6ff);
 | |
|     } else {
 | |
|         raw_write(env, ri, value & 0xfffff1ff);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* get_phys_addr() isn't present for user-mode-only targets */
 | |
| 
 | |
| static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     if (ri->opc2 & 4) {
 | |
|         /* The ATS12NSO* operations must trap to EL3 if executed in
 | |
|          * Secure EL1 (which can only happen if EL3 is AArch64).
 | |
|          * They are simply UNDEF if executed from NS EL1.
 | |
|          * They function normally from EL2 or EL3.
 | |
|          */
 | |
|         if (arm_current_el(env) == 1) {
 | |
|             if (arm_is_secure_below_el3(env)) {
 | |
|                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
 | |
|             }
 | |
|             return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|         }
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TCG
 | |
| static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
 | |
|                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     bool ret;
 | |
|     uint64_t par64;
 | |
|     bool format64 = false;
 | |
|     MemTxAttrs attrs = {};
 | |
|     ARMMMUFaultInfo fi = {};
 | |
|     ARMCacheAttrs cacheattrs = {};
 | |
| 
 | |
|     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
 | |
|                         &prot, &page_size, &fi, &cacheattrs);
 | |
| 
 | |
|     if (ret) {
 | |
|         /*
 | |
|          * Some kinds of translation fault must cause exceptions rather
 | |
|          * than being reported in the PAR.
 | |
|          */
 | |
|         int current_el = arm_current_el(env);
 | |
|         int target_el;
 | |
|         uint32_t syn, fsr, fsc;
 | |
|         bool take_exc = false;
 | |
| 
 | |
|         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
 | |
|             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
 | |
|             /*
 | |
|              * Synchronous stage 2 fault on an access made as part of the
 | |
|              * translation table walk for AT S1E0* or AT S1E1* insn
 | |
|              * executed from NS EL1. If this is a synchronous external abort
 | |
|              * and SCR_EL3.EA == 1, then we take a synchronous external abort
 | |
|              * to EL3. Otherwise the fault is taken as an exception to EL2,
 | |
|              * and HPFAR_EL2 holds the faulting IPA.
 | |
|              */
 | |
|             if (fi.type == ARMFault_SyncExternalOnWalk &&
 | |
|                 (env->cp15.scr_el3 & SCR_EA)) {
 | |
|                 target_el = 3;
 | |
|             } else {
 | |
|                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
 | |
|                 target_el = 2;
 | |
|             }
 | |
|             take_exc = true;
 | |
|         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
 | |
|             /*
 | |
|              * Synchronous external aborts during a translation table walk
 | |
|              * are taken as Data Abort exceptions.
 | |
|              */
 | |
|             if (fi.stage2) {
 | |
|                 if (current_el == 3) {
 | |
|                     target_el = 3;
 | |
|                 } else {
 | |
|                     target_el = 2;
 | |
|                 }
 | |
|             } else {
 | |
|                 target_el = exception_target_el(env);
 | |
|             }
 | |
|             take_exc = true;
 | |
|         }
 | |
| 
 | |
|         if (take_exc) {
 | |
|             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
 | |
|             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
 | |
|                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
 | |
|                 fsr = arm_fi_to_lfsc(&fi);
 | |
|                 fsc = extract32(fsr, 0, 6);
 | |
|             } else {
 | |
|                 fsr = arm_fi_to_sfsc(&fi);
 | |
|                 fsc = 0x3f;
 | |
|             }
 | |
|             /*
 | |
|              * Report exception with ESR indicating a fault due to a
 | |
|              * translation table walk for a cache maintenance instruction.
 | |
|              */
 | |
|             syn = syn_data_abort_no_iss(current_el == target_el, 0,
 | |
|                                         fi.ea, 1, fi.s1ptw, 1, fsc);
 | |
|             env->exception.vaddress = value;
 | |
|             env->exception.fsr = fsr;
 | |
|             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         format64 = true;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         /*
 | |
|          * ATS1Cxx:
 | |
|          * * TTBCR.EAE determines whether the result is returned using the
 | |
|          *   32-bit or the 64-bit PAR format
 | |
|          * * Instructions executed in Hyp mode always use the 64bit format
 | |
|          *
 | |
|          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
 | |
|          * * The Non-secure TTBCR.EAE bit is set to 1
 | |
|          * * The implementation includes EL2, and the value of HCR.VM is 1
 | |
|          *
 | |
|          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
 | |
|          *
 | |
|          * ATS1Hx always uses the 64bit format.
 | |
|          */
 | |
|         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             if (mmu_idx == ARMMMUIdx_E10_0 ||
 | |
|                 mmu_idx == ARMMMUIdx_E10_1 ||
 | |
|                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
 | |
|                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
 | |
|             } else {
 | |
|                 format64 |= arm_current_el(env) == 2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (format64) {
 | |
|         /* Create a 64-bit PAR */
 | |
|         par64 = (1 << 11); /* LPAE bit always set */
 | |
|         if (!ret) {
 | |
|             par64 |= phys_addr & ~0xfffULL;
 | |
|             if (!attrs.secure) {
 | |
|                 par64 |= (1 << 9); /* NS */
 | |
|             }
 | |
|             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
 | |
|             par64 |= cacheattrs.shareability << 7; /* SH */
 | |
|         } else {
 | |
|             uint32_t fsr = arm_fi_to_lfsc(&fi);
 | |
| 
 | |
|             par64 |= 1; /* F */
 | |
|             par64 |= (fsr & 0x3f) << 1; /* FS */
 | |
|             if (fi.stage2) {
 | |
|                 par64 |= (1 << 9); /* S */
 | |
|             }
 | |
|             if (fi.s1ptw) {
 | |
|                 par64 |= (1 << 8); /* PTW */
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* fsr is a DFSR/IFSR value for the short descriptor
 | |
|          * translation table format (with WnR always clear).
 | |
|          * Convert it to a 32-bit PAR.
 | |
|          */
 | |
|         if (!ret) {
 | |
|             /* We do not set any attribute bits in the PAR */
 | |
|             if (page_size == (1 << 24)
 | |
|                 && arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                 par64 = (phys_addr & 0xff000000) | (1 << 1);
 | |
|             } else {
 | |
|                 par64 = phys_addr & 0xfffff000;
 | |
|             }
 | |
|             if (!attrs.secure) {
 | |
|                 par64 |= (1 << 9); /* NS */
 | |
|             }
 | |
|         } else {
 | |
|             uint32_t fsr = arm_fi_to_sfsc(&fi);
 | |
| 
 | |
|             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
 | |
|                     ((fsr & 0xf) << 1) | 1;
 | |
|         }
 | |
|     }
 | |
|     return par64;
 | |
| }
 | |
| #endif /* CONFIG_TCG */
 | |
| 
 | |
| static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
| #ifdef CONFIG_TCG
 | |
|     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     uint64_t par64;
 | |
|     ARMMMUIdx mmu_idx;
 | |
|     int el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure_below_el3(env);
 | |
| 
 | |
|     switch (ri->opc2 & 6) {
 | |
|     case 0:
 | |
|         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
 | |
|         switch (el) {
 | |
|         case 3:
 | |
|             mmu_idx = ARMMMUIdx_SE3;
 | |
|             break;
 | |
|         case 2:
 | |
|             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
 | |
|             /* fall through */
 | |
|         case 1:
 | |
|             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
 | |
|                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
 | |
|                            : ARMMMUIdx_Stage1_E1_PAN);
 | |
|             } else {
 | |
|                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
 | |
|         switch (el) {
 | |
|         case 3:
 | |
|             mmu_idx = ARMMMUIdx_SE10_0;
 | |
|             break;
 | |
|         case 2:
 | |
|             mmu_idx = ARMMMUIdx_Stage1_E0;
 | |
|             break;
 | |
|         case 1:
 | |
|             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 4:
 | |
|         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
 | |
|         mmu_idx = ARMMMUIdx_E10_1;
 | |
|         break;
 | |
|     case 6:
 | |
|         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
 | |
|         mmu_idx = ARMMMUIdx_E10_0;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     par64 = do_ats_write(env, value, access_type, mmu_idx);
 | |
| 
 | |
|     A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | |
| #else
 | |
|     /* Handled by hardware accelerator. */
 | |
|     g_assert_not_reached();
 | |
| #endif /* CONFIG_TCG */
 | |
| }
 | |
| 
 | |
| static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
| #ifdef CONFIG_TCG
 | |
|     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     uint64_t par64;
 | |
| 
 | |
|     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
 | |
| 
 | |
|     A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | |
| #else
 | |
|     /* Handled by hardware accelerator. */
 | |
|     g_assert_not_reached();
 | |
| #endif /* CONFIG_TCG */
 | |
| }
 | |
| 
 | |
| static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
| #ifdef CONFIG_TCG
 | |
|     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | |
|     ARMMMUIdx mmu_idx;
 | |
|     int secure = arm_is_secure_below_el3(env);
 | |
| 
 | |
|     switch (ri->opc2 & 6) {
 | |
|     case 0:
 | |
|         switch (ri->opc1) {
 | |
|         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
 | |
|             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
 | |
|                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
 | |
|                            : ARMMMUIdx_Stage1_E1_PAN);
 | |
|             } else {
 | |
|                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
 | |
|             }
 | |
|             break;
 | |
|         case 4: /* AT S1E2R, AT S1E2W */
 | |
|             mmu_idx = ARMMMUIdx_E2;
 | |
|             break;
 | |
|         case 6: /* AT S1E3R, AT S1E3W */
 | |
|             mmu_idx = ARMMMUIdx_SE3;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 2: /* AT S1E0R, AT S1E0W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
 | |
|         break;
 | |
|     case 4: /* AT S12E1R, AT S12E1W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
 | |
|         break;
 | |
|     case 6: /* AT S12E0R, AT S12E0W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
 | |
| #else
 | |
|     /* Handled by hardware accelerator. */
 | |
|     g_assert_not_reached();
 | |
| #endif /* CONFIG_TCG */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const ARMCPRegInfo vapa_cp_reginfo[] = {
 | |
|     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.par_ns) },
 | |
|       .writefn = par_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* This underdecoding is safe because the reginfo is NO_RAW. */
 | |
|     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
 | |
|       .access = PL1_W, .accessfn = ats_access,
 | |
|       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
 | |
| #endif
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Return basic MPU access permission bits.  */
 | |
| static uint32_t simple_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val >> i) & mask;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Pad basic MPU access permission bits to extended format.  */
 | |
| static uint32_t extended_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val & mask) << i;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
 | |
| }
 | |
| 
 | |
| static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | |
| 
 | |
|     if (!u32p) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     u32p += env->pmsav7.rnr[M_REG_NS];
 | |
|     return *u32p;
 | |
| }
 | |
| 
 | |
| static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | |
| 
 | |
|     if (!u32p) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     u32p += env->pmsav7.rnr[M_REG_NS];
 | |
|     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
 | |
|     *u32p = value;
 | |
| }
 | |
| 
 | |
| static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint32_t nrgs = cpu->pmsav7_dregion;
 | |
| 
 | |
|     if (value >= nrgs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
 | |
|                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
 | |
|     /* Reset for all these registers is handled in arm_cpu_reset(),
 | |
|      * because the PMSAv7 is also used by M-profile CPUs, which do
 | |
|      * not register cpregs but still need the state to be reset.
 | |
|      */
 | |
|     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write,
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write,
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write,
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
 | |
|       .writefn = pmsav7_rgnr_write,
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
 | |
|     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | |
|       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
 | |
|     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | |
|       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
 | |
|     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
 | |
|     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
 | |
|     /* Protection region base and size registers */
 | |
|     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
 | |
|     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
 | |
|     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
 | |
|     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
 | |
|     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
 | |
|     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
 | |
|     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
 | |
|     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
|     int maskshift = extract32(value, 0, 3);
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
 | |
|             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
 | |
|              * using Long-desciptor translation table format */
 | |
|             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
 | |
|         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             /* In an implementation that includes the Security Extensions
 | |
|              * TTBCR has additional fields PD0 [4] and PD1 [5] for
 | |
|              * Short-descriptor translation table format.
 | |
|              */
 | |
|             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
 | |
|         } else {
 | |
|             value &= TTBCR_N;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Update the masks corresponding to the TCR bank being written
 | |
|      * Note that we always calculate mask and base_mask, but
 | |
|      * they are only used for short-descriptor tables (ie if EAE is 0);
 | |
|      * for long-descriptor tables the TCR fields are used differently
 | |
|      * and the mask and base_mask values are meaningless.
 | |
|      */
 | |
|     tcr->raw_tcr = value;
 | |
|     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
 | |
|     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         /* With LPAE the TTBCR could result in a change of ASID
 | |
|          * via the TTBCR.A1 bit, so do a TLB flush.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu));
 | |
|     }
 | |
|     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
 | |
|     value = deposit64(tcr->raw_tcr, 0, 32, value);
 | |
|     vmsa_ttbcr_raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
| 
 | |
|     /* Reset both the TCR as well as the masks corresponding to the bank of
 | |
|      * the TCR being reset.
 | |
|      */
 | |
|     tcr->raw_tcr = 0;
 | |
|     tcr->mask = 0;
 | |
|     tcr->base_mask = 0xffffc000u;
 | |
| }
 | |
| 
 | |
| static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
| 
 | |
|     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
 | |
|     tlb_flush(CPU(cpu));
 | |
|     tcr->raw_tcr = value;
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
 | |
|     if (cpreg_field_is_64bit(ri) &&
 | |
|         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
 | |
|         ARMCPU *cpu = env_archcpu(env);
 | |
|         tlb_flush(CPU(cpu));
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     /*
 | |
|      * If we are running with E2&0 regime, then an ASID is active.
 | |
|      * Flush if that might be changing.  Note we're not checking
 | |
|      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
 | |
|      * holds the active ASID, only checking the field that might.
 | |
|      */
 | |
|     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
 | |
|         (arm_hcr_el2_eff(env) & HCR_E2H)) {
 | |
|         tlb_flush_by_mmuidx(env_cpu(env),
 | |
|                             ARMMMUIdxBit_E20_2 |
 | |
|                             ARMMMUIdxBit_E20_2_PAN |
 | |
|                             ARMMMUIdxBit_E20_0);
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     /*
 | |
|      * A change in VMID to the stage2 page table (Stage2) invalidates
 | |
|      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
 | |
|      */
 | |
|     if (raw_read(env, ri) != value) {
 | |
|         tlb_flush_by_mmuidx(cs,
 | |
|                             ARMMMUIdxBit_E10_1 |
 | |
|                             ARMMMUIdxBit_E10_1_PAN |
 | |
|                             ARMMMUIdxBit_E10_0);
 | |
|         raw_write(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
 | |
|     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
 | |
|     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
 | |
|                              offsetof(CPUARMState, cp15.dfar_ns) } },
 | |
|     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
 | |
|       .resetvalue = 0, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = {
 | |
|     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
 | |
|     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
 | |
|     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
 | |
|     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .writefn = vmsa_tcr_el12_write,
 | |
|       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
 | |
|     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
 | |
|       .raw_writefn = vmsa_ttbcr_raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
 | |
|                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
 | |
|  * qemu tlbs nor adjusting cached masks.
 | |
|  */
 | |
| static const ARMCPRegInfo ttbcr2_reginfo = {
 | |
|     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
 | |
|     .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|     .type = ARM_CP_ALIAS,
 | |
|     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
 | |
|                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
 | |
| };
 | |
| 
 | |
| static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_ticonfig = value & 0xe7;
 | |
|     /* The OS_TYPE bit in this register changes the reported CPUID! */
 | |
|     env->cp15.c0_cpuid = (value & (1 << 5)) ?
 | |
|         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 | |
| }
 | |
| 
 | |
| static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_threadid = value & 0xffff;
 | |
| }
 | |
| 
 | |
| static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Wait-for-interrupt (deprecated) */
 | |
|     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
 | |
| }
 | |
| 
 | |
| static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     /* On OMAP there are registers indicating the max/min index of dcache lines
 | |
|      * containing a dirty line; cache flush operations have to reset these.
 | |
|      */
 | |
|     env->cp15.c15_i_max = 0x000;
 | |
|     env->cp15.c15_i_min = 0xff0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo omap_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
 | |
|       .writefn = omap_ticonfig_write },
 | |
|     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
 | |
|     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0xff0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
 | |
|     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
 | |
|       .writefn = omap_threadid_write },
 | |
|     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
 | |
|       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
 | |
|     /* TODO: Peripheral port remap register:
 | |
|      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
 | |
|      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
 | |
|      * when MMU is off.
 | |
|      */
 | |
|     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | |
|       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
 | |
|       .writefn = omap_cachemaint_write },
 | |
|     { .name = "C9", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
 | |
|       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_cpar = value & 0x3fff;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo xscale_cp_reginfo[] = {
 | |
|     { .name = "XSCALE_CPAR",
 | |
|       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
 | |
|       .writefn = xscale_cpar_write, },
 | |
|     { .name = "XSCALE_AUXCR",
 | |
|       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
 | |
|       .resetvalue = 0, },
 | |
|     /* XScale specific cache-lockdown: since we have no cache we NOP these
 | |
|      * and hope the guest does not really rely on cache behaviour.
 | |
|      */
 | |
|     { .name = "XSCALE_LOCK_ICACHE_LINE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_UNLOCK_ICACHE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_DCACHE_LOCK",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_UNLOCK_DCACHE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
 | |
|     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
 | |
|      * implementation of this implementation-defined space.
 | |
|      * Ideally this should eventually disappear in favour of actually
 | |
|      * implementing the correct behaviour for all cores.
 | |
|      */
 | |
|     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW,
 | |
|       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
 | |
|     /* Cache status: RAZ because we have no cache so it's always clean */
 | |
|     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
 | |
|     /* We never have a a block transfer operation in progress */
 | |
|     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     /* The cache ops themselves: these all NOP for QEMU */
 | |
|     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
 | |
|     /* The cache test-and-clean instructions always return (1 << 30)
 | |
|      * to indicate that there are no dirty cache lines.
 | |
|      */
 | |
|     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = (1 << 30) },
 | |
|     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = (1 << 30) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = {
 | |
|     /* Ignore ReadBuffer accesses */
 | |
|     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | |
|         return env->cp15.vpidr_el2;
 | |
|     }
 | |
|     return raw_read(env, ri);
 | |
| }
 | |
| 
 | |
| static uint64_t mpidr_read_val(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint64_t mpidr = cpu->mp_affinity;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V7MP)) {
 | |
|         mpidr |= (1U << 31);
 | |
|         /* Cores which are uniprocessor (non-coherent)
 | |
|          * but still implement the MP extensions set
 | |
|          * bit 30. (For instance, Cortex-R5).
 | |
|          */
 | |
|         if (cpu->mp_is_up) {
 | |
|             mpidr |= (1u << 30);
 | |
|         }
 | |
|     }
 | |
|     return mpidr;
 | |
| }
 | |
| 
 | |
| static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | |
|         return env->cp15.vmpidr_el2;
 | |
|     }
 | |
|     return mpidr_read_val(env);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo lpae_cp_reginfo[] = {
 | |
|     /* NOP AMAIR0/1 */
 | |
|     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
 | |
|     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
 | |
|                              offsetof(CPUARMState, cp15.par_ns)} },
 | |
|     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr0_ns) },
 | |
|       .writefn = vmsa_ttbr_write, },
 | |
|     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr1_ns) },
 | |
|       .writefn = vmsa_ttbr_write, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return vfp_get_fpcr(env);
 | |
| }
 | |
| 
 | |
| static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     vfp_set_fpcr(env, value);
 | |
| }
 | |
| 
 | |
| static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return vfp_get_fpsr(env);
 | |
| }
 | |
| 
 | |
| static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     vfp_set_fpsr(env, value);
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     env->daif = value & PSTATE_DAIF;
 | |
| }
 | |
| 
 | |
| static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return env->pstate & PSTATE_PAN;
 | |
| }
 | |
| 
 | |
| static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo pan_reginfo = {
 | |
|     .name = "PAN", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
 | |
|     .type = ARM_CP_NO_RAW, .access = PL1_RW,
 | |
|     .readfn = aa64_pan_read, .writefn = aa64_pan_write
 | |
| };
 | |
| 
 | |
| static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return env->pstate & PSTATE_UAO;
 | |
| }
 | |
| 
 | |
| static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo uao_reginfo = {
 | |
|     .name = "UAO", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
 | |
|     .type = ARM_CP_NO_RAW, .access = PL1_RW,
 | |
|     .readfn = aa64_uao_read, .writefn = aa64_uao_write
 | |
| };
 | |
| 
 | |
| static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
 | |
|                                               const ARMCPRegInfo *ri,
 | |
|                                               bool isread)
 | |
| {
 | |
|     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 0:
 | |
|         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
 | |
|         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         /* fall through */
 | |
|     case 1:
 | |
|         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
 | |
|         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
 | |
|                                               const ARMCPRegInfo *ri,
 | |
|                                               bool isread)
 | |
| {
 | |
|     /* Cache invalidate/clean to Point of Unification... */
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 0:
 | |
|         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
 | |
|         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         /* fall through */
 | |
|     case 1:
 | |
|         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
 | |
|         if (arm_hcr_el2_eff(env) & HCR_TPU) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 | |
|  * Page D4-1736 (DDI0487A.b)
 | |
|  */
 | |
| 
 | |
| static int vae1_tlbmask(CPUARMState *env)
 | |
| {
 | |
|     /* Since we exclude secure first, we may read HCR_EL2 directly. */
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return ARMMMUIdxBit_SE10_1 |
 | |
|                ARMMMUIdxBit_SE10_1_PAN |
 | |
|                ARMMMUIdxBit_SE10_0;
 | |
|     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
 | |
|                == (HCR_E2H | HCR_TGE)) {
 | |
|         return ARMMMUIdxBit_E20_2 |
 | |
|                ARMMMUIdxBit_E20_2_PAN |
 | |
|                ARMMMUIdxBit_E20_0;
 | |
|     } else {
 | |
|         return ARMMMUIdxBit_E10_1 |
 | |
|                ARMMMUIdxBit_E10_1_PAN |
 | |
|                ARMMMUIdxBit_E10_0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = vae1_tlbmask(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = vae1_tlbmask(env);
 | |
| 
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
 | |
|     } else {
 | |
|         tlb_flush_by_mmuidx(cs, mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int alle1_tlbmask(CPUARMState *env)
 | |
| {
 | |
|     /*
 | |
|      * Note that the 'ALL' scope must invalidate both stage 1 and
 | |
|      * stage 2 translations, whereas most other scopes only invalidate
 | |
|      * stage 1 translations.
 | |
|      */
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return ARMMMUIdxBit_SE10_1 |
 | |
|                ARMMMUIdxBit_SE10_1_PAN |
 | |
|                ARMMMUIdxBit_SE10_0;
 | |
|     } else {
 | |
|         return ARMMMUIdxBit_E10_1 |
 | |
|                ARMMMUIdxBit_E10_1_PAN |
 | |
|                ARMMMUIdxBit_E10_0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int e2_tlbmask(CPUARMState *env)
 | |
| {
 | |
|     /* TODO: ARMv8.4-SecEL2 */
 | |
|     return ARMMMUIdxBit_E20_0 |
 | |
|            ARMMMUIdxBit_E20_2 |
 | |
|            ARMMMUIdxBit_E20_2_PAN |
 | |
|            ARMMMUIdxBit_E2;
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = alle1_tlbmask(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = e2_tlbmask(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = alle1_tlbmask(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = e2_tlbmask(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL2
 | |
|      * Currently handles both VAE2 and VALE2, since we don't support
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = e2_tlbmask(env);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL3
 | |
|      * Currently handles both VAE3 and VALE3, since we don't support
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = vae1_tlbmask(env);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL1&0 (AArch64 version).
 | |
|      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
 | |
|      * since we don't support flush-for-specific-ASID-only or
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int mask = vae1_tlbmask(env);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     if (tlb_force_broadcast(env)) {
 | |
|         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
 | |
|     } else {
 | |
|         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | |
|                                              ARMMMUIdxBit_E2);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | |
|                                              ARMMMUIdxBit_SE3);
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       bool isread)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
| 
 | |
|     if (cur_el < 2) {
 | |
|         uint64_t hcr = arm_hcr_el2_eff(env);
 | |
| 
 | |
|         if (cur_el == 0) {
 | |
|             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             } else {
 | |
|                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
 | |
|                     return CP_ACCESS_TRAP;
 | |
|                 }
 | |
|                 if (hcr & HCR_TDZ) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             }
 | |
|         } else if (hcr & HCR_TDZ) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int dzp_bit = 1 << 4;
 | |
| 
 | |
|     /* DZP indicates whether DC ZVA access is allowed */
 | |
|     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
 | |
|         dzp_bit = 0;
 | |
|     }
 | |
|     return cpu->dcz_blocksize | dzp_bit;
 | |
| }
 | |
| 
 | |
| static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     if (!(env->pstate & PSTATE_SP)) {
 | |
|         /* Access to SP_EL0 is undefined if it's being used as
 | |
|          * the stack pointer.
 | |
|          */
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return env->pstate & PSTATE_SP;
 | |
| }
 | |
| 
 | |
| static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
 | |
| {
 | |
|     update_spsel(env, val);
 | |
| }
 | |
| 
 | |
| static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
 | |
|         /* M bit is RAZ/WI for PMSA with no MPU implemented */
 | |
|         value &= ~SCTLR_M;
 | |
|     }
 | |
| 
 | |
|     /* ??? Lots of these bits are not implemented.  */
 | |
| 
 | |
|     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
 | |
|         if (ri->opc1 == 6) { /* SCTLR_EL3 */
 | |
|             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
 | |
|         } else {
 | |
|             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
 | |
|                        SCTLR_ATA0 | SCTLR_ATA);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (raw_read(env, ri) == value) {
 | |
|         /* Skip the TLB flush if nothing actually changed; Linux likes
 | |
|          * to do a lot of pointless SCTLR writes.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
| 
 | |
|     /* This may enable/disable the MMU, so do a TLB flush.  */
 | |
|     tlb_flush(CPU(cpu));
 | |
| 
 | |
|     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
 | |
|         /*
 | |
|          * Normally we would always end the TB on an SCTLR write; see the
 | |
|          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
 | |
|          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
 | |
|          * of hflags from the translator, so do it here.
 | |
|          */
 | |
|         arm_rebuild_hflags(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
 | |
|         return CP_ACCESS_TRAP_FP_EL2;
 | |
|     }
 | |
|     if (env->cp15.cptr_el[3] & CPTR_TFP) {
 | |
|         return CP_ACCESS_TRAP_FP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t value)
 | |
| {
 | |
|     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v8_cp_reginfo[] = {
 | |
|     /* Minimal set of EL0-visible registers. This will need to be expanded
 | |
|      * significantly for system emulation of AArch64 CPUs.
 | |
|      */
 | |
|     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_NZCV },
 | |
|     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .access = PL0_RW, .accessfn = aa64_daif_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, daif),
 | |
|       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
 | |
|       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
 | |
|       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
 | |
|     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
 | |
|       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
 | |
|       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
 | |
|     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW,
 | |
|       .readfn = aa64_dczid_read },
 | |
|     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_DC_ZVA,
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|       /* Avoid overhead of an access check that always passes in user-mode */
 | |
|       .accessfn = aa64_zva_access,
 | |
| #endif
 | |
|     },
 | |
|     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
 | |
|       .access = PL1_R, .type = ARM_CP_CURRENTEL },
 | |
|     /* Cache ops: all NOPs since we don't emulate caches */
 | |
|     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | |
|       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
 | |
|       .type = ARM_CP_NOP },
 | |
|     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | |
|       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
 | |
|     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | |
|       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
 | |
|     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | |
|       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
 | |
|     /* TLBI operations */
 | |
|     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1is_write },
 | |
|     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1is_write },
 | |
|     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1_write },
 | |
|     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1_write },
 | |
|     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | |
|       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_W, .type = ARM_CP_NOP },
 | |
|     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NOP },
 | |
|     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
|     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
|     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
 | |
|       .access = PL2_W, .type = ARM_CP_NOP },
 | |
|     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NOP },
 | |
|     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1_write },
 | |
|     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* 64 bit address translation operations */
 | |
|     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
 | |
|     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
 | |
|       .writefn = par_write },
 | |
| #endif
 | |
|     /* TLB invalidate last level of translation table walk */
 | |
|     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_is_write },
 | |
|     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimvaa_is_write },
 | |
|     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimva_write },
 | |
|     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
 | |
|       .writefn = tlbimvaa_write },
 | |
|     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbimva_hyp_write },
 | |
|     { .name = "TLBIMVALHIS",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbimva_hyp_is_write },
 | |
|     { .name = "TLBIIPAS2",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL2_W },
 | |
|     { .name = "TLBIIPAS2IS",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL2_W },
 | |
|     { .name = "TLBIIPAS2L",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL2_W },
 | |
|     { .name = "TLBIIPAS2LIS",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL2_W },
 | |
|     /* 32 bit cache operations */
 | |
|     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
 | |
|     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     /* MMU Domain access control / MPU write buffer control */
 | |
|     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | |
|     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
 | |
|     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
 | |
|     /* We rely on the access checks not allowing the guest to write to the
 | |
|      * state field when SPSel indicates that it's being used as the stack
 | |
|      * pointer.
 | |
|      */
 | |
|     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = sp_el0_access,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
 | |
|     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
 | |
|     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
 | |
|     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
 | |
|       .access = PL2_RW, .accessfn = fpexc32_access },
 | |
|     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
 | |
|     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
 | |
|     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
 | |
|     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
 | |
|     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
 | |
|     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
 | |
|     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
 | |
|       .resetvalue = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
 | |
|     { .name = "SDCR", .type = ARM_CP_ALIAS,
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .writefn = sdcr_write,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
 | |
| static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
 | |
|     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
 | |
|     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 6, .crm = 2,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
 | |
|       .type = ARM_CP_CONST,
 | |
|       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Ditto, but for registers which exist in ARMv8 but not v7 */
 | |
| static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
 | |
|     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
 | |
|       .access = PL2_RW,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
 | |
|     } else {
 | |
|         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         valid_mask &= ~HCR_HCD;
 | |
|     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
 | |
|         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
 | |
|          * However, if we're using the SMC PSCI conduit then QEMU is
 | |
|          * effectively acting like EL3 firmware and so the guest at
 | |
|          * EL2 should retain the ability to prevent EL1 from being
 | |
|          * able to make SMC calls into the ersatz firmware, so in
 | |
|          * that case HCR.TSC should be read/write.
 | |
|          */
 | |
|         valid_mask &= ~HCR_TSC;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|         if (cpu_isar_feature(aa64_vh, cpu)) {
 | |
|             valid_mask |= HCR_E2H;
 | |
|         }
 | |
|         if (cpu_isar_feature(aa64_lor, cpu)) {
 | |
|             valid_mask |= HCR_TLOR;
 | |
|         }
 | |
|         if (cpu_isar_feature(aa64_pauth, cpu)) {
 | |
|             valid_mask |= HCR_API | HCR_APK;
 | |
|         }
 | |
|         if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear RES0 bits.  */
 | |
|     value &= valid_mask;
 | |
| 
 | |
|     /*
 | |
|      * These bits change the MMU setup:
 | |
|      * HCR_VM enables stage 2 translation
 | |
|      * HCR_PTW forbids certain page-table setups
 | |
|      * HCR_DC disables stage1 and enables stage2 translation
 | |
|      * HCR_DCT enables tagging on (disabled) stage1 translation
 | |
|      */
 | |
|     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
 | |
|         tlb_flush(CPU(cpu));
 | |
|     }
 | |
|     env->cp15.hcr_el2 = value;
 | |
| 
 | |
|     /*
 | |
|      * Updates to VI and VF require us to update the status of
 | |
|      * virtual interrupts, which are the logical OR of these bits
 | |
|      * and the state of the input lines from the GIC. (This requires
 | |
|      * that we have the iothread lock, which is done by marking the
 | |
|      * reginfo structs as ARM_CP_IO.)
 | |
|      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
 | |
|      * possible for it to be taken immediately, because VIRQ and
 | |
|      * VFIQ are masked unless running at EL0 or EL1, and HCR
 | |
|      * can only be written at EL2.
 | |
|      */
 | |
|     g_assert(qemu_mutex_iothread_locked());
 | |
|     arm_cpu_update_virq(cpu);
 | |
|     arm_cpu_update_vfiq(cpu);
 | |
| }
 | |
| 
 | |
| static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     do_hcr_write(env, value, 0);
 | |
| }
 | |
| 
 | |
| static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
 | |
|     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
 | |
|     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
 | |
| }
 | |
| 
 | |
| static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
 | |
|     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
 | |
|     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the effective value of HCR_EL2.
 | |
|  * Bits that are not included here:
 | |
|  * RW       (read from SCR_EL3.RW as needed)
 | |
|  */
 | |
| uint64_t arm_hcr_el2_eff(CPUARMState *env)
 | |
| {
 | |
|     uint64_t ret = env->cp15.hcr_el2;
 | |
| 
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         /*
 | |
|          * "This register has no effect if EL2 is not enabled in the
 | |
|          * current Security state".  This is ARMv8.4-SecEL2 speak for
 | |
|          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
 | |
|          *
 | |
|          * Prior to that, the language was "In an implementation that
 | |
|          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
 | |
|          * as if this field is 0 for all purposes other than a direct
 | |
|          * read or write access of HCR_EL2".  With lots of enumeration
 | |
|          * on a per-field basis.  In current QEMU, this is condition
 | |
|          * is arm_is_secure_below_el3.
 | |
|          *
 | |
|          * Since the v8.4 language applies to the entire register, and
 | |
|          * appears to be backward compatible, use that.
 | |
|          */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * For a cpu that supports both aarch64 and aarch32, we can set bits
 | |
|      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
 | |
|      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
 | |
|      */
 | |
|     if (!arm_el_is_aa64(env, 2)) {
 | |
|         uint64_t aa32_valid;
 | |
| 
 | |
|         /*
 | |
|          * These bits are up-to-date as of ARMv8.6.
 | |
|          * For HCR, it's easiest to list just the 2 bits that are invalid.
 | |
|          * For HCR2, list those that are valid.
 | |
|          */
 | |
|         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
 | |
|         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
 | |
|                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
 | |
|         ret &= aa32_valid;
 | |
|     }
 | |
| 
 | |
|     if (ret & HCR_TGE) {
 | |
|         /* These bits are up-to-date as of ARMv8.6.  */
 | |
|         if (ret & HCR_E2H) {
 | |
|             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
 | |
|                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
 | |
|                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
 | |
|                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
 | |
|                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
 | |
|                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
 | |
|         } else {
 | |
|             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
 | |
|         }
 | |
|         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
 | |
|                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
 | |
|                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
 | |
|                  HCR_TLOR);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /*
 | |
|      * For A-profile AArch32 EL3, if NSACR.CP10
 | |
|      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 | |
|         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 | |
|         value &= ~(0x3 << 10);
 | |
|         value |= env->cp15.cptr_el[2] & (0x3 << 10);
 | |
|     }
 | |
|     env->cp15.cptr_el[2] = value;
 | |
| }
 | |
| 
 | |
| static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /*
 | |
|      * For A-profile AArch32 EL3, if NSACR.CP10
 | |
|      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
 | |
|      */
 | |
|     uint64_t value = env->cp15.cptr_el[2];
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 | |
|         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
 | |
|         value |= 0x3 << 10;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo el2_cp_reginfo[] = {
 | |
|     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
 | |
|       .writefn = hcr_write },
 | |
|     { .name = "HCR", .state = ARM_CP_STATE_AA32,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
 | |
|       .writefn = hcr_writelow },
 | |
|     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
 | |
|     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
 | |
|     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
 | |
|     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
 | |
|     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
 | |
|     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .writefn = vbar_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
 | |
|     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
 | |
|       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
 | |
|     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
 | |
|     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
 | |
|     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
 | |
|       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
 | |
|     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | |
|     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW,
 | |
|       /* no .writefn needed as this can't cause an ASID change;
 | |
|        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
 | |
|        */
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | |
|     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 6, .crm = 2,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
 | |
|       .writefn = vttbr_write },
 | |
|     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .writefn = vttbr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
 | |
|     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
 | |
|     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
 | |
|     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | |
|     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | |
|     { .name = "TLBIALLNSNH",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbiall_nsnh_write },
 | |
|     { .name = "TLBIALLNSNHIS",
 | |
|       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbiall_nsnh_is_write },
 | |
|     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbiall_hyp_write },
 | |
|     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbiall_hyp_is_write },
 | |
|     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbimva_hyp_write },
 | |
|     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbimva_hyp_is_write },
 | |
|     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_alle2_write },
 | |
|     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_vae2_write },
 | |
|     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae2_write },
 | |
|     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle2is_write },
 | |
|     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_vae2is_write },
 | |
|     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae2is_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* Unlike the other EL2-related AT operations, these must
 | |
|      * UNDEF from EL3 if EL2 is not implemented, which is why we
 | |
|      * define them here rather than with the rest of the AT ops.
 | |
|      */
 | |
|     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL2_W, .accessfn = at_s1e2_access,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL2_W, .accessfn = at_s1e2_access,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
 | |
|     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
 | |
|      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
 | |
|      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
 | |
|      * to behave as if SCR.NS was 1.
 | |
|      */
 | |
|     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL2_W,
 | |
|       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
 | |
|     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL2_W,
 | |
|       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
 | |
|     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
 | |
|        * reset values as IMPDEF. We choose to reset to 3 to comply with
 | |
|        * both ARMv7 and ARMv8.
 | |
|        */
 | |
|       .access = PL2_RW, .resetvalue = 3,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
 | |
|     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
 | |
|       .writefn = gt_cntvoff_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | |
|     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .writefn = gt_cntvoff_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | |
|     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | |
|       .type = ARM_CP_IO, .access = PL2_RW,
 | |
|       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
 | |
|       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
 | |
|       .resetfn = gt_hyp_timer_reset,
 | |
|       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
 | |
|     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .type = ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
 | |
| #endif
 | |
|     /* The only field of MDCR_EL2 that has a defined architectural reset value
 | |
|      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
 | |
|      * don't implement any PMU event counters, so using zero as a reset
 | |
|      * value for MDCR_EL2 is okay
 | |
|      */
 | |
|     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
 | |
|     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | |
|     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | |
|     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
 | |
|     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
 | |
|       .type = ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
 | |
|       .writefn = hcr_writehigh },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
 | |
|      * At Secure EL1 it traps to EL3.
 | |
|      */
 | |
|     if (arm_current_el(env) == 3) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
 | |
|     if (isread) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo el3_cp_reginfo[] = {
 | |
|     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
 | |
|       .resetvalue = 0, .writefn = scr_write },
 | |
|     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
 | |
|       .writefn = scr_write },
 | |
|     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
 | |
|     { .name = "SDER",
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
 | |
|     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .writefn = vbar_write, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
 | |
|     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
 | |
|     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL3_RW,
 | |
|       /* no .writefn needed as this can't cause an ASID change;
 | |
|        * we must provide a .raw_writefn and .resetfn because we handle
 | |
|        * reset and migration for the AArch32 TTBCR(S), which might be
 | |
|        * using mask and base_mask.
 | |
|        */
 | |
|       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
 | |
|     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL3_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
 | |
|     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
 | |
|     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
 | |
|     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
 | |
|     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .writefn = vbar_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
 | |
|     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
 | |
|     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle3is_write },
 | |
|     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3is_write },
 | |
|     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3is_write },
 | |
|     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle3_write },
 | |
|     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3_write },
 | |
|     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* Test if system register redirection is to occur in the current state.  */
 | |
| static bool redirect_for_e2h(CPUARMState *env)
 | |
| {
 | |
|     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
 | |
| }
 | |
| 
 | |
| static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     CPReadFn *readfn;
 | |
| 
 | |
|     if (redirect_for_e2h(env)) {
 | |
|         /* Switch to the saved EL2 version of the register.  */
 | |
|         ri = ri->opaque;
 | |
|         readfn = ri->readfn;
 | |
|     } else {
 | |
|         readfn = ri->orig_readfn;
 | |
|     }
 | |
|     if (readfn == NULL) {
 | |
|         readfn = raw_read;
 | |
|     }
 | |
|     return readfn(env, ri);
 | |
| }
 | |
| 
 | |
| static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     CPWriteFn *writefn;
 | |
| 
 | |
|     if (redirect_for_e2h(env)) {
 | |
|         /* Switch to the saved EL2 version of the register.  */
 | |
|         ri = ri->opaque;
 | |
|         writefn = ri->writefn;
 | |
|     } else {
 | |
|         writefn = ri->orig_writefn;
 | |
|     }
 | |
|     if (writefn == NULL) {
 | |
|         writefn = raw_write;
 | |
|     }
 | |
|     writefn(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
 | |
| {
 | |
|     struct E2HAlias {
 | |
|         uint32_t src_key, dst_key, new_key;
 | |
|         const char *src_name, *dst_name, *new_name;
 | |
|         bool (*feature)(const ARMISARegisters *id);
 | |
|     };
 | |
| 
 | |
| #define K(op0, op1, crn, crm, op2) \
 | |
|     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
 | |
| 
 | |
|     static const struct E2HAlias aliases[] = {
 | |
|         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
 | |
|           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
 | |
|         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
 | |
|           "CPACR", "CPTR_EL2", "CPACR_EL12" },
 | |
|         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
 | |
|           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
 | |
|         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
 | |
|           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
 | |
|         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
 | |
|           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
 | |
|         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
 | |
|           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
 | |
|         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
 | |
|           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
 | |
|         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
 | |
|           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
 | |
|         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
 | |
|           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
 | |
|         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
 | |
|           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
 | |
|         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
 | |
|           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
 | |
|         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
 | |
|           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
 | |
|         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
 | |
|           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
 | |
|         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
 | |
|           "VBAR", "VBAR_EL2", "VBAR_EL12" },
 | |
|         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
 | |
|           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
 | |
|         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
 | |
|           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
 | |
| 
 | |
|         /*
 | |
|          * Note that redirection of ZCR is mentioned in the description
 | |
|          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
 | |
|          * not in the summary table.
 | |
|          */
 | |
|         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
 | |
|           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
 | |
| 
 | |
|         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
 | |
|           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
 | |
| 
 | |
|         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
 | |
|         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
 | |
|     };
 | |
| #undef K
 | |
| 
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
 | |
|         const struct E2HAlias *a = &aliases[i];
 | |
|         ARMCPRegInfo *src_reg, *dst_reg;
 | |
| 
 | |
|         if (a->feature && !a->feature(&cpu->isar)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
 | |
|         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
 | |
|         g_assert(src_reg != NULL);
 | |
|         g_assert(dst_reg != NULL);
 | |
| 
 | |
|         /* Cross-compare names to detect typos in the keys.  */
 | |
|         g_assert(strcmp(src_reg->name, a->src_name) == 0);
 | |
|         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
 | |
| 
 | |
|         /* None of the core system registers use opaque; we will.  */
 | |
|         g_assert(src_reg->opaque == NULL);
 | |
| 
 | |
|         /* Create alias before redirection so we dup the right data. */
 | |
|         if (a->new_key) {
 | |
|             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
 | |
|             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
 | |
|             bool ok;
 | |
| 
 | |
|             new_reg->name = a->new_name;
 | |
|             new_reg->type |= ARM_CP_ALIAS;
 | |
|             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
 | |
|             new_reg->access &= PL2_RW | PL3_RW;
 | |
| 
 | |
|             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
 | |
|             g_assert(ok);
 | |
|         }
 | |
| 
 | |
|         src_reg->opaque = dst_reg;
 | |
|         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
 | |
|         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
 | |
|         if (!src_reg->raw_readfn) {
 | |
|             src_reg->raw_readfn = raw_read;
 | |
|         }
 | |
|         if (!src_reg->raw_writefn) {
 | |
|             src_reg->raw_writefn = raw_write;
 | |
|         }
 | |
|         src_reg->readfn = el2_e2h_read;
 | |
|         src_reg->writefn = el2_e2h_write;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
| 
 | |
|     if (cur_el < 2) {
 | |
|         uint64_t hcr = arm_hcr_el2_eff(env);
 | |
| 
 | |
|         if (cur_el == 0) {
 | |
|             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             } else {
 | |
|                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
 | |
|                     return CP_ACCESS_TRAP;
 | |
|                 }
 | |
|                 if (hcr & HCR_TID2) {
 | |
|                     return CP_ACCESS_TRAP_EL2;
 | |
|                 }
 | |
|             }
 | |
|         } else if (hcr & HCR_TID2) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
 | |
|      * read via a bit in OSLSR_EL1.
 | |
|      */
 | |
|     int oslock;
 | |
| 
 | |
|     if (ri->state == ARM_CP_STATE_AA32) {
 | |
|         oslock = (value == 0xC5ACCE55);
 | |
|     } else {
 | |
|         oslock = value & 1;
 | |
|     }
 | |
| 
 | |
|     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo debug_cp_reginfo[] = {
 | |
|     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 | |
|      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
 | |
|      * unlike DBGDRAR it is never accessible from EL0.
 | |
|      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
 | |
|      * accessor.
 | |
|      */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
 | |
|     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
 | |
|       .resetvalue = 0 },
 | |
|     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
 | |
|      * We don't implement the configurable EL0 access.
 | |
|      */
 | |
|     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL1_R, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
 | |
|     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .accessfn = access_tdosa,
 | |
|       .writefn = oslar_write },
 | |
|     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
 | |
|       .access = PL1_R, .resetvalue = 10,
 | |
|       .accessfn = access_tdosa,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
 | |
|     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
 | |
|     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
 | |
|       .access = PL1_RW, .accessfn = access_tdosa,
 | |
|       .type = ARM_CP_NOP },
 | |
|     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
 | |
|      * implement vector catch debug events yet.
 | |
|      */
 | |
|     { .name = "DBGVCR",
 | |
|       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
|     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
 | |
|      * to save and restore a 32-bit guest's DBGVCR)
 | |
|      */
 | |
|     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|       .access = PL2_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
|     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
 | |
|      * Channel but Linux may try to access this register. The 32-bit
 | |
|      * alias is DBGDCCINT.
 | |
|      */
 | |
|     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
 | |
|     /* 64 bit access versions of the (dummy) debug registers */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Return the exception level to which exceptions should be taken
 | |
|  * via SVEAccessTrap.  If an exception should be routed through
 | |
|  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
 | |
|  * take care of raising that exception.
 | |
|  * C.f. the ARM pseudocode function CheckSVEEnabled.
 | |
|  */
 | |
| int sve_exception_el(CPUARMState *env, int el)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 | |
| 
 | |
|     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 | |
|         bool disabled = false;
 | |
| 
 | |
|         /* The CPACR.ZEN controls traps to EL1:
 | |
|          * 0, 2 : trap EL0 and EL1 accesses
 | |
|          * 1    : trap only EL0 accesses
 | |
|          * 3    : trap no accesses
 | |
|          */
 | |
|         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
 | |
|             disabled = true;
 | |
|         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
 | |
|             disabled = el == 0;
 | |
|         }
 | |
|         if (disabled) {
 | |
|             /* route_to_el2 */
 | |
|             return hcr_el2 & HCR_TGE ? 2 : 1;
 | |
|         }
 | |
| 
 | |
|         /* Check CPACR.FPEN.  */
 | |
|         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
 | |
|             disabled = true;
 | |
|         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
 | |
|             disabled = el == 0;
 | |
|         }
 | |
|         if (disabled) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* CPTR_EL2.  Since TZ and TFP are positive,
 | |
|      * they will be zero when EL2 is not present.
 | |
|      */
 | |
|     if (el <= 2 && !arm_is_secure_below_el3(env)) {
 | |
|         if (env->cp15.cptr_el[2] & CPTR_TZ) {
 | |
|             return 2;
 | |
|         }
 | |
|         if (env->cp15.cptr_el[2] & CPTR_TFP) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)
 | |
|         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
 | |
|         return 3;
 | |
|     }
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
 | |
| {
 | |
|     uint32_t end_len;
 | |
| 
 | |
|     end_len = start_len &= 0xf;
 | |
|     if (!test_bit(start_len, cpu->sve_vq_map)) {
 | |
|         end_len = find_last_bit(cpu->sve_vq_map, start_len);
 | |
|         assert(end_len < start_len);
 | |
|     }
 | |
|     return end_len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given that SVE is enabled, return the vector length for EL.
 | |
|  */
 | |
| uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint32_t zcr_len = cpu->sve_max_vq - 1;
 | |
| 
 | |
|     if (el <= 1) {
 | |
|         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
 | |
|     }
 | |
|     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
 | |
|     }
 | |
| 
 | |
|     return sve_zcr_get_valid_len(cpu, zcr_len);
 | |
| }
 | |
| 
 | |
| static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t value)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     int old_len = sve_zcr_len_for_el(env, cur_el);
 | |
|     int new_len;
 | |
| 
 | |
|     /* Bits other than [3:0] are RAZ/WI.  */
 | |
|     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
 | |
|     raw_write(env, ri, value & 0xf);
 | |
| 
 | |
|     /*
 | |
|      * Because we arrived here, we know both FP and SVE are enabled;
 | |
|      * otherwise we would have trapped access to the ZCR_ELn register.
 | |
|      */
 | |
|     new_len = sve_zcr_len_for_el(env, cur_el);
 | |
|     if (new_len < old_len) {
 | |
|         aarch64_sve_narrow_vq(env, new_len + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo zcr_el1_reginfo = {
 | |
|     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
 | |
|     .access = PL1_RW, .type = ARM_CP_SVE,
 | |
|     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
 | |
|     .writefn = zcr_write, .raw_writefn = raw_write
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo zcr_el2_reginfo = {
 | |
|     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
 | |
|     .access = PL2_RW, .type = ARM_CP_SVE,
 | |
|     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
 | |
|     .writefn = zcr_write, .raw_writefn = raw_write
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo zcr_no_el2_reginfo = {
 | |
|     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
 | |
|     .access = PL2_RW, .type = ARM_CP_SVE,
 | |
|     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo zcr_el3_reginfo = {
 | |
|     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
 | |
|     .access = PL3_RW, .type = ARM_CP_SVE,
 | |
|     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
 | |
|     .writefn = zcr_write, .raw_writefn = raw_write
 | |
| };
 | |
| 
 | |
| void hw_watchpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     vaddr len = 0;
 | |
|     vaddr wvr = env->cp15.dbgwvr[n];
 | |
|     uint64_t wcr = env->cp15.dbgwcr[n];
 | |
|     int mask;
 | |
|     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 | |
| 
 | |
|     if (env->cpu_watchpoint[n]) {
 | |
|         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
 | |
|         env->cpu_watchpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!extract64(wcr, 0, 1)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (extract64(wcr, 3, 2)) {
 | |
|     case 0:
 | |
|         /* LSC 00 is reserved and must behave as if the wp is disabled */
 | |
|         return;
 | |
|     case 1:
 | |
|         flags |= BP_MEM_READ;
 | |
|         break;
 | |
|     case 2:
 | |
|         flags |= BP_MEM_WRITE;
 | |
|         break;
 | |
|     case 3:
 | |
|         flags |= BP_MEM_ACCESS;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Attempts to use both MASK and BAS fields simultaneously are
 | |
|      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
 | |
|      * thus generating a watchpoint for every byte in the masked region.
 | |
|      */
 | |
|     mask = extract64(wcr, 24, 4);
 | |
|     if (mask == 1 || mask == 2) {
 | |
|         /* Reserved values of MASK; we must act as if the mask value was
 | |
|          * some non-reserved value, or as if the watchpoint were disabled.
 | |
|          * We choose the latter.
 | |
|          */
 | |
|         return;
 | |
|     } else if (mask) {
 | |
|         /* Watchpoint covers an aligned area up to 2GB in size */
 | |
|         len = 1ULL << mask;
 | |
|         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
 | |
|          * whether the watchpoint fires when the unmasked bits match; we opt
 | |
|          * to generate the exceptions.
 | |
|          */
 | |
|         wvr &= ~(len - 1);
 | |
|     } else {
 | |
|         /* Watchpoint covers bytes defined by the byte address select bits */
 | |
|         int bas = extract64(wcr, 5, 8);
 | |
|         int basstart;
 | |
| 
 | |
|         if (extract64(wvr, 2, 1)) {
 | |
|             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
 | |
|              * ignored, and BAS[3:0] define which bytes to watch.
 | |
|              */
 | |
|             bas &= 0xf;
 | |
|         }
 | |
| 
 | |
|         if (bas == 0) {
 | |
|             /* This must act as if the watchpoint is disabled */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /* The BAS bits are supposed to be programmed to indicate a contiguous
 | |
|          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * we fire for each byte in the word/doubleword addressed by the WVR.
 | |
|          * We choose to ignore any non-zero bits after the first range of 1s.
 | |
|          */
 | |
|         basstart = ctz32(bas);
 | |
|         len = cto32(bas >> basstart);
 | |
|         wvr += basstart;
 | |
|     }
 | |
| 
 | |
|     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
 | |
|                           &env->cpu_watchpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_watchpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* Completely clear out existing QEMU watchpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
 | |
|         hw_watchpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
 | |
|      * register reads and behaves as if values written are sign extended.
 | |
|      * Bits [1:0] are RES0.
 | |
|      */
 | |
|     value = sextract64(value, 0, 49) & ~3ULL;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t bvr = env->cp15.dbgbvr[n];
 | |
|     uint64_t bcr = env->cp15.dbgbcr[n];
 | |
|     vaddr addr;
 | |
|     int bt;
 | |
|     int flags = BP_CPU;
 | |
| 
 | |
|     if (env->cpu_breakpoint[n]) {
 | |
|         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
 | |
|         env->cpu_breakpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!extract64(bcr, 0, 1)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bt = extract64(bcr, 20, 4);
 | |
| 
 | |
|     switch (bt) {
 | |
|     case 4: /* unlinked address mismatch (reserved if AArch64) */
 | |
|     case 5: /* linked address mismatch (reserved if AArch64) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: address mismatch breakpoint types not implemented\n");
 | |
|         return;
 | |
|     case 0: /* unlinked address match */
 | |
|     case 1: /* linked address match */
 | |
|     {
 | |
|         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
 | |
|          * we behave as if the register was sign extended. Bits [1:0] are
 | |
|          * RES0. The BAS field is used to allow setting breakpoints on 16
 | |
|          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * a bp will fire if the addresses covered by the bp and the addresses
 | |
|          * covered by the insn overlap but the insn doesn't start at the
 | |
|          * start of the bp address range. We choose to require the insn and
 | |
|          * the bp to have the same address. The constraints on writing to
 | |
|          * BAS enforced in dbgbcr_write mean we have only four cases:
 | |
|          *  0b0000  => no breakpoint
 | |
|          *  0b0011  => breakpoint on addr
 | |
|          *  0b1100  => breakpoint on addr + 2
 | |
|          *  0b1111  => breakpoint on addr
 | |
|          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
 | |
|          */
 | |
|         int bas = extract64(bcr, 5, 4);
 | |
|         addr = sextract64(bvr, 0, 49) & ~3ULL;
 | |
|         if (bas == 0) {
 | |
|             return;
 | |
|         }
 | |
|         if (bas == 0xc) {
 | |
|             addr += 2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case 2: /* unlinked context ID match */
 | |
|     case 8: /* unlinked VMID match (reserved if no EL2) */
 | |
|     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: unlinked context breakpoint types not implemented\n");
 | |
|         return;
 | |
|     case 9: /* linked VMID match (reserved if no EL2) */
 | |
|     case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | |
|     case 3: /* linked context ID match */
 | |
|     default:
 | |
|         /* We must generate no events for Linked context matches (unless
 | |
|          * they are linked to by some other bp/wp, which is handled in
 | |
|          * updates for the linking bp/wp). We choose to also generate no events
 | |
|          * for reserved values.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* Completely clear out existing QEMU breakpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
 | |
|         hw_breakpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
 | |
|      * copy of BAS[0].
 | |
|      */
 | |
|     value = deposit64(value, 6, 1, extract64(value, 5, 1));
 | |
|     value = deposit64(value, 8, 1, extract64(value, 7, 1));
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void define_debug_regs(ARMCPU *cpu)
 | |
| {
 | |
|     /* Define v7 and v8 architectural debug registers.
 | |
|      * These are just dummy implementations for now.
 | |
|      */
 | |
|     int i;
 | |
|     int wrps, brps, ctx_cmps;
 | |
|     ARMCPRegInfo dbgdidr = {
 | |
|         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|         .access = PL0_R, .accessfn = access_tda,
 | |
|         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
 | |
|     };
 | |
| 
 | |
|     /* Note that all these register fields hold "number of Xs minus 1". */
 | |
|     brps = arm_num_brps(cpu);
 | |
|     wrps = arm_num_wrps(cpu);
 | |
|     ctx_cmps = arm_num_ctx_cmps(cpu);
 | |
| 
 | |
|     assert(ctx_cmps <= brps);
 | |
| 
 | |
|     define_one_arm_cp_reg(cpu, &dbgdidr);
 | |
|     define_arm_cp_regs(cpu, debug_cp_reginfo);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < brps; i++) {
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
 | |
|               .writefn = dbgbvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
 | |
|               .writefn = dbgbcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < wrps; i++) {
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
 | |
|               .writefn = dbgwvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
 | |
|               .writefn = dbgwcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void define_pmu_regs(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * v7 performance monitor control register: same implementor
 | |
|      * field as main ID register, and we implement four counters in
 | |
|      * addition to the cycle count register.
 | |
|      */
 | |
|     unsigned int i, pmcrn = 4;
 | |
|     ARMCPRegInfo pmcr = {
 | |
|         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
 | |
|         .access = PL0_RW,
 | |
|         .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
 | |
|         .accessfn = pmreg_access, .writefn = pmcr_write,
 | |
|         .raw_writefn = raw_write,
 | |
|     };
 | |
|     ARMCPRegInfo pmcr64 = {
 | |
|         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
 | |
|         .access = PL0_RW, .accessfn = pmreg_access,
 | |
|         .type = ARM_CP_IO,
 | |
|         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
 | |
|         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
 | |
|                       PMCRLC,
 | |
|         .writefn = pmcr_write, .raw_writefn = raw_write,
 | |
|     };
 | |
|     define_one_arm_cp_reg(cpu, &pmcr);
 | |
|     define_one_arm_cp_reg(cpu, &pmcr64);
 | |
|     for (i = 0; i < pmcrn; i++) {
 | |
|         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
 | |
|         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
 | |
|         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
 | |
|         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
 | |
|         ARMCPRegInfo pmev_regs[] = {
 | |
|             { .name = pmevcntr_name, .cp = 15, .crn = 14,
 | |
|               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
 | |
|               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
 | |
|               .accessfn = pmreg_access },
 | |
|             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
 | |
|               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
 | |
|               .type = ARM_CP_IO,
 | |
|               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
 | |
|               .raw_readfn = pmevcntr_rawread,
 | |
|               .raw_writefn = pmevcntr_rawwrite },
 | |
|             { .name = pmevtyper_name, .cp = 15, .crn = 14,
 | |
|               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
 | |
|               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
 | |
|               .accessfn = pmreg_access },
 | |
|             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
 | |
|               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
 | |
|               .type = ARM_CP_IO,
 | |
|               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
 | |
|               .raw_writefn = pmevtyper_rawwrite },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, pmev_regs);
 | |
|         g_free(pmevcntr_name);
 | |
|         g_free(pmevcntr_el0_name);
 | |
|         g_free(pmevtyper_name);
 | |
|         g_free(pmevtyper_el0_name);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
 | |
|         ARMCPRegInfo v81_pmu_regs[] = {
 | |
|             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
 | |
|             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, v81_pmu_regs);
 | |
|     }
 | |
|     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
 | |
|         static const ARMCPRegInfo v84_pmmir = {
 | |
|             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
 | |
|             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|             .resetvalue = 0
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &v84_pmmir);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* We don't know until after realize whether there's a GICv3
 | |
|  * attached, and that is what registers the gicv3 sysregs.
 | |
|  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
 | |
|  * at runtime.
 | |
|  */
 | |
| static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint64_t pfr1 = cpu->id_pfr1;
 | |
| 
 | |
|     if (env->gicv3state) {
 | |
|         pfr1 |= 1 << 28;
 | |
|     }
 | |
|     return pfr1;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
 | |
| 
 | |
|     if (env->gicv3state) {
 | |
|         pfr0 |= 1 << 24;
 | |
|     }
 | |
|     return pfr0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Shared logic between LORID and the rest of the LOR* registers.
 | |
|  * Secure state has already been delt with.
 | |
|  */
 | |
| static CPAccessResult access_lor_ns(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         /* Access ok in secure mode.  */
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     return access_lor_ns(env);
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_lor_other(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri, bool isread)
 | |
| {
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         /* Access denied in secure mode.  */
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return access_lor_ns(env);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A trivial implementation of ARMv8.1-LOR leaves all of these
 | |
|  * registers fixed at 0, which indicates that there are zero
 | |
|  * supported Limited Ordering regions.
 | |
|  */
 | |
| static const ARMCPRegInfo lor_reginfo[] = {
 | |
|     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_lor_other,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_lor_other,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_lor_other,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
 | |
|       .access = PL1_RW, .accessfn = access_lor_other,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
 | |
|       .access = PL1_R, .accessfn = access_lorid,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 &&
 | |
|         arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         !(arm_hcr_el2_eff(env) & HCR_APK)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 &&
 | |
|         arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         !(env->cp15.scr_el3 & SCR_APK)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo pauth_reginfo[] = {
 | |
|     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
 | |
|     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
 | |
|     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
 | |
|     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
 | |
|     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
 | |
|     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
 | |
|     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
 | |
|     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
 | |
|     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
 | |
|     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
 | |
|       .access = PL1_RW, .accessfn = access_pauth,
 | |
|       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     Error *err = NULL;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     /* Success sets NZCV = 0000.  */
 | |
|     env->NF = env->CF = env->VF = 0, env->ZF = 1;
 | |
| 
 | |
|     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
 | |
|         /*
 | |
|          * ??? Failed, for unknown reasons in the crypto subsystem.
 | |
|          * The best we can do is log the reason and return the
 | |
|          * timed-out indication to the guest.  There is no reason
 | |
|          * we know to expect this failure to be transitory, so the
 | |
|          * guest may well hang retrying the operation.
 | |
|          */
 | |
|         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
 | |
|                       ri->name, error_get_pretty(err));
 | |
|         error_free(err);
 | |
| 
 | |
|         env->ZF = 0; /* NZCF = 0100 */
 | |
|         return 0;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* We do not support re-seeding, so the two registers operate the same.  */
 | |
| static const ARMCPRegInfo rndr_reginfo[] = {
 | |
|     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
 | |
|       .access = PL0_R, .readfn = rndr_readfn },
 | |
|     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
 | |
|       .access = PL0_R, .readfn = rndr_readfn },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     /* CTR_EL0 System register -> DminLine, bits [19:16] */
 | |
|     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
 | |
|     uint64_t vaddr_in = (uint64_t) value;
 | |
|     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
 | |
|     void *haddr;
 | |
|     int mem_idx = cpu_mmu_index(env, false);
 | |
| 
 | |
|     /* This won't be crossing page boundaries */
 | |
|     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
 | |
|     if (haddr) {
 | |
| 
 | |
|         ram_addr_t offset;
 | |
|         MemoryRegion *mr;
 | |
| 
 | |
|         /* RCU lock is already being held */
 | |
|         mr = memory_region_from_host(haddr, &offset);
 | |
| 
 | |
|         if (mr) {
 | |
|             memory_region_writeback(mr, offset, dline_size);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo dcpop_reg[] = {
 | |
|     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
 | |
|       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo dcpodp_reg[] = {
 | |
|     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
 | |
|       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| #endif /*CONFIG_USER_ONLY*/
 | |
| 
 | |
| static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 &&
 | |
|         arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         !(arm_hcr_el2_eff(env) & HCR_ATA)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 &&
 | |
|         arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         !(env->cp15.scr_el3 & SCR_ATA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return env->pstate & PSTATE_TCO;
 | |
| }
 | |
| 
 | |
| static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
 | |
| {
 | |
|     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo mte_reginfo[] = {
 | |
|     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_mte,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
 | |
|     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_mte,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
 | |
|     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
 | |
|       .access = PL2_RW, .accessfn = access_mte,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
 | |
|     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
 | |
|       .access = PL3_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
 | |
|     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
 | |
|       .access = PL1_RW, .accessfn = access_mte,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
 | |
|     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
 | |
|       .access = PL1_RW, .accessfn = access_mte,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
 | |
|     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_R, .accessfn = access_aa64_tid5,
 | |
|       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
 | |
|     { .name = "TCO", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
 | |
|     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
 | |
|     { .name = "TCO", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
 | |
|       .type = ARM_CP_CONST, .access = PL0_RW, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
 | |
|     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W,
 | |
|       .accessfn = aa64_cacheop_poc_access },
 | |
|     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
 | |
|       .access = PL0_W, .type = ARM_CP_DC_GVA,
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|       /* Avoid overhead of an access check that always passes in user-mode */
 | |
|       .accessfn = aa64_zva_access,
 | |
| #endif
 | |
|     },
 | |
|     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_DC_GZVA,
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|       /* Avoid overhead of an access check that always passes in user-mode */
 | |
|       .accessfn = aa64_zva_access,
 | |
| #endif
 | |
|     },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el == 0) {
 | |
|         uint64_t sctlr = arm_sctlr(env, el);
 | |
|         if (!(sctlr & SCTLR_EnRCTX)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|     } else if (el == 1) {
 | |
|         uint64_t hcr = arm_hcr_el2_eff(env);
 | |
|         if (hcr & HCR_NV) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         }
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo predinv_reginfo[] = {
 | |
|     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     /*
 | |
|      * Note the AArch32 opcodes have a different OPC1.
 | |
|      */
 | |
|     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
 | |
|       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Read the high 32 bits of the current CCSIDR */
 | |
|     return extract64(ccsidr_read(env, ri), 32, 32);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo ccsidr2_reginfo[] = {
 | |
|     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
 | |
|       .access = PL1_R,
 | |
|       .accessfn = access_aa64_tid2,
 | |
|       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         return access_aa64_tid3(env, ri, isread);
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo jazelle_regs[] = {
 | |
|     { .name = "JIDR",
 | |
|       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
 | |
|       .access = PL1_R, .accessfn = access_jazelle,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "JOSCR",
 | |
|       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "JMCR",
 | |
|       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo vhe_reginfo[] = {
 | |
|     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
 | |
|     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
 | |
|       .fieldoffset =
 | |
|         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
 | |
|       .type = ARM_CP_IO, .access = PL2_RW,
 | |
|       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
 | |
|       .resetfn = gt_hv_timer_reset,
 | |
|       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
 | |
|     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .type = ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
 | |
|       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
 | |
|       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
 | |
|       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
 | |
|     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
 | |
|     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | |
|       .access = PL2_RW, .accessfn = e2h_access,
 | |
|       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
 | |
| #endif
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static const ARMCPRegInfo ats1e1_reginfo[] = {
 | |
|     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write64 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo ats1cp_reginfo[] = {
 | |
|     { .name = "ATS1CPRP",
 | |
|       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write },
 | |
|     { .name = "ATS1CPWP",
 | |
|       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
 | |
|       .writefn = ats_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
 | |
|  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
 | |
|  * is non-zero, which is never for ARMv7, optionally in ARMv8
 | |
|  * and mandatorily for ARMv8.2 and up.
 | |
|  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
 | |
|  * implementation is RAZ/WI we can ignore this detail, as we
 | |
|  * do for ACTLR.
 | |
|  */
 | |
| static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
 | |
|     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
 | |
|       .access = PL1_RW, .accessfn = access_tacr,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| void register_cp_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     /* Register all the coprocessor registers based on feature bits */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /* M profile has no coprocessor registers */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     define_arm_cp_regs(cpu, cp_reginfo);
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* Must go early as it is full of wildcards that may be
 | |
|          * overridden by later definitions.
 | |
|          */
 | |
|         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         /* The ID registers all have impdef reset values */
 | |
|         ARMCPRegInfo v6_idregs[] = {
 | |
|             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->id_pfr0 },
 | |
|             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
 | |
|              * the value of the GIC field until after we define these regs.
 | |
|              */
 | |
|             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_NO_RAW,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .readfn = id_pfr1_read,
 | |
|               .writefn = arm_cp_write_ignore },
 | |
|             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_dfr0 },
 | |
|             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->id_afr0 },
 | |
|             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_mmfr0 },
 | |
|             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_mmfr1 },
 | |
|             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_mmfr2 },
 | |
|             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_mmfr3 },
 | |
|             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar0 },
 | |
|             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar1 },
 | |
|             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar2 },
 | |
|             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar3 },
 | |
|             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar4 },
 | |
|             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar5 },
 | |
|             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_mmfr4 },
 | |
|             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa32_tid3,
 | |
|               .resetvalue = cpu->isar.id_isar6 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, v6_idregs);
 | |
|         define_arm_cp_regs(cpu, v6_cp_reginfo);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|         define_arm_cp_regs(cpu, v6k_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7MP) &&
 | |
|         !arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7VE)) {
 | |
|         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         ARMCPRegInfo clidr = {
 | |
|             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
 | |
|             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
 | |
|             .access = PL1_R, .type = ARM_CP_CONST,
 | |
|             .accessfn = access_aa64_tid2,
 | |
|             .resetvalue = cpu->clidr
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &clidr);
 | |
|         define_arm_cp_regs(cpu, v7_cp_reginfo);
 | |
|         define_debug_regs(cpu);
 | |
|         define_pmu_regs(cpu);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* AArch64 ID registers, which all have impdef reset values.
 | |
|          * Note that within the ID register ranges the unused slots
 | |
|          * must all RAZ, not UNDEF; future architecture versions may
 | |
|          * define new registers here.
 | |
|          */
 | |
|         ARMCPRegInfo v8_idregs[] = {
 | |
|             /*
 | |
|              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
 | |
|              * emulation because we don't know the right value for the
 | |
|              * GIC field until after we define these regs.
 | |
|              */
 | |
|             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
 | |
|               .access = PL1_R,
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|               .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->isar.id_aa64pfr0
 | |
| #else
 | |
|               .type = ARM_CP_NO_RAW,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .readfn = id_aa64pfr0_read,
 | |
|               .writefn = arm_cp_write_ignore
 | |
| #endif
 | |
|             },
 | |
|             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64pfr1},
 | |
|             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               /* At present, only SVEver == 0 is defined anyway.  */
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64dfr0 },
 | |
|             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64dfr1 },
 | |
|             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->id_aa64afr0 },
 | |
|             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->id_aa64afr1 },
 | |
|             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64isar0 },
 | |
|             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64isar1 },
 | |
|             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64mmfr0 },
 | |
|             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64mmfr1 },
 | |
|             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.id_aa64mmfr2 },
 | |
|             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.mvfr0 },
 | |
|             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.mvfr1 },
 | |
|             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = cpu->isar.mvfr2 },
 | |
|             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .accessfn = access_aa64_tid3,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
 | |
|             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid0 },
 | |
|             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
 | |
|             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid1 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
 | |
|             { .name = "ID_AA64PFR0_EL1",
 | |
|               .exported_bits = 0x000f000f00ff0000,
 | |
|               .fixed_bits    = 0x0000000000000011 },
 | |
|             { .name = "ID_AA64PFR1_EL1",
 | |
|               .exported_bits = 0x00000000000000f0 },
 | |
|             { .name = "ID_AA64PFR*_EL1_RESERVED",
 | |
|               .is_glob = true                     },
 | |
|             { .name = "ID_AA64ZFR0_EL1"           },
 | |
|             { .name = "ID_AA64MMFR0_EL1",
 | |
|               .fixed_bits    = 0x00000000ff000000 },
 | |
|             { .name = "ID_AA64MMFR1_EL1"          },
 | |
|             { .name = "ID_AA64MMFR*_EL1_RESERVED",
 | |
|               .is_glob = true                     },
 | |
|             { .name = "ID_AA64DFR0_EL1",
 | |
|               .fixed_bits    = 0x0000000000000006 },
 | |
|             { .name = "ID_AA64DFR1_EL1"           },
 | |
|             { .name = "ID_AA64DFR*_EL1_RESERVED",
 | |
|               .is_glob = true                     },
 | |
|             { .name = "ID_AA64AFR*",
 | |
|               .is_glob = true                     },
 | |
|             { .name = "ID_AA64ISAR0_EL1",
 | |
|               .exported_bits = 0x00fffffff0fffff0 },
 | |
|             { .name = "ID_AA64ISAR1_EL1",
 | |
|               .exported_bits = 0x000000f0ffffffff },
 | |
|             { .name = "ID_AA64ISAR*_EL1_RESERVED",
 | |
|               .is_glob = true                     },
 | |
|             REGUSERINFO_SENTINEL
 | |
|         };
 | |
|         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
 | |
| #endif
 | |
|         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
 | |
|         if (!arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|             !arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             ARMCPRegInfo rvbar = {
 | |
|                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &rvbar);
 | |
|         }
 | |
|         define_arm_cp_regs(cpu, v8_idregs);
 | |
|         define_arm_cp_regs(cpu, v8_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         uint64_t vmpidr_def = mpidr_read_val(env);
 | |
|         ARMCPRegInfo vpidr_regs[] = {
 | |
|             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
 | |
|               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
 | |
|             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL2_RW, .resetvalue = cpu->midr,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | |
|             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|               .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
 | |
|               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
 | |
|             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|               .access = PL2_RW,
 | |
|               .resetvalue = vmpidr_def,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, vpidr_regs);
 | |
|         define_arm_cp_regs(cpu, el2_cp_reginfo);
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
 | |
|         }
 | |
|         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
 | |
|         if (!arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             ARMCPRegInfo rvbar = {
 | |
|                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &rvbar);
 | |
|         }
 | |
|     } else {
 | |
|         /* If EL2 is missing but higher ELs are enabled, we need to
 | |
|          * register the no_el2 reginfos.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
 | |
|              * of MIDR_EL1 and MPIDR_EL1.
 | |
|              */
 | |
|             ARMCPRegInfo vpidr_regs[] = {
 | |
|                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
 | |
|                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | |
|                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|                   .type = ARM_CP_NO_RAW,
 | |
|                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
 | |
|                 REGINFO_SENTINEL
 | |
|             };
 | |
|             define_arm_cp_regs(cpu, vpidr_regs);
 | |
|             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
 | |
|             if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         define_arm_cp_regs(cpu, el3_cp_reginfo);
 | |
|         ARMCPRegInfo el3_regs[] = {
 | |
|             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
 | |
|             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|               .access = PL3_RW,
 | |
|               .raw_writefn = raw_write, .writefn = sctlr_write,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
 | |
|               .resetvalue = cpu->reset_sctlr },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
| 
 | |
|         define_arm_cp_regs(cpu, el3_regs);
 | |
|     }
 | |
|     /* The behaviour of NSACR is sufficiently various that we don't
 | |
|      * try to describe it in a single reginfo:
 | |
|      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
 | |
|      *     reads as constant 0xc00 from NS EL1 and NS EL2
 | |
|      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
 | |
|      *  if v7 without EL3, register doesn't exist
 | |
|      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR", .type = ARM_CP_CONST,
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL1_RW, .accessfn = nsacr_access,
 | |
|                 .resetvalue = 0xc00
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         } else {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR",
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL3_RW | PL1_R,
 | |
|                 .resetvalue = 0,
 | |
|                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         }
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR", .type = ARM_CP_CONST,
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL1_R,
 | |
|                 .resetvalue = 0xc00
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|             /* PMSAv6 not implemented */
 | |
|             assert(arm_feature(env, ARM_FEATURE_V7));
 | |
|             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | |
|             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
 | |
|         } else {
 | |
|             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
 | |
|         }
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | |
|         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
 | |
|         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
 | |
|         if (cpu_isar_feature(aa32_hpd, cpu)) {
 | |
|             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
 | |
|         }
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
 | |
|         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 | |
|         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_VAPA)) {
 | |
|         define_arm_cp_regs(cpu, vapa_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
 | |
|         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
 | |
|         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
 | |
|         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | |
|         define_arm_cp_regs(cpu, omap_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|         define_arm_cp_regs(cpu, xscale_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
 | |
|         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, lpae_cp_reginfo);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa32_jazelle, cpu)) {
 | |
|         define_arm_cp_regs(cpu, jazelle_regs);
 | |
|     }
 | |
|     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
 | |
|      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
 | |
|      * be read-only (ie write causes UNDEF exception).
 | |
|      */
 | |
|     {
 | |
|         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
 | |
|             /* Pre-v8 MIDR space.
 | |
|              * Note that the MIDR isn't a simple constant register because
 | |
|              * of the TI925 behaviour where writes to another register can
 | |
|              * cause the MIDR value to change.
 | |
|              *
 | |
|              * Unimplemented registers in the c15 0 0 0 space default to
 | |
|              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
 | |
|              * and friends override accordingly.
 | |
|              */
 | |
|             { .name = "MIDR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr,
 | |
|               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
 | |
|               .readfn = midr_read,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | |
|               .type = ARM_CP_OVERRIDE },
 | |
|             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
 | |
|             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | |
|               .readfn = midr_read },
 | |
|             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
 | |
|             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr },
 | |
|             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr },
 | |
|             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
 | |
|               .access = PL1_R,
 | |
|               .accessfn = access_aa64_tid1,
 | |
|               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         ARMCPRegInfo id_cp_reginfo[] = {
 | |
|             /* These are common to v8 and pre-v8 */
 | |
|             { .name = "CTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|               .access = PL1_R, .accessfn = ctr_el0_access,
 | |
|               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | |
|             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
 | |
|               .access = PL0_R, .accessfn = ctr_el0_access,
 | |
|               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | |
|             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
 | |
|             { .name = "TCMTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|               .access = PL1_R,
 | |
|               .accessfn = access_aa32_tid1,
 | |
|               .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         /* TLBTR is specific to VMSA */
 | |
|         ARMCPRegInfo id_tlbtr_reginfo = {
 | |
|               .name = "TLBTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|               .access = PL1_R,
 | |
|               .accessfn = access_aa32_tid1,
 | |
|               .type = ARM_CP_CONST, .resetvalue = 0,
 | |
|         };
 | |
|         /* MPUIR is specific to PMSA V6+ */
 | |
|         ARMCPRegInfo id_mpuir_reginfo = {
 | |
|               .name = "MPUIR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmsav7_dregion << 8
 | |
|         };
 | |
|         ARMCPRegInfo crn0_wi_reginfo = {
 | |
|             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
 | |
|             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
 | |
|             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
 | |
|         };
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
 | |
|             { .name = "MIDR_EL1",
 | |
|               .exported_bits = 0x00000000ffffffff },
 | |
|             { .name = "REVIDR_EL1"                },
 | |
|             REGUSERINFO_SENTINEL
 | |
|         };
 | |
|         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
 | |
| #endif
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
 | |
|             arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|             ARMCPRegInfo *r;
 | |
|             /* Register the blanket "writes ignored" value first to cover the
 | |
|              * whole space. Then update the specific ID registers to allow write
 | |
|              * access, so that they ignore writes rather than causing them to
 | |
|              * UNDEF.
 | |
|              */
 | |
|             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
 | |
|             for (r = id_pre_v8_midr_cp_reginfo;
 | |
|                  r->type != ARM_CP_SENTINEL; r++) {
 | |
|                 r->access = PL1_RW;
 | |
|             }
 | |
|             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
 | |
|                 r->access = PL1_RW;
 | |
|             }
 | |
|             id_mpuir_reginfo.access = PL1_RW;
 | |
|             id_tlbtr_reginfo.access = PL1_RW;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
 | |
|         } else {
 | |
|             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
 | |
|         }
 | |
|         define_arm_cp_regs(cpu, id_cp_reginfo);
 | |
|         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
 | |
|         } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
 | |
|         ARMCPRegInfo mpidr_cp_reginfo[] = {
 | |
|             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
 | |
|               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
 | |
|             { .name = "MPIDR_EL1",
 | |
|               .fixed_bits = 0x0000000080000000 },
 | |
|             REGUSERINFO_SENTINEL
 | |
|         };
 | |
|         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
 | |
| #endif
 | |
|         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
 | |
|         ARMCPRegInfo auxcr_reginfo[] = {
 | |
|             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL1_RW, .accessfn = access_tacr,
 | |
|               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
 | |
|             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, auxcr_reginfo);
 | |
|         if (cpu_isar_feature(aa32_ac2, cpu)) {
 | |
|             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_CBAR)) {
 | |
|         /*
 | |
|          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
 | |
|          * There are two flavours:
 | |
|          *  (1) older 32-bit only cores have a simple 32-bit CBAR
 | |
|          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
 | |
|          *      32-bit register visible to AArch32 at a different encoding
 | |
|          *      to the "flavour 1" register and with the bits rearranged to
 | |
|          *      be able to squash a 64-bit address into the 32-bit view.
 | |
|          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
 | |
|          * in future if we support AArch32-only configs of some of the
 | |
|          * AArch64 cores we might need to add a specific feature flag
 | |
|          * to indicate cores with "flavour 2" CBAR.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             /* 32 bit view is [31:18] 0...0 [43:32]. */
 | |
|             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
 | |
|                 | extract64(cpu->reset_cbar, 32, 12);
 | |
|             ARMCPRegInfo cbar_reginfo[] = {
 | |
|                 { .name = "CBAR",
 | |
|                   .type = ARM_CP_CONST,
 | |
|                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
 | |
|                   .access = PL1_R, .resetvalue = cbar32 },
 | |
|                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|                   .type = ARM_CP_CONST,
 | |
|                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
 | |
|                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
 | |
|                 REGINFO_SENTINEL
 | |
|             };
 | |
|             /* We don't implement a r/w 64 bit CBAR currently */
 | |
|             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
 | |
|             define_arm_cp_regs(cpu, cbar_reginfo);
 | |
|         } else {
 | |
|             ARMCPRegInfo cbar = {
 | |
|                 .name = "CBAR",
 | |
|                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
 | |
|                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
 | |
|                 .fieldoffset = offsetof(CPUARMState,
 | |
|                                         cp15.c15_config_base_address)
 | |
|             };
 | |
|             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 | |
|                 cbar.access = PL1_R;
 | |
|                 cbar.fieldoffset = 0;
 | |
|                 cbar.type = ARM_CP_CONST;
 | |
|             }
 | |
|             define_one_arm_cp_reg(cpu, &cbar);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_VBAR)) {
 | |
|         ARMCPRegInfo vbar_cp_reginfo[] = {
 | |
|             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|               .access = PL1_RW, .writefn = vbar_write,
 | |
|               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
 | |
|                                      offsetof(CPUARMState, cp15.vbar_ns) },
 | |
|               .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, vbar_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     /* Generic registers whose values depend on the implementation */
 | |
|     {
 | |
|         ARMCPRegInfo sctlr = {
 | |
|             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
 | |
|             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|             .access = PL1_RW, .accessfn = access_tvm_trvm,
 | |
|             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
 | |
|                                    offsetof(CPUARMState, cp15.sctlr_ns) },
 | |
|             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
 | |
|             .raw_writefn = raw_write,
 | |
|         };
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|             /* Normally we would always end the TB on an SCTLR write, but Linux
 | |
|              * arch/arm/mach-pxa/sleep.S expects two instructions following
 | |
|              * an MMU enable to execute from cache.  Imitate this behaviour.
 | |
|              */
 | |
|             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
 | |
|         }
 | |
|         define_one_arm_cp_reg(cpu, &sctlr);
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_lor, cpu)) {
 | |
|         define_arm_cp_regs(cpu, lor_reginfo);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa64_pan, cpu)) {
 | |
|         define_one_arm_cp_reg(cpu, &pan_reginfo);
 | |
|     }
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
 | |
|         define_arm_cp_regs(cpu, ats1e1_reginfo);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
 | |
|         define_arm_cp_regs(cpu, ats1cp_reginfo);
 | |
|     }
 | |
| #endif
 | |
|     if (cpu_isar_feature(aa64_uao, cpu)) {
 | |
|         define_one_arm_cp_reg(cpu, &uao_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
 | |
|         define_arm_cp_regs(cpu, vhe_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
 | |
|         } else {
 | |
|             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
|     if (cpu_isar_feature(aa64_pauth, cpu)) {
 | |
|         define_arm_cp_regs(cpu, pauth_reginfo);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa64_rndr, cpu)) {
 | |
|         define_arm_cp_regs(cpu, rndr_reginfo);
 | |
|     }
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* Data Cache clean instructions up to PoP */
 | |
|     if (cpu_isar_feature(aa64_dcpop, cpu)) {
 | |
|         define_one_arm_cp_reg(cpu, dcpop_reg);
 | |
| 
 | |
|         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
 | |
|             define_one_arm_cp_reg(cpu, dcpodp_reg);
 | |
|         }
 | |
|     }
 | |
| #endif /*CONFIG_USER_ONLY*/
 | |
| 
 | |
|     /*
 | |
|      * If full MTE is enabled, add all of the system registers.
 | |
|      * If only "instructions available at EL0" are enabled,
 | |
|      * then define only a RAZ/WI version of PSTATE.TCO.
 | |
|      */
 | |
|     if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|         define_arm_cp_regs(cpu, mte_reginfo);
 | |
|         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
 | |
|     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
 | |
|         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
 | |
|         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (cpu_isar_feature(any_predinv, cpu)) {
 | |
|         define_arm_cp_regs(cpu, predinv_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(any_ccidx, cpu)) {
 | |
|         define_arm_cp_regs(cpu, ccsidr2_reginfo);
 | |
|     }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /*
 | |
|      * Register redirections and aliases must be done last,
 | |
|      * after the registers from the other extensions have been defined.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
 | |
|         define_arm_vh_e2h_redirects_aliases(cpu);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|         /*
 | |
|          * The lower part of each SVE register aliases to the FPU
 | |
|          * registers so we don't need to include both.
 | |
|          */
 | |
| #ifdef TARGET_AARCH64
 | |
|         if (isar_feature_aa64_sve(&cpu->isar)) {
 | |
|             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
 | |
|                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
 | |
|                                      "sve-registers.xml", 0);
 | |
|         } else
 | |
| #endif
 | |
|         {
 | |
|             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
 | |
|                                      aarch64_fpu_gdb_set_reg,
 | |
|                                      34, "aarch64-fpu.xml", 0);
 | |
|         }
 | |
|     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  51, "arm-neon.xml", 0);
 | |
|     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  35, "arm-vfp3.xml", 0);
 | |
|     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  19, "arm-vfp.xml", 0);
 | |
|     }
 | |
|     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
 | |
|                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
 | |
|                              "system-registers.xml", 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Sort alphabetically by type name, except for "any". */
 | |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     ObjectClass *class_a = (ObjectClass *)a;
 | |
|     ObjectClass *class_b = (ObjectClass *)b;
 | |
|     const char *name_a, *name_b;
 | |
| 
 | |
|     name_a = object_class_get_name(class_a);
 | |
|     name_b = object_class_get_name(class_b);
 | |
|     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return 1;
 | |
|     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return -1;
 | |
|     } else {
 | |
|         return strcmp(name_a, name_b);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data)
 | |
| {
 | |
|     ObjectClass *oc = data;
 | |
|     const char *typename;
 | |
|     char *name;
 | |
| 
 | |
|     typename = object_class_get_name(oc);
 | |
|     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | |
|     qemu_printf("  %s\n", name);
 | |
|     g_free(name);
 | |
| }
 | |
| 
 | |
| void arm_cpu_list(void)
 | |
| {
 | |
|     GSList *list;
 | |
| 
 | |
|     list = object_class_get_list(TYPE_ARM_CPU, false);
 | |
|     list = g_slist_sort(list, arm_cpu_list_compare);
 | |
|     qemu_printf("Available CPUs:\n");
 | |
|     g_slist_foreach(list, arm_cpu_list_entry, NULL);
 | |
|     g_slist_free(list);
 | |
| }
 | |
| 
 | |
| static void arm_cpu_add_definition(gpointer data, gpointer user_data)
 | |
| {
 | |
|     ObjectClass *oc = data;
 | |
|     CpuDefinitionInfoList **cpu_list = user_data;
 | |
|     CpuDefinitionInfoList *entry;
 | |
|     CpuDefinitionInfo *info;
 | |
|     const char *typename;
 | |
| 
 | |
|     typename = object_class_get_name(oc);
 | |
|     info = g_malloc0(sizeof(*info));
 | |
|     info->name = g_strndup(typename,
 | |
|                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | |
|     info->q_typename = g_strdup(typename);
 | |
| 
 | |
|     entry = g_malloc0(sizeof(*entry));
 | |
|     entry->value = info;
 | |
|     entry->next = *cpu_list;
 | |
|     *cpu_list = entry;
 | |
| }
 | |
| 
 | |
| CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
 | |
| {
 | |
|     CpuDefinitionInfoList *cpu_list = NULL;
 | |
|     GSList *list;
 | |
| 
 | |
|     list = object_class_get_list(TYPE_ARM_CPU, false);
 | |
|     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
 | |
|     g_slist_free(list);
 | |
| 
 | |
|     return cpu_list;
 | |
| }
 | |
| 
 | |
| static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
 | |
|                                    void *opaque, int state, int secstate,
 | |
|                                    int crm, int opc1, int opc2,
 | |
|                                    const char *name)
 | |
| {
 | |
|     /* Private utility function for define_one_arm_cp_reg_with_opaque():
 | |
|      * add a single reginfo struct to the hash table.
 | |
|      */
 | |
|     uint32_t *key = g_new(uint32_t, 1);
 | |
|     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
 | |
|     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
 | |
|     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
 | |
| 
 | |
|     r2->name = g_strdup(name);
 | |
|     /* Reset the secure state to the specific incoming state.  This is
 | |
|      * necessary as the register may have been defined with both states.
 | |
|      */
 | |
|     r2->secure = secstate;
 | |
| 
 | |
|     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | |
|         /* Register is banked (using both entries in array).
 | |
|          * Overwriting fieldoffset as the array is only used to define
 | |
|          * banked registers but later only fieldoffset is used.
 | |
|          */
 | |
|         r2->fieldoffset = r->bank_fieldoffsets[ns];
 | |
|     }
 | |
| 
 | |
|     if (state == ARM_CP_STATE_AA32) {
 | |
|         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | |
|             /* If the register is banked then we don't need to migrate or
 | |
|              * reset the 32-bit instance in certain cases:
 | |
|              *
 | |
|              * 1) If the register has both 32-bit and 64-bit instances then we
 | |
|              *    can count on the 64-bit instance taking care of the
 | |
|              *    non-secure bank.
 | |
|              * 2) If ARMv8 is enabled then we can count on a 64-bit version
 | |
|              *    taking care of the secure bank.  This requires that separate
 | |
|              *    32 and 64-bit definitions are provided.
 | |
|              */
 | |
|             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
 | |
|                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
 | |
|                 r2->type |= ARM_CP_ALIAS;
 | |
|             }
 | |
|         } else if ((secstate != r->secure) && !ns) {
 | |
|             /* The register is not banked so we only want to allow migration of
 | |
|              * the non-secure instance.
 | |
|              */
 | |
|             r2->type |= ARM_CP_ALIAS;
 | |
|         }
 | |
| 
 | |
|         if (r->state == ARM_CP_STATE_BOTH) {
 | |
|             /* We assume it is a cp15 register if the .cp field is left unset.
 | |
|              */
 | |
|             if (r2->cp == 0) {
 | |
|                 r2->cp = 15;
 | |
|             }
 | |
| 
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|             if (r2->fieldoffset) {
 | |
|                 r2->fieldoffset += sizeof(uint32_t);
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
|     if (state == ARM_CP_STATE_AA64) {
 | |
|         /* To allow abbreviation of ARMCPRegInfo
 | |
|          * definitions, we treat cp == 0 as equivalent to
 | |
|          * the value for "standard guest-visible sysreg".
 | |
|          * STATE_BOTH definitions are also always "standard
 | |
|          * sysreg" in their AArch64 view (the .cp value may
 | |
|          * be non-zero for the benefit of the AArch32 view).
 | |
|          */
 | |
|         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
 | |
|             r2->cp = CP_REG_ARM64_SYSREG_CP;
 | |
|         }
 | |
|         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
 | |
|                                   r2->opc0, opc1, opc2);
 | |
|     } else {
 | |
|         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
 | |
|     }
 | |
|     if (opaque) {
 | |
|         r2->opaque = opaque;
 | |
|     }
 | |
|     /* reginfo passed to helpers is correct for the actual access,
 | |
|      * and is never ARM_CP_STATE_BOTH:
 | |
|      */
 | |
|     r2->state = state;
 | |
|     /* Make sure reginfo passed to helpers for wildcarded regs
 | |
|      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
 | |
|      */
 | |
|     r2->crm = crm;
 | |
|     r2->opc1 = opc1;
 | |
|     r2->opc2 = opc2;
 | |
|     /* By convention, for wildcarded registers only the first
 | |
|      * entry is used for migration; the others are marked as
 | |
|      * ALIAS so we don't try to transfer the register
 | |
|      * multiple times. Special registers (ie NOP/WFI) are
 | |
|      * never migratable and not even raw-accessible.
 | |
|      */
 | |
|     if ((r->type & ARM_CP_SPECIAL)) {
 | |
|         r2->type |= ARM_CP_NO_RAW;
 | |
|     }
 | |
|     if (((r->crm == CP_ANY) && crm != 0) ||
 | |
|         ((r->opc1 == CP_ANY) && opc1 != 0) ||
 | |
|         ((r->opc2 == CP_ANY) && opc2 != 0)) {
 | |
|         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
 | |
|     }
 | |
| 
 | |
|     /* Check that raw accesses are either forbidden or handled. Note that
 | |
|      * we can't assert this earlier because the setup of fieldoffset for
 | |
|      * banked registers has to be done first.
 | |
|      */
 | |
|     if (!(r2->type & ARM_CP_NO_RAW)) {
 | |
|         assert(!raw_accessors_invalid(r2));
 | |
|     }
 | |
| 
 | |
|     /* Overriding of an existing definition must be explicitly
 | |
|      * requested.
 | |
|      */
 | |
|     if (!(r->type & ARM_CP_OVERRIDE)) {
 | |
|         ARMCPRegInfo *oldreg;
 | |
|         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
 | |
|         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
 | |
|             fprintf(stderr, "Register redefined: cp=%d %d bit "
 | |
|                     "crn=%d crm=%d opc1=%d opc2=%d, "
 | |
|                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
 | |
|                     r2->crn, r2->crm, r2->opc1, r2->opc2,
 | |
|                     oldreg->name, r2->name);
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
|     g_hash_table_insert(cpu->cp_regs, key, r2);
 | |
| }
 | |
| 
 | |
| 
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *r, void *opaque)
 | |
| {
 | |
|     /* Define implementations of coprocessor registers.
 | |
|      * We store these in a hashtable because typically
 | |
|      * there are less than 150 registers in a space which
 | |
|      * is 16*16*16*8*8 = 262144 in size.
 | |
|      * Wildcarding is supported for the crm, opc1 and opc2 fields.
 | |
|      * If a register is defined twice then the second definition is
 | |
|      * used, so this can be used to define some generic registers and
 | |
|      * then override them with implementation specific variations.
 | |
|      * At least one of the original and the second definition should
 | |
|      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
 | |
|      * against accidental use.
 | |
|      *
 | |
|      * The state field defines whether the register is to be
 | |
|      * visible in the AArch32 or AArch64 execution state. If the
 | |
|      * state is set to ARM_CP_STATE_BOTH then we synthesise a
 | |
|      * reginfo structure for the AArch32 view, which sees the lower
 | |
|      * 32 bits of the 64 bit register.
 | |
|      *
 | |
|      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
 | |
|      * be wildcarded. AArch64 registers are always considered to be 64
 | |
|      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
 | |
|      * the register, if any.
 | |
|      */
 | |
|     int crm, opc1, opc2, state;
 | |
|     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
 | |
|     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
 | |
|     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
 | |
|     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
 | |
|     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
 | |
|     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
 | |
|     /* 64 bit registers have only CRm and Opc1 fields */
 | |
|     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
 | |
|     /* op0 only exists in the AArch64 encodings */
 | |
|     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
 | |
|     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
 | |
|     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
 | |
|     /*
 | |
|      * This API is only for Arm's system coprocessors (14 and 15) or
 | |
|      * (M-profile or v7A-and-earlier only) for implementation defined
 | |
|      * coprocessors in the range 0..7.  Our decode assumes this, since
 | |
|      * 8..13 can be used for other insns including VFP and Neon. See
 | |
|      * valid_cp() in translate.c.  Assert here that we haven't tried
 | |
|      * to use an invalid coprocessor number.
 | |
|      */
 | |
|     switch (r->state) {
 | |
|     case ARM_CP_STATE_BOTH:
 | |
|         /* 0 has a special meaning, but otherwise the same rules as AA32. */
 | |
|         if (r->cp == 0) {
 | |
|             break;
 | |
|         }
 | |
|         /* fall through */
 | |
|     case ARM_CP_STATE_AA32:
 | |
|         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
 | |
|             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
 | |
|             assert(r->cp >= 14 && r->cp <= 15);
 | |
|         } else {
 | |
|             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
 | |
|         }
 | |
|         break;
 | |
|     case ARM_CP_STATE_AA64:
 | |
|         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
 | |
|      * encodes a minimum access level for the register. We roll this
 | |
|      * runtime check into our general permission check code, so check
 | |
|      * here that the reginfo's specified permissions are strict enough
 | |
|      * to encompass the generic architectural permission check.
 | |
|      */
 | |
|     if (r->state != ARM_CP_STATE_AA32) {
 | |
|         int mask = 0;
 | |
|         switch (r->opc1) {
 | |
|         case 0:
 | |
|             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
 | |
|             mask = PL0U_R | PL1_RW;
 | |
|             break;
 | |
|         case 1: case 2:
 | |
|             /* min_EL EL1 */
 | |
|             mask = PL1_RW;
 | |
|             break;
 | |
|         case 3:
 | |
|             /* min_EL EL0 */
 | |
|             mask = PL0_RW;
 | |
|             break;
 | |
|         case 4:
 | |
|         case 5:
 | |
|             /* min_EL EL2 */
 | |
|             mask = PL2_RW;
 | |
|             break;
 | |
|         case 6:
 | |
|             /* min_EL EL3 */
 | |
|             mask = PL3_RW;
 | |
|             break;
 | |
|         case 7:
 | |
|             /* min_EL EL1, secure mode only (we don't check the latter) */
 | |
|             mask = PL1_RW;
 | |
|             break;
 | |
|         default:
 | |
|             /* broken reginfo with out-of-range opc1 */
 | |
|             assert(false);
 | |
|             break;
 | |
|         }
 | |
|         /* assert our permissions are not too lax (stricter is fine) */
 | |
|         assert((r->access & ~mask) == 0);
 | |
|     }
 | |
| 
 | |
|     /* Check that the register definition has enough info to handle
 | |
|      * reads and writes if they are permitted.
 | |
|      */
 | |
|     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
 | |
|         if (r->access & PL3_R) {
 | |
|             assert((r->fieldoffset ||
 | |
|                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | |
|                    r->readfn);
 | |
|         }
 | |
|         if (r->access & PL3_W) {
 | |
|             assert((r->fieldoffset ||
 | |
|                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | |
|                    r->writefn);
 | |
|         }
 | |
|     }
 | |
|     /* Bad type field probably means missing sentinel at end of reg list */
 | |
|     assert(cptype_valid(r->type));
 | |
|     for (crm = crmmin; crm <= crmmax; crm++) {
 | |
|         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
 | |
|             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
 | |
|                 for (state = ARM_CP_STATE_AA32;
 | |
|                      state <= ARM_CP_STATE_AA64; state++) {
 | |
|                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     if (state == ARM_CP_STATE_AA32) {
 | |
|                         /* Under AArch32 CP registers can be common
 | |
|                          * (same for secure and non-secure world) or banked.
 | |
|                          */
 | |
|                         char *name;
 | |
| 
 | |
|                         switch (r->secure) {
 | |
|                         case ARM_CP_SECSTATE_S:
 | |
|                         case ARM_CP_SECSTATE_NS:
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    r->secure, crm, opc1, opc2,
 | |
|                                                    r->name);
 | |
|                             break;
 | |
|                         default:
 | |
|                             name = g_strdup_printf("%s_S", r->name);
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    ARM_CP_SECSTATE_S,
 | |
|                                                    crm, opc1, opc2, name);
 | |
|                             g_free(name);
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    ARM_CP_SECSTATE_NS,
 | |
|                                                    crm, opc1, opc2, r->name);
 | |
|                             break;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* AArch64 registers get mapped to non-secure instance
 | |
|                          * of AArch32 */
 | |
|                         add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                ARM_CP_SECSTATE_NS,
 | |
|                                                crm, opc1, opc2, r->name);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque)
 | |
| {
 | |
|     /* Define a whole list of registers */
 | |
|     const ARMCPRegInfo *r;
 | |
|     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
 | |
|         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modify ARMCPRegInfo for access from userspace.
 | |
|  *
 | |
|  * This is a data driven modification directed by
 | |
|  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
 | |
|  * user-space cannot alter any values and dynamic values pertaining to
 | |
|  * execution state are hidden from user space view anyway.
 | |
|  */
 | |
| void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
 | |
| {
 | |
|     const ARMCPRegUserSpaceInfo *m;
 | |
|     ARMCPRegInfo *r;
 | |
| 
 | |
|     for (m = mods; m->name; m++) {
 | |
|         GPatternSpec *pat = NULL;
 | |
|         if (m->is_glob) {
 | |
|             pat = g_pattern_spec_new(m->name);
 | |
|         }
 | |
|         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
 | |
|             if (pat && g_pattern_match_string(pat, r->name)) {
 | |
|                 r->type = ARM_CP_CONST;
 | |
|                 r->access = PL0U_R;
 | |
|                 r->resetvalue = 0;
 | |
|                 /* continue */
 | |
|             } else if (strcmp(r->name, m->name) == 0) {
 | |
|                 r->type = ARM_CP_CONST;
 | |
|                 r->access = PL0U_R;
 | |
|                 r->resetvalue &= m->exported_bits;
 | |
|                 r->resetvalue |= m->fixed_bits;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (pat) {
 | |
|             g_pattern_spec_free(pat);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
 | |
| {
 | |
|     return g_hash_table_lookup(cpregs, &encoded_cp);
 | |
| }
 | |
| 
 | |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* Helper coprocessor write function for write-ignore registers */
 | |
| }
 | |
| 
 | |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Helper coprocessor write function for read-as-zero registers */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
 | |
| {
 | |
|     /* Helper coprocessor reset function for do-nothing-on-reset registers */
 | |
| }
 | |
| 
 | |
| static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
 | |
| {
 | |
|     /* Return true if it is not valid for us to switch to
 | |
|      * this CPU mode (ie all the UNPREDICTABLE cases in
 | |
|      * the ARM ARM CPSRWriteByInstr pseudocode).
 | |
|      */
 | |
| 
 | |
|     /* Changes to or from Hyp via MSR and CPS are illegal. */
 | |
|     if (write_type == CPSRWriteByInstr &&
 | |
|         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
 | |
|          mode == ARM_CPU_MODE_HYP)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|     case ARM_CPU_MODE_UND:
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
 | |
|          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
 | |
|          */
 | |
|         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
 | |
|          * and CPS are treated as illegal mode changes.
 | |
|          */
 | |
|         if (write_type == CPSRWriteByInstr &&
 | |
|             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
 | |
|             (arm_hcr_el2_eff(env) & HCR_TGE)) {
 | |
|             return 1;
 | |
|         }
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_HYP:
 | |
|         return !arm_feature(env, ARM_FEATURE_EL2)
 | |
|             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
 | |
|     case ARM_CPU_MODE_MON:
 | |
|         return arm_current_el(env) < 3;
 | |
|     default:
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t cpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 | |
|         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | (env->GE << 16) | (env->daif & CPSR_AIF);
 | |
| }
 | |
| 
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
 | |
|                 CPSRWriteType write_type)
 | |
| {
 | |
|     uint32_t changed_daif;
 | |
| 
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & CPSR_T)
 | |
|         env->thumb = ((val & CPSR_T) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & CPSR_GE) {
 | |
|         env->GE = (val >> 16) & 0xf;
 | |
|     }
 | |
| 
 | |
|     /* In a V7 implementation that includes the security extensions but does
 | |
|      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
 | |
|      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
 | |
|      * bits respectively.
 | |
|      *
 | |
|      * In a V8 implementation, it is permitted for privileged software to
 | |
|      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
 | |
|      */
 | |
|     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
 | |
|         arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         !arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         !arm_is_secure(env)) {
 | |
| 
 | |
|         changed_daif = (env->daif ^ val) & mask;
 | |
| 
 | |
|         if (changed_daif & CPSR_A) {
 | |
|             /* Check to see if we are allowed to change the masking of async
 | |
|              * abort exceptions from a non-secure state.
 | |
|              */
 | |
|             if (!(env->cp15.scr_el3 & SCR_AW)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to switch CPSR_A flag from "
 | |
|                               "non-secure world with SCR.AW bit clear\n");
 | |
|                 mask &= ~CPSR_A;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (changed_daif & CPSR_F) {
 | |
|             /* Check to see if we are allowed to change the masking of FIQ
 | |
|              * exceptions from a non-secure state.
 | |
|              */
 | |
|             if (!(env->cp15.scr_el3 & SCR_FW)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to switch CPSR_F flag from "
 | |
|                               "non-secure world with SCR.FW bit clear\n");
 | |
|                 mask &= ~CPSR_F;
 | |
|             }
 | |
| 
 | |
|             /* Check whether non-maskable FIQ (NMFI) support is enabled.
 | |
|              * If this bit is set software is not allowed to mask
 | |
|              * FIQs, but is allowed to set CPSR_F to 0.
 | |
|              */
 | |
|             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
 | |
|                 (val & CPSR_F)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to enable CPSR_F flag "
 | |
|                               "(non-maskable FIQ [NMFI] support enabled)\n");
 | |
|                 mask &= ~CPSR_F;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     env->daif &= ~(CPSR_AIF & mask);
 | |
|     env->daif |= val & CPSR_AIF & mask;
 | |
| 
 | |
|     if (write_type != CPSRWriteRaw &&
 | |
|         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
 | |
|         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
 | |
|             /* Note that we can only get here in USR mode if this is a
 | |
|              * gdb stub write; for this case we follow the architectural
 | |
|              * behaviour for guest writes in USR mode of ignoring an attempt
 | |
|              * to switch mode. (Those are caught by translate.c for writes
 | |
|              * triggered by guest instructions.)
 | |
|              */
 | |
|             mask &= ~CPSR_M;
 | |
|         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
 | |
|             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
 | |
|              * v7, and has defined behaviour in v8:
 | |
|              *  + leave CPSR.M untouched
 | |
|              *  + allow changes to the other CPSR fields
 | |
|              *  + set PSTATE.IL
 | |
|              * For user changes via the GDB stub, we don't set PSTATE.IL,
 | |
|              * as this would be unnecessarily harsh for a user error.
 | |
|              */
 | |
|             mask &= ~CPSR_M;
 | |
|             if (write_type != CPSRWriteByGDBStub &&
 | |
|                 arm_feature(env, ARM_FEATURE_V8)) {
 | |
|                 mask |= CPSR_IL;
 | |
|                 val |= CPSR_IL;
 | |
|             }
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "Illegal AArch32 mode switch attempt from %s to %s\n",
 | |
|                           aarch32_mode_name(env->uncached_cpsr),
 | |
|                           aarch32_mode_name(val));
 | |
|         } else {
 | |
|             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
 | |
|                           write_type == CPSRWriteExceptionReturn ?
 | |
|                           "Exception return from AArch32" :
 | |
|                           "AArch32 mode switch from",
 | |
|                           aarch32_mode_name(env->uncached_cpsr),
 | |
|                           aarch32_mode_name(val), env->regs[15]);
 | |
|             switch_mode(env, val & CPSR_M);
 | |
|         }
 | |
|     }
 | |
|     mask &= ~CACHED_CPSR_BITS;
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 | |
| }
 | |
| 
 | |
| /* Sign/zero extend */
 | |
| uint32_t HELPER(sxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(int8_t)x;
 | |
|     res |= (uint32_t)(int8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(uxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(uint8_t)x;
 | |
|     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int32_t HELPER(sdiv)(int32_t num, int32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     if (num == INT_MIN && den == -1)
 | |
|       return INT_MIN;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rbit)(uint32_t x)
 | |
| {
 | |
|     return revbit32(x);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| 
 | |
| static void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     if (mode != ARM_CPU_MODE_USR) {
 | |
|         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | |
|                                  uint32_t cur_el, bool secure)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void aarch64_sync_64_to_32(CPUARMState *env)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     int old_mode;
 | |
|     int i;
 | |
| 
 | |
|     old_mode = env->uncached_cpsr & CPSR_M;
 | |
|     if (mode == old_mode)
 | |
|         return;
 | |
| 
 | |
|     if (old_mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | |
|     } else if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | |
|     }
 | |
| 
 | |
|     i = bank_number(old_mode);
 | |
|     env->banked_r13[i] = env->regs[13];
 | |
|     env->banked_spsr[i] = env->spsr;
 | |
| 
 | |
|     i = bank_number(mode);
 | |
|     env->regs[13] = env->banked_r13[i];
 | |
|     env->spsr = env->banked_spsr[i];
 | |
| 
 | |
|     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
 | |
|     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
 | |
| }
 | |
| 
 | |
| /* Physical Interrupt Target EL Lookup Table
 | |
|  *
 | |
|  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 | |
|  *
 | |
|  * The below multi-dimensional table is used for looking up the target
 | |
|  * exception level given numerous condition criteria.  Specifically, the
 | |
|  * target EL is based on SCR and HCR routing controls as well as the
 | |
|  * currently executing EL and secure state.
 | |
|  *
 | |
|  *    Dimensions:
 | |
|  *    target_el_table[2][2][2][2][2][4]
 | |
|  *                    |  |  |  |  |  +--- Current EL
 | |
|  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 | |
|  *                    |  |  |  +--------- HCR mask override
 | |
|  *                    |  |  +------------ SCR exec state control
 | |
|  *                    |  +--------------- SCR mask override
 | |
|  *                    +------------------ 32-bit(0)/64-bit(1) EL3
 | |
|  *
 | |
|  *    The table values are as such:
 | |
|  *    0-3 = EL0-EL3
 | |
|  *     -1 = Cannot occur
 | |
|  *
 | |
|  * The ARM ARM target EL table includes entries indicating that an "exception
 | |
|  * is not taken".  The two cases where this is applicable are:
 | |
|  *    1) An exception is taken from EL3 but the SCR does not have the exception
 | |
|  *    routed to EL3.
 | |
|  *    2) An exception is taken from EL2 but the HCR does not have the exception
 | |
|  *    routed to EL2.
 | |
|  * In these two cases, the below table contain a target of EL1.  This value is
 | |
|  * returned as it is expected that the consumer of the table data will check
 | |
|  * for "target EL >= current EL" to ensure the exception is not taken.
 | |
|  *
 | |
|  *            SCR     HCR
 | |
|  *         64  EA     AMO                 From
 | |
|  *        BIT IRQ     IMO      Non-secure         Secure
 | |
|  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 | |
|  */
 | |
| static const int8_t target_el_table[2][2][2][2][2][4] = {
 | |
|     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
 | |
|       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
 | |
|      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
 | |
|       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
 | |
|     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
 | |
|        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
 | |
|       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
 | |
|        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
 | |
|      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | |
|        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
 | |
|       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | |
|        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Determine the target EL for physical exceptions
 | |
|  */
 | |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | |
|                                  uint32_t cur_el, bool secure)
 | |
| {
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     bool rw;
 | |
|     bool scr;
 | |
|     bool hcr;
 | |
|     int target_el;
 | |
|     /* Is the highest EL AArch64? */
 | |
|     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
 | |
|     uint64_t hcr_el2;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
 | |
|     } else {
 | |
|         /* Either EL2 is the highest EL (and so the EL2 register width
 | |
|          * is given by is64); or there is no EL2 or EL3, in which case
 | |
|          * the value of 'rw' does not affect the table lookup anyway.
 | |
|          */
 | |
|         rw = is64;
 | |
|     }
 | |
| 
 | |
|     hcr_el2 = arm_hcr_el2_eff(env);
 | |
|     switch (excp_idx) {
 | |
|     case EXCP_IRQ:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
 | |
|         hcr = hcr_el2 & HCR_IMO;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
 | |
|         hcr = hcr_el2 & HCR_FMO;
 | |
|         break;
 | |
|     default:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
 | |
|         hcr = hcr_el2 & HCR_AMO;
 | |
|         break;
 | |
|     };
 | |
| 
 | |
|     /*
 | |
|      * For these purposes, TGE and AMO/IMO/FMO both force the
 | |
|      * interrupt to EL2.  Fold TGE into the bit extracted above.
 | |
|      */
 | |
|     hcr |= (hcr_el2 & HCR_TGE) != 0;
 | |
| 
 | |
|     /* Perform a table-lookup for the target EL given the current state */
 | |
|     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
 | |
| 
 | |
|     assert(target_el > 0);
 | |
| 
 | |
|     return target_el;
 | |
| }
 | |
| 
 | |
| void arm_log_exception(int idx)
 | |
| {
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)) {
 | |
|         const char *exc = NULL;
 | |
|         static const char * const excnames[] = {
 | |
|             [EXCP_UDEF] = "Undefined Instruction",
 | |
|             [EXCP_SWI] = "SVC",
 | |
|             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
 | |
|             [EXCP_DATA_ABORT] = "Data Abort",
 | |
|             [EXCP_IRQ] = "IRQ",
 | |
|             [EXCP_FIQ] = "FIQ",
 | |
|             [EXCP_BKPT] = "Breakpoint",
 | |
|             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
 | |
|             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
 | |
|             [EXCP_HVC] = "Hypervisor Call",
 | |
|             [EXCP_HYP_TRAP] = "Hypervisor Trap",
 | |
|             [EXCP_SMC] = "Secure Monitor Call",
 | |
|             [EXCP_VIRQ] = "Virtual IRQ",
 | |
|             [EXCP_VFIQ] = "Virtual FIQ",
 | |
|             [EXCP_SEMIHOST] = "Semihosting call",
 | |
|             [EXCP_NOCP] = "v7M NOCP UsageFault",
 | |
|             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
 | |
|             [EXCP_STKOF] = "v8M STKOF UsageFault",
 | |
|             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
 | |
|             [EXCP_LSERR] = "v8M LSERR UsageFault",
 | |
|             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
 | |
|         };
 | |
| 
 | |
|         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
 | |
|             exc = excnames[idx];
 | |
|         }
 | |
|         if (!exc) {
 | |
|             exc = "unknown";
 | |
|         }
 | |
|         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function used to synchronize QEMU's AArch64 register set with AArch32
 | |
|  * register set.  This is necessary when switching between AArch32 and AArch64
 | |
|  * execution state.
 | |
|  */
 | |
| void aarch64_sync_32_to_64(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t mode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     /* We can blanket copy R[0:7] to X[0:7] */
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         env->xregs[i] = env->regs[i];
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
 | |
|      * Otherwise, they come from the banked user regs.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->xregs[i] = env->usr_regs[i - 8];
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->xregs[i] = env->regs[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Registers x13-x23 are the various mode SP and FP registers. Registers
 | |
|      * r13 and r14 are only copied if we are in that mode, otherwise we copy
 | |
|      * from the mode banked register.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | |
|         env->xregs[13] = env->regs[13];
 | |
|         env->xregs[14] = env->regs[14];
 | |
|     } else {
 | |
|         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
 | |
|         /* HYP is an exception in that it is copied from r14 */
 | |
|         if (mode == ARM_CPU_MODE_HYP) {
 | |
|             env->xregs[14] = env->regs[14];
 | |
|         } else {
 | |
|             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_HYP) {
 | |
|         env->xregs[15] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_IRQ) {
 | |
|         env->xregs[16] = env->regs[14];
 | |
|         env->xregs[17] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
 | |
|         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_SVC) {
 | |
|         env->xregs[18] = env->regs[14];
 | |
|         env->xregs[19] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
 | |
|         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_ABT) {
 | |
|         env->xregs[20] = env->regs[14];
 | |
|         env->xregs[21] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
 | |
|         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_UND) {
 | |
|         env->xregs[22] = env->regs[14];
 | |
|         env->xregs[23] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
 | |
|         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | |
|      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
 | |
|      * FIQ bank for r8-r14.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 24; i < 31; i++) {
 | |
|             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 24; i < 29; i++) {
 | |
|             env->xregs[i] = env->fiq_regs[i - 24];
 | |
|         }
 | |
|         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
 | |
|         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
 | |
|     }
 | |
| 
 | |
|     env->pc = env->regs[15];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function used to synchronize QEMU's AArch32 register set with AArch64
 | |
|  * register set.  This is necessary when switching between AArch32 and AArch64
 | |
|  * execution state.
 | |
|  */
 | |
| void aarch64_sync_64_to_32(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t mode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     /* We can blanket copy X[0:7] to R[0:7] */
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         env->regs[i] = env->xregs[i];
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
 | |
|      * Otherwise, we copy x8-x12 into the banked user regs.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->usr_regs[i - 8] = env->xregs[i];
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->regs[i] = env->xregs[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Registers r13 & r14 depend on the current mode.
 | |
|      * If we are in a given mode, we copy the corresponding x registers to r13
 | |
|      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
 | |
|      * for the mode.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | |
|         env->regs[13] = env->xregs[13];
 | |
|         env->regs[14] = env->xregs[14];
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
 | |
| 
 | |
|         /*
 | |
|          * HYP is an exception in that it does not have its own banked r14 but
 | |
|          * shares the USR r14
 | |
|          */
 | |
|         if (mode == ARM_CPU_MODE_HYP) {
 | |
|             env->regs[14] = env->xregs[14];
 | |
|         } else {
 | |
|             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_HYP) {
 | |
|         env->regs[13] = env->xregs[15];
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_IRQ) {
 | |
|         env->regs[14] = env->xregs[16];
 | |
|         env->regs[13] = env->xregs[17];
 | |
|     } else {
 | |
|         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_SVC) {
 | |
|         env->regs[14] = env->xregs[18];
 | |
|         env->regs[13] = env->xregs[19];
 | |
|     } else {
 | |
|         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_ABT) {
 | |
|         env->regs[14] = env->xregs[20];
 | |
|         env->regs[13] = env->xregs[21];
 | |
|     } else {
 | |
|         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_UND) {
 | |
|         env->regs[14] = env->xregs[22];
 | |
|         env->regs[13] = env->xregs[23];
 | |
|     } else {
 | |
|         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
 | |
|     }
 | |
| 
 | |
|     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | |
|      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
 | |
|      * FIQ bank for r8-r14.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 24; i < 31; i++) {
 | |
|             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 24; i < 29; i++) {
 | |
|             env->fiq_regs[i - 24] = env->xregs[i];
 | |
|         }
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
 | |
|         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
 | |
|     }
 | |
| 
 | |
|     env->regs[15] = env->pc;
 | |
| }
 | |
| 
 | |
| static void take_aarch32_exception(CPUARMState *env, int new_mode,
 | |
|                                    uint32_t mask, uint32_t offset,
 | |
|                                    uint32_t newpc)
 | |
| {
 | |
|     int new_el;
 | |
| 
 | |
|     /* Change the CPU state so as to actually take the exception. */
 | |
|     switch_mode(env, new_mode);
 | |
| 
 | |
|     /*
 | |
|      * For exceptions taken to AArch32 we must clear the SS bit in both
 | |
|      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
 | |
|      */
 | |
|     env->uncached_cpsr &= ~PSTATE_SS;
 | |
|     env->spsr = cpsr_read(env);
 | |
|     /* Clear IT bits.  */
 | |
|     env->condexec_bits = 0;
 | |
|     /* Switch to the new mode, and to the correct instruction set.  */
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 | |
| 
 | |
|     /* This must be after mode switching. */
 | |
|     new_el = arm_current_el(env);
 | |
| 
 | |
|     /* Set new mode endianness */
 | |
|     env->uncached_cpsr &= ~CPSR_E;
 | |
|     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
 | |
|         env->uncached_cpsr |= CPSR_E;
 | |
|     }
 | |
|     /* J and IL must always be cleared for exception entry */
 | |
|     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
 | |
|     env->daif |= mask;
 | |
| 
 | |
|     if (new_mode == ARM_CPU_MODE_HYP) {
 | |
|         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
 | |
|         env->elr_el[2] = env->regs[15];
 | |
|     } else {
 | |
|         /* CPSR.PAN is normally preserved preserved unless...  */
 | |
|         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
 | |
|             switch (new_el) {
 | |
|             case 3:
 | |
|                 if (!arm_is_secure_below_el3(env)) {
 | |
|                     /* ... the target is EL3, from non-secure state.  */
 | |
|                     env->uncached_cpsr &= ~CPSR_PAN;
 | |
|                     break;
 | |
|                 }
 | |
|                 /* ... the target is EL3, from secure state ... */
 | |
|                 /* fall through */
 | |
|             case 1:
 | |
|                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
 | |
|                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
 | |
|                     env->uncached_cpsr |= CPSR_PAN;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         /*
 | |
|          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
 | |
|          * and we should just guard the thumb mode on V4
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_V4T)) {
 | |
|             env->thumb =
 | |
|                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
 | |
|         }
 | |
|         env->regs[14] = env->regs[15] + offset;
 | |
|     }
 | |
|     env->regs[15] = newpc;
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Handle exception entry to Hyp mode; this is sufficiently
 | |
|      * different to entry to other AArch32 modes that we handle it
 | |
|      * separately here.
 | |
|      *
 | |
|      * The vector table entry used is always the 0x14 Hyp mode entry point,
 | |
|      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
 | |
|      * The offset applied to the preferred return address is always zero
 | |
|      * (see DDI0487C.a section G1.12.3).
 | |
|      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
 | |
|      */
 | |
|     uint32_t addr, mask;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         addr = 0x04;
 | |
|         break;
 | |
|     case EXCP_SWI:
 | |
|         addr = 0x14;
 | |
|         break;
 | |
|     case EXCP_BKPT:
 | |
|         /* Fall through to prefetch abort.  */
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|         env->cp15.ifar_s = env->exception.vaddress;
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
 | |
|                       (uint32_t)env->exception.vaddress);
 | |
|         addr = 0x0c;
 | |
|         break;
 | |
|     case EXCP_DATA_ABORT:
 | |
|         env->cp15.dfar_s = env->exception.vaddress;
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
 | |
|                       (uint32_t)env->exception.vaddress);
 | |
|         addr = 0x10;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|         addr = 0x18;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         addr = 0x1c;
 | |
|         break;
 | |
|     case EXCP_HVC:
 | |
|         addr = 0x08;
 | |
|         break;
 | |
|     case EXCP_HYP_TRAP:
 | |
|         addr = 0x14;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|     }
 | |
| 
 | |
|     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
 | |
|         if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             /*
 | |
|              * QEMU syndrome values are v8-style. v7 has the IL bit
 | |
|              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
 | |
|              * If this is a v7 CPU, squash the IL bit in those cases.
 | |
|              */
 | |
|             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
 | |
|                 (cs->exception_index == EXCP_DATA_ABORT &&
 | |
|                  !(env->exception.syndrome & ARM_EL_ISV)) ||
 | |
|                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
 | |
|                 env->exception.syndrome &= ~ARM_EL_IL;
 | |
|             }
 | |
|         }
 | |
|         env->cp15.esr_el[2] = env->exception.syndrome;
 | |
|     }
 | |
| 
 | |
|     if (arm_current_el(env) != 2 && addr < 0x14) {
 | |
|         addr = 0x14;
 | |
|     }
 | |
| 
 | |
|     mask = 0;
 | |
|     if (!(env->cp15.scr_el3 & SCR_EA)) {
 | |
|         mask |= CPSR_A;
 | |
|     }
 | |
|     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
 | |
|         mask |= CPSR_I;
 | |
|     }
 | |
|     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
 | |
|         mask |= CPSR_F;
 | |
|     }
 | |
| 
 | |
|     addr += env->cp15.hvbar;
 | |
| 
 | |
|     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
 | |
| }
 | |
| 
 | |
| static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint32_t addr;
 | |
|     uint32_t mask;
 | |
|     int new_mode;
 | |
|     uint32_t offset;
 | |
|     uint32_t moe;
 | |
| 
 | |
|     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
 | |
|     switch (syn_get_ec(env->exception.syndrome)) {
 | |
|     case EC_BREAKPOINT:
 | |
|     case EC_BREAKPOINT_SAME_EL:
 | |
|         moe = 1;
 | |
|         break;
 | |
|     case EC_WATCHPOINT:
 | |
|     case EC_WATCHPOINT_SAME_EL:
 | |
|         moe = 10;
 | |
|         break;
 | |
|     case EC_AA32_BKPT:
 | |
|         moe = 3;
 | |
|         break;
 | |
|     case EC_VECTORCATCH:
 | |
|         moe = 5;
 | |
|         break;
 | |
|     default:
 | |
|         moe = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (moe) {
 | |
|         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
 | |
|     }
 | |
| 
 | |
|     if (env->exception.target_el == 2) {
 | |
|         arm_cpu_do_interrupt_aarch32_hyp(cs);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         new_mode = ARM_CPU_MODE_UND;
 | |
|         addr = 0x04;
 | |
|         mask = CPSR_I;
 | |
|         if (env->thumb)
 | |
|             offset = 2;
 | |
|         else
 | |
|             offset = 4;
 | |
|         break;
 | |
|     case EXCP_SWI:
 | |
|         new_mode = ARM_CPU_MODE_SVC;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_I;
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         offset = 0;
 | |
|         break;
 | |
|     case EXCP_BKPT:
 | |
|         /* Fall through to prefetch abort.  */
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
 | |
|         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
 | |
|                       env->exception.fsr, (uint32_t)env->exception.vaddress);
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x0c;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_DATA_ABORT:
 | |
|         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
 | |
|         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
 | |
|                       env->exception.fsr,
 | |
|                       (uint32_t)env->exception.vaddress);
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x10;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 8;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|         new_mode = ARM_CPU_MODE_IRQ;
 | |
|         addr = 0x18;
 | |
|         /* Disable IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         if (env->cp15.scr_el3 & SCR_IRQ) {
 | |
|             /* IRQ routed to monitor mode */
 | |
|             new_mode = ARM_CPU_MODE_MON;
 | |
|             mask |= CPSR_F;
 | |
|         }
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         new_mode = ARM_CPU_MODE_FIQ;
 | |
|         addr = 0x1c;
 | |
|         /* Disable FIQ, IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         if (env->cp15.scr_el3 & SCR_FIQ) {
 | |
|             /* FIQ routed to monitor mode */
 | |
|             new_mode = ARM_CPU_MODE_MON;
 | |
|         }
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_VIRQ:
 | |
|         new_mode = ARM_CPU_MODE_IRQ;
 | |
|         addr = 0x18;
 | |
|         /* Disable IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_VFIQ:
 | |
|         new_mode = ARM_CPU_MODE_FIQ;
 | |
|         addr = 0x1c;
 | |
|         /* Disable FIQ, IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_SMC:
 | |
|         new_mode = ARM_CPU_MODE_MON;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         offset = 0;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
| 
 | |
|     if (new_mode == ARM_CPU_MODE_MON) {
 | |
|         addr += env->cp15.mvbar;
 | |
|     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 | |
|         /* High vectors. When enabled, base address cannot be remapped. */
 | |
|         addr += 0xffff0000;
 | |
|     } else {
 | |
|         /* ARM v7 architectures provide a vector base address register to remap
 | |
|          * the interrupt vector table.
 | |
|          * This register is only followed in non-monitor mode, and is banked.
 | |
|          * Note: only bits 31:5 are valid.
 | |
|          */
 | |
|         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
 | |
|     }
 | |
| 
 | |
|     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 | |
|         env->cp15.scr_el3 &= ~SCR_NS;
 | |
|     }
 | |
| 
 | |
|     take_aarch32_exception(env, new_mode, mask, offset, addr);
 | |
| }
 | |
| 
 | |
| static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
 | |
| {
 | |
|     /*
 | |
|      * Return the register number of the AArch64 view of the AArch32
 | |
|      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
 | |
|      * be that of the AArch32 mode the exception came from.
 | |
|      */
 | |
|     int mode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     switch (aarch32_reg) {
 | |
|     case 0 ... 7:
 | |
|         return aarch32_reg;
 | |
|     case 8 ... 12:
 | |
|         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
 | |
|     case 13:
 | |
|         switch (mode) {
 | |
|         case ARM_CPU_MODE_USR:
 | |
|         case ARM_CPU_MODE_SYS:
 | |
|             return 13;
 | |
|         case ARM_CPU_MODE_HYP:
 | |
|             return 15;
 | |
|         case ARM_CPU_MODE_IRQ:
 | |
|             return 17;
 | |
|         case ARM_CPU_MODE_SVC:
 | |
|             return 19;
 | |
|         case ARM_CPU_MODE_ABT:
 | |
|             return 21;
 | |
|         case ARM_CPU_MODE_UND:
 | |
|             return 23;
 | |
|         case ARM_CPU_MODE_FIQ:
 | |
|             return 29;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     case 14:
 | |
|         switch (mode) {
 | |
|         case ARM_CPU_MODE_USR:
 | |
|         case ARM_CPU_MODE_SYS:
 | |
|         case ARM_CPU_MODE_HYP:
 | |
|             return 14;
 | |
|         case ARM_CPU_MODE_IRQ:
 | |
|             return 16;
 | |
|         case ARM_CPU_MODE_SVC:
 | |
|             return 18;
 | |
|         case ARM_CPU_MODE_ABT:
 | |
|             return 20;
 | |
|         case ARM_CPU_MODE_UND:
 | |
|             return 22;
 | |
|         case ARM_CPU_MODE_FIQ:
 | |
|             return 30;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     case 15:
 | |
|         return 31;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Handle exception entry to a target EL which is using AArch64 */
 | |
| static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     unsigned int new_el = env->exception.target_el;
 | |
|     target_ulong addr = env->cp15.vbar_el[new_el];
 | |
|     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
 | |
|     unsigned int old_mode;
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     int rt;
 | |
| 
 | |
|     /*
 | |
|      * Note that new_el can never be 0.  If cur_el is 0, then
 | |
|      * el0_a64 is is_a64(), else el0_a64 is ignored.
 | |
|      */
 | |
|     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
 | |
| 
 | |
|     if (cur_el < new_el) {
 | |
|         /* Entry vector offset depends on whether the implemented EL
 | |
|          * immediately lower than the target level is using AArch32 or AArch64
 | |
|          */
 | |
|         bool is_aa64;
 | |
|         uint64_t hcr;
 | |
| 
 | |
|         switch (new_el) {
 | |
|         case 3:
 | |
|             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
 | |
|             break;
 | |
|         case 2:
 | |
|             hcr = arm_hcr_el2_eff(env);
 | |
|             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 | |
|                 is_aa64 = (hcr & HCR_RW) != 0;
 | |
|                 break;
 | |
|             }
 | |
|             /* fall through */
 | |
|         case 1:
 | |
|             is_aa64 = is_a64(env);
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         if (is_aa64) {
 | |
|             addr += 0x400;
 | |
|         } else {
 | |
|             addr += 0x600;
 | |
|         }
 | |
|     } else if (pstate_read(env) & PSTATE_SP) {
 | |
|         addr += 0x200;
 | |
|     }
 | |
| 
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         env->cp15.far_el[new_el] = env->exception.vaddress;
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
 | |
|                       env->cp15.far_el[new_el]);
 | |
|         /* fall through */
 | |
|     case EXCP_BKPT:
 | |
|     case EXCP_UDEF:
 | |
|     case EXCP_SWI:
 | |
|     case EXCP_HVC:
 | |
|     case EXCP_HYP_TRAP:
 | |
|     case EXCP_SMC:
 | |
|         switch (syn_get_ec(env->exception.syndrome)) {
 | |
|         case EC_ADVSIMDFPACCESSTRAP:
 | |
|             /*
 | |
|              * QEMU internal FP/SIMD syndromes from AArch32 include the
 | |
|              * TA and coproc fields which are only exposed if the exception
 | |
|              * is taken to AArch32 Hyp mode. Mask them out to get a valid
 | |
|              * AArch64 format syndrome.
 | |
|              */
 | |
|             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
 | |
|             break;
 | |
|         case EC_CP14RTTRAP:
 | |
|         case EC_CP15RTTRAP:
 | |
|         case EC_CP14DTTRAP:
 | |
|             /*
 | |
|              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
 | |
|              * the raw register field from the insn; when taking this to
 | |
|              * AArch64 we must convert it to the AArch64 view of the register
 | |
|              * number. Notice that we read a 4-bit AArch32 register number and
 | |
|              * write back a 5-bit AArch64 one.
 | |
|              */
 | |
|             rt = extract32(env->exception.syndrome, 5, 4);
 | |
|             rt = aarch64_regnum(env, rt);
 | |
|             env->exception.syndrome = deposit32(env->exception.syndrome,
 | |
|                                                 5, 5, rt);
 | |
|             break;
 | |
|         case EC_CP15RRTTRAP:
 | |
|         case EC_CP14RRTTRAP:
 | |
|             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
 | |
|             rt = extract32(env->exception.syndrome, 5, 4);
 | |
|             rt = aarch64_regnum(env, rt);
 | |
|             env->exception.syndrome = deposit32(env->exception.syndrome,
 | |
|                                                 5, 5, rt);
 | |
|             rt = extract32(env->exception.syndrome, 10, 4);
 | |
|             rt = aarch64_regnum(env, rt);
 | |
|             env->exception.syndrome = deposit32(env->exception.syndrome,
 | |
|                                                 10, 5, rt);
 | |
|             break;
 | |
|         }
 | |
|         env->cp15.esr_el[new_el] = env->exception.syndrome;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|     case EXCP_VIRQ:
 | |
|         addr += 0x80;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|     case EXCP_VFIQ:
 | |
|         addr += 0x100;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         old_mode = pstate_read(env);
 | |
|         aarch64_save_sp(env, arm_current_el(env));
 | |
|         env->elr_el[new_el] = env->pc;
 | |
|     } else {
 | |
|         old_mode = cpsr_read(env);
 | |
|         env->elr_el[new_el] = env->regs[15];
 | |
| 
 | |
|         aarch64_sync_32_to_64(env);
 | |
| 
 | |
|         env->condexec_bits = 0;
 | |
|     }
 | |
|     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
 | |
|                   env->elr_el[new_el]);
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_pan, cpu)) {
 | |
|         /* The value of PSTATE.PAN is normally preserved, except when ... */
 | |
|         new_mode |= old_mode & PSTATE_PAN;
 | |
|         switch (new_el) {
 | |
|         case 2:
 | |
|             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
 | |
|             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
 | |
|                 != (HCR_E2H | HCR_TGE)) {
 | |
|                 break;
 | |
|             }
 | |
|             /* fall through */
 | |
|         case 1:
 | |
|             /* ... the target is EL1 ... */
 | |
|             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
 | |
|             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
 | |
|                 new_mode |= PSTATE_PAN;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|         new_mode |= PSTATE_TCO;
 | |
|     }
 | |
| 
 | |
|     pstate_write(env, PSTATE_DAIF | new_mode);
 | |
|     env->aarch64 = 1;
 | |
|     aarch64_restore_sp(env, new_el);
 | |
|     helper_rebuild_hflags_a64(env, new_el);
 | |
| 
 | |
|     env->pc = addr;
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
 | |
|                   new_el, env->pc, pstate_read(env));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do semihosting call and set the appropriate return value. All the
 | |
|  * permission and validity checks have been done at translate time.
 | |
|  *
 | |
|  * We only see semihosting exceptions in TCG only as they are not
 | |
|  * trapped to the hypervisor in KVM.
 | |
|  */
 | |
| #ifdef CONFIG_TCG
 | |
| static void handle_semihosting(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "...handling as semihosting call 0x%" PRIx64 "\n",
 | |
|                       env->xregs[0]);
 | |
|         env->xregs[0] = do_arm_semihosting(env);
 | |
|         env->pc += 4;
 | |
|     } else {
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "...handling as semihosting call 0x%x\n",
 | |
|                       env->regs[0]);
 | |
|         env->regs[0] = do_arm_semihosting(env);
 | |
|         env->regs[15] += env->thumb ? 2 : 4;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Handle a CPU exception for A and R profile CPUs.
 | |
|  * Do any appropriate logging, handle PSCI calls, and then hand off
 | |
|  * to the AArch64-entry or AArch32-entry function depending on the
 | |
|  * target exception level's register width.
 | |
|  */
 | |
| void arm_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     unsigned int new_el = env->exception.target_el;
 | |
| 
 | |
|     assert(!arm_feature(env, ARM_FEATURE_M));
 | |
| 
 | |
|     arm_log_exception(cs->exception_index);
 | |
|     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
 | |
|                   new_el);
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)
 | |
|         && !excp_is_internal(cs->exception_index)) {
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
 | |
|                       syn_get_ec(env->exception.syndrome),
 | |
|                       env->exception.syndrome);
 | |
|     }
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, cs->exception_index)) {
 | |
|         arm_handle_psci_call(cpu);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Semihosting semantics depend on the register width of the code
 | |
|      * that caused the exception, not the target exception level, so
 | |
|      * must be handled here.
 | |
|      */
 | |
| #ifdef CONFIG_TCG
 | |
|     if (cs->exception_index == EXCP_SEMIHOST) {
 | |
|         handle_semihosting(cs);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Hooks may change global state so BQL should be held, also the
 | |
|      * BQL needs to be held for any modification of
 | |
|      * cs->interrupt_request.
 | |
|      */
 | |
|     g_assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     arm_call_pre_el_change_hook(cpu);
 | |
| 
 | |
|     assert(!excp_is_internal(cs->exception_index));
 | |
|     if (arm_el_is_aa64(env, new_el)) {
 | |
|         arm_cpu_do_interrupt_aarch64(cs);
 | |
|     } else {
 | |
|         arm_cpu_do_interrupt_aarch32(cs);
 | |
|     }
 | |
| 
 | |
|     arm_call_el_change_hook(cpu);
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
|     }
 | |
| }
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| uint64_t arm_sctlr(CPUARMState *env, int el)
 | |
| {
 | |
|     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
 | |
|     if (el == 0) {
 | |
|         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
 | |
|         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
 | |
|     }
 | |
|     return env->cp15.sctlr_el[el];
 | |
| }
 | |
| 
 | |
| /* Return the SCTLR value which controls this address translation regime */
 | |
| static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| /* Return true if the specified stage of address translation is disabled */
 | |
| static inline bool regime_translation_disabled(CPUARMState *env,
 | |
|                                                ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
 | |
|                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
 | |
|         case R_V7M_MPU_CTRL_ENABLE_MASK:
 | |
|             /* Enabled, but not for HardFault and NMI */
 | |
|             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
 | |
|         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
 | |
|             /* Enabled for all cases */
 | |
|             return false;
 | |
|         case 0:
 | |
|         default:
 | |
|             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
 | |
|              * we warned about that in armv7m_nvic.c when the guest set it.
 | |
|              */
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         /* HCR.DC means HCR.VM behaves as 1 */
 | |
|         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
 | |
|     }
 | |
| 
 | |
|     if (env->cp15.hcr_el2 & HCR_TGE) {
 | |
|         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
 | |
|         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
 | |
|         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
 | |
| }
 | |
| 
 | |
| static inline bool regime_translation_big_endian(CPUARMState *env,
 | |
|                                                  ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
 | |
| }
 | |
| 
 | |
| /* Return the TTBR associated with this translation regime */
 | |
| static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                    int ttbrn)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         return env->cp15.vttbr_el2;
 | |
|     }
 | |
|     if (ttbrn == 0) {
 | |
|         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
 | |
|     } else {
 | |
|         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| /* Convert a possible stage1+2 MMU index into the appropriate
 | |
|  * stage 1 MMU index
 | |
|  */
 | |
| static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_E10_0:
 | |
|         return ARMMMUIdx_Stage1_E0;
 | |
|     case ARMMMUIdx_E10_1:
 | |
|         return ARMMMUIdx_Stage1_E1;
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|         return ARMMMUIdx_Stage1_E1_PAN;
 | |
|     default:
 | |
|         return mmu_idx;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if the translation regime is using LPAE format page tables */
 | |
| static inline bool regime_using_lpae_format(CPUARMState *env,
 | |
|                                             ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     int el = regime_el(env, mmu_idx);
 | |
|     if (el == 2 || arm_el_is_aa64(env, el)) {
 | |
|         return true;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)
 | |
|         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Returns true if the stage 1 translation regime is using LPAE format page
 | |
|  * tables. Used when raising alignment exceptions, whose FSR changes depending
 | |
|  * on whether the long or short descriptor format is in use. */
 | |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     mmu_idx = stage_1_mmu_idx(mmu_idx);
 | |
| 
 | |
|     return regime_using_lpae_format(env, mmu_idx);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_SE10_0:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_Stage1_E0:
 | |
|     case ARMMMUIdx_MUser:
 | |
|     case ARMMMUIdx_MSUser:
 | |
|     case ARMMMUIdx_MUserNegPri:
 | |
|     case ARMMMUIdx_MSUserNegPri:
 | |
|         return true;
 | |
|     default:
 | |
|         return false;
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E10_1:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to page
 | |
|  * R/W protection flags
 | |
|  *
 | |
|  * @env:         CPUARMState
 | |
|  * @mmu_idx:     MMU index indicating required translation regime
 | |
|  * @ap:          The 3-bit access permissions (AP[2:0])
 | |
|  * @domain_prot: The 2-bit domain access permissions
 | |
|  */
 | |
| static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                 int ap, int domain_prot)
 | |
| {
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     if (domain_prot == 3) {
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     switch (ap) {
 | |
|     case 0:
 | |
|         if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|             return 0;
 | |
|         }
 | |
|         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
 | |
|         case SCTLR_S:
 | |
|             return is_user ? 0 : PAGE_READ;
 | |
|         case SCTLR_R:
 | |
|             return PAGE_READ;
 | |
|         default:
 | |
|             return 0;
 | |
|         }
 | |
|     case 1:
 | |
|         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|     case 2:
 | |
|         if (is_user) {
 | |
|             return PAGE_READ;
 | |
|         } else {
 | |
|             return PAGE_READ | PAGE_WRITE;
 | |
|         }
 | |
|     case 3:
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     case 4: /* Reserved.  */
 | |
|         return 0;
 | |
|     case 5:
 | |
|         return is_user ? 0 : PAGE_READ;
 | |
|     case 6:
 | |
|         return PAGE_READ;
 | |
|     case 7:
 | |
|         if (!arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|             return 0;
 | |
|         }
 | |
|         return PAGE_READ;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to page
 | |
|  * R/W protection flags.
 | |
|  *
 | |
|  * @ap:      The 2-bit simple AP (AP[2:1])
 | |
|  * @is_user: TRUE if accessing from PL0
 | |
|  */
 | |
| static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
 | |
| {
 | |
|     switch (ap) {
 | |
|     case 0:
 | |
|         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|     case 1:
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     case 2:
 | |
|         return is_user ? 0 : PAGE_READ;
 | |
|     case 3:
 | |
|         return PAGE_READ;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
 | |
| {
 | |
|     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
 | |
| }
 | |
| 
 | |
| /* Translate S2 section/page access permissions to protection flags
 | |
|  *
 | |
|  * @env:     CPUARMState
 | |
|  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 | |
|  * @xn:      XN (execute-never) bits
 | |
|  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
 | |
|  */
 | |
| static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
 | |
| {
 | |
|     int prot = 0;
 | |
| 
 | |
|     if (s2ap & 1) {
 | |
|         prot |= PAGE_READ;
 | |
|     }
 | |
|     if (s2ap & 2) {
 | |
|         prot |= PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
 | |
|         switch (xn) {
 | |
|         case 0:
 | |
|             prot |= PAGE_EXEC;
 | |
|             break;
 | |
|         case 1:
 | |
|             if (s1_is_el0) {
 | |
|                 prot |= PAGE_EXEC;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             break;
 | |
|         case 3:
 | |
|             if (!s1_is_el0) {
 | |
|                 prot |= PAGE_EXEC;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     } else {
 | |
|         if (!extract32(xn, 1, 1)) {
 | |
|             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
 | |
|                 prot |= PAGE_EXEC;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to protection flags
 | |
|  *
 | |
|  * @env:     CPUARMState
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  * @is_aa64: TRUE if AArch64
 | |
|  * @ap:      The 2-bit simple AP (AP[2:1])
 | |
|  * @ns:      NS (non-secure) bit
 | |
|  * @xn:      XN (execute-never) bit
 | |
|  * @pxn:     PXN (privileged execute-never) bit
 | |
|  */
 | |
| static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
 | |
|                       int ap, int ns, int xn, int pxn)
 | |
| {
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
|     int prot_rw, user_rw;
 | |
|     bool have_wxn;
 | |
|     int wxn = 0;
 | |
| 
 | |
|     assert(mmu_idx != ARMMMUIdx_Stage2);
 | |
| 
 | |
|     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
 | |
|     if (is_user) {
 | |
|         prot_rw = user_rw;
 | |
|     } else {
 | |
|         if (user_rw && regime_is_pan(env, mmu_idx)) {
 | |
|             /* PAN forbids data accesses but doesn't affect insn fetch */
 | |
|             prot_rw = 0;
 | |
|         } else {
 | |
|             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
 | |
|         return prot_rw;
 | |
|     }
 | |
| 
 | |
|     /* TODO have_wxn should be replaced with
 | |
|      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
 | |
|      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
 | |
|      * compatible processors have EL2, which is required for [U]WXN.
 | |
|      */
 | |
|     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
 | |
| 
 | |
|     if (have_wxn) {
 | |
|         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
 | |
|     }
 | |
| 
 | |
|     if (is_aa64) {
 | |
|         if (regime_has_2_ranges(mmu_idx) && !is_user) {
 | |
|             xn = pxn || (user_rw & PAGE_WRITE);
 | |
|         }
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         switch (regime_el(env, mmu_idx)) {
 | |
|         case 1:
 | |
|         case 3:
 | |
|             if (is_user) {
 | |
|                 xn = xn || !(user_rw & PAGE_READ);
 | |
|             } else {
 | |
|                 int uwxn = 0;
 | |
|                 if (have_wxn) {
 | |
|                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
 | |
|                 }
 | |
|                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
 | |
|                      (uwxn && (user_rw & PAGE_WRITE));
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         xn = wxn = 0;
 | |
|     }
 | |
| 
 | |
|     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
 | |
|         return prot_rw;
 | |
|     }
 | |
|     return prot_rw | PAGE_EXEC;
 | |
| }
 | |
| 
 | |
| static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                      uint32_t *table, uint32_t address)
 | |
| {
 | |
|     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
 | |
|     TCR *tcr = regime_tcr(env, mmu_idx);
 | |
| 
 | |
|     if (address & tcr->mask) {
 | |
|         if (tcr->raw_tcr & TTBCR_PD1) {
 | |
|             /* Translation table walk disabled for TTBR1 */
 | |
|             return false;
 | |
|         }
 | |
|         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
 | |
|     } else {
 | |
|         if (tcr->raw_tcr & TTBCR_PD0) {
 | |
|             /* Translation table walk disabled for TTBR0 */
 | |
|             return false;
 | |
|         }
 | |
|         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
 | |
|     }
 | |
|     *table |= (address >> 18) & 0x3ffc;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Translate a S1 pagetable walk through S2 if needed.  */
 | |
| static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                hwaddr addr, MemTxAttrs txattrs,
 | |
|                                ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
 | |
|         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
 | |
|         target_ulong s2size;
 | |
|         hwaddr s2pa;
 | |
|         int s2prot;
 | |
|         int ret;
 | |
|         ARMCacheAttrs cacheattrs = {};
 | |
| 
 | |
|         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
 | |
|                                  false,
 | |
|                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
 | |
|                                  &cacheattrs);
 | |
|         if (ret) {
 | |
|             assert(fi->type != ARMFault_None);
 | |
|             fi->s2addr = addr;
 | |
|             fi->stage2 = true;
 | |
|             fi->s1ptw = true;
 | |
|             return ~0;
 | |
|         }
 | |
|         if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
 | |
|             /*
 | |
|              * PTW set and S1 walk touched S2 Device memory:
 | |
|              * generate Permission fault.
 | |
|              */
 | |
|             fi->type = ARMFault_Permission;
 | |
|             fi->s2addr = addr;
 | |
|             fi->stage2 = true;
 | |
|             fi->s1ptw = true;
 | |
|             return ~0;
 | |
|         }
 | |
|         addr = s2pa;
 | |
|     }
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| /* All loads done in the course of a page table walk go through here. */
 | |
| static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | |
|                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     MemTxAttrs attrs = {};
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     AddressSpace *as;
 | |
|     uint32_t data;
 | |
| 
 | |
|     attrs.secure = is_secure;
 | |
|     as = arm_addressspace(cs, attrs);
 | |
|     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
 | |
|     if (fi->s1ptw) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (regime_translation_big_endian(env, mmu_idx)) {
 | |
|         data = address_space_ldl_be(as, addr, attrs, &result);
 | |
|     } else {
 | |
|         data = address_space_ldl_le(as, addr, attrs, &result);
 | |
|     }
 | |
|     if (result == MEMTX_OK) {
 | |
|         return data;
 | |
|     }
 | |
|     fi->type = ARMFault_SyncExternalOnWalk;
 | |
|     fi->ea = arm_extabort_type(result);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | |
|                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     MemTxAttrs attrs = {};
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     AddressSpace *as;
 | |
|     uint64_t data;
 | |
| 
 | |
|     attrs.secure = is_secure;
 | |
|     as = arm_addressspace(cs, attrs);
 | |
|     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
 | |
|     if (fi->s1ptw) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (regime_translation_big_endian(env, mmu_idx)) {
 | |
|         data = address_space_ldq_be(as, addr, attrs, &result);
 | |
|     } else {
 | |
|         data = address_space_ldq_le(as, addr, attrs, &result);
 | |
|     }
 | |
|     if (result == MEMTX_OK) {
 | |
|         return data;
 | |
|     }
 | |
|     fi->type = ARMFault_SyncExternalOnWalk;
 | |
|     fi->ea = arm_extabort_type(result);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
 | |
|                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                              hwaddr *phys_ptr, int *prot,
 | |
|                              target_ulong *page_size,
 | |
|                              ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int level = 1;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain = 0;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
|     uint32_t dacr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | |
|         /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | |
|         fi->type = ARMFault_Translation;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                        mmu_idx, fi);
 | |
|     if (fi->type != ARMFault_None) {
 | |
|         goto do_fault;
 | |
|     }
 | |
|     type = (desc & 3);
 | |
|     domain = (desc >> 5) & 0x0f;
 | |
|     if (regime_el(env, mmu_idx) == 1) {
 | |
|         dacr = env->cp15.dacr_ns;
 | |
|     } else {
 | |
|         dacr = env->cp15.dacr_s;
 | |
|     }
 | |
|     domain_prot = (dacr >> (domain * 2)) & 3;
 | |
|     if (type == 0) {
 | |
|         /* Section translation fault.  */
 | |
|         fi->type = ARMFault_Translation;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type != 2) {
 | |
|         level = 2;
 | |
|     }
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         fi->type = ARMFault_Domain;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type == 2) {
 | |
|         /* 1Mb section.  */
 | |
|         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|         ap = (desc >> 10) & 3;
 | |
|         *page_size = 1024 * 1024;
 | |
|     } else {
 | |
|         /* Lookup l2 entry.  */
 | |
|         if (type == 1) {
 | |
|             /* Coarse pagetable.  */
 | |
|             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         } else {
 | |
|             /* Fine pagetable.  */
 | |
|             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 | |
|         }
 | |
|         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                            mmu_idx, fi);
 | |
|         if (fi->type != ARMFault_None) {
 | |
|             goto do_fault;
 | |
|         }
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             fi->type = ARMFault_Translation;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
 | |
|             if (type == 1) {
 | |
|                 /* ARMv6/XScale extended small page format */
 | |
|                 if (arm_feature(env, ARM_FEATURE_XSCALE)
 | |
|                     || arm_feature(env, ARM_FEATURE_V6)) {
 | |
|                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|                     *page_size = 0x1000;
 | |
|                 } else {
 | |
|                     /* UNPREDICTABLE in ARMv5; we choose to take a
 | |
|                      * page translation fault.
 | |
|                      */
 | |
|                     fi->type = ARMFault_Translation;
 | |
|                     goto do_fault;
 | |
|                 }
 | |
|             } else {
 | |
|                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
 | |
|                 *page_size = 0x400;
 | |
|             }
 | |
|             ap = (desc >> 4) & 3;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
|     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | |
|     *prot |= *prot ? PAGE_EXEC : 0;
 | |
|     if (!(*prot & (1 << access_type))) {
 | |
|         /* Access permission fault.  */
 | |
|         fi->type = ARMFault_Permission;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return false;
 | |
| do_fault:
 | |
|     fi->domain = domain;
 | |
|     fi->level = level;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
 | |
|                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | |
|                              target_ulong *page_size, ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int level = 1;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     uint32_t xn;
 | |
|     uint32_t pxn = 0;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain = 0;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
|     uint32_t dacr;
 | |
|     bool ns;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | |
|         /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | |
|         fi->type = ARMFault_Translation;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                        mmu_idx, fi);
 | |
|     if (fi->type != ARMFault_None) {
 | |
|         goto do_fault;
 | |
|     }
 | |
|     type = (desc & 3);
 | |
|     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
 | |
|         /* Section translation fault, or attempt to use the encoding
 | |
|          * which is Reserved on implementations without PXN.
 | |
|          */
 | |
|         fi->type = ARMFault_Translation;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if ((type == 1) || !(desc & (1 << 18))) {
 | |
|         /* Page or Section.  */
 | |
|         domain = (desc >> 5) & 0x0f;
 | |
|     }
 | |
|     if (regime_el(env, mmu_idx) == 1) {
 | |
|         dacr = env->cp15.dacr_ns;
 | |
|     } else {
 | |
|         dacr = env->cp15.dacr_s;
 | |
|     }
 | |
|     if (type == 1) {
 | |
|         level = 2;
 | |
|     }
 | |
|     domain_prot = (dacr >> (domain * 2)) & 3;
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         /* Section or Page domain fault */
 | |
|         fi->type = ARMFault_Domain;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type != 1) {
 | |
|         if (desc & (1 << 18)) {
 | |
|             /* Supersection.  */
 | |
|             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
 | |
|             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
 | |
|             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
 | |
|             *page_size = 0x1000000;
 | |
|         } else {
 | |
|             /* Section.  */
 | |
|             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|             *page_size = 0x100000;
 | |
|         }
 | |
|         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
 | |
|         xn = desc & (1 << 4);
 | |
|         pxn = desc & 1;
 | |
|         ns = extract32(desc, 19, 1);
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_PXN)) {
 | |
|             pxn = (desc >> 2) & 1;
 | |
|         }
 | |
|         ns = extract32(desc, 3, 1);
 | |
|         /* Lookup l2 entry.  */
 | |
|         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                            mmu_idx, fi);
 | |
|         if (fi->type != ARMFault_None) {
 | |
|             goto do_fault;
 | |
|         }
 | |
|         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             fi->type = ARMFault_Translation;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             xn = desc & (1 << 15);
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: case 3: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             xn = desc & 1;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
|     if (domain_prot == 3) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|     } else {
 | |
|         if (pxn && !regime_is_user(env, mmu_idx)) {
 | |
|             xn = 1;
 | |
|         }
 | |
|         if (xn && access_type == MMU_INST_FETCH) {
 | |
|             fi->type = ARMFault_Permission;
 | |
|             goto do_fault;
 | |
|         }
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_V6K) &&
 | |
|                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
 | |
|             /* The simplified model uses AP[0] as an access control bit.  */
 | |
|             if ((ap & 1) == 0) {
 | |
|                 /* Access flag fault.  */
 | |
|                 fi->type = ARMFault_AccessFlag;
 | |
|                 goto do_fault;
 | |
|             }
 | |
|             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
 | |
|         } else {
 | |
|             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | |
|         }
 | |
|         if (*prot && !xn) {
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|         if (!(*prot & (1 << access_type))) {
 | |
|             /* Access permission fault.  */
 | |
|             fi->type = ARMFault_Permission;
 | |
|             goto do_fault;
 | |
|         }
 | |
|     }
 | |
|     if (ns) {
 | |
|         /* The NS bit will (as required by the architecture) have no effect if
 | |
|          * the CPU doesn't support TZ or this is a non-secure translation
 | |
|          * regime, because the attribute will already be non-secure.
 | |
|          */
 | |
|         attrs->secure = false;
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return false;
 | |
| do_fault:
 | |
|     fi->domain = domain;
 | |
|     fi->level = level;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check_s2_mmu_setup
 | |
|  * @cpu:        ARMCPU
 | |
|  * @is_aa64:    True if the translation regime is in AArch64 state
 | |
|  * @startlevel: Suggested starting level
 | |
|  * @inputsize:  Bitsize of IPAs
 | |
|  * @stride:     Page-table stride (See the ARM ARM)
 | |
|  *
 | |
|  * Returns true if the suggested S2 translation parameters are OK and
 | |
|  * false otherwise.
 | |
|  */
 | |
| static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
 | |
|                                int inputsize, int stride)
 | |
| {
 | |
|     const int grainsize = stride + 3;
 | |
|     int startsizecheck;
 | |
| 
 | |
|     /* Negative levels are never allowed.  */
 | |
|     if (level < 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
 | |
|     if (startsizecheck < 1 || startsizecheck > stride + 4) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (is_aa64) {
 | |
|         CPUARMState *env = &cpu->env;
 | |
|         unsigned int pamax = arm_pamax(cpu);
 | |
| 
 | |
|         switch (stride) {
 | |
|         case 13: /* 64KB Pages.  */
 | |
|             if (level == 0 || (level == 1 && pamax <= 42)) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         case 11: /* 16KB Pages.  */
 | |
|             if (level == 0 || (level == 1 && pamax <= 40)) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         case 9: /* 4KB Pages.  */
 | |
|             if (level == 0 && pamax <= 42) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         /* Inputsize checks.  */
 | |
|         if (inputsize > pamax &&
 | |
|             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
 | |
|             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         /* AArch32 only supports 4KB pages. Assert on that.  */
 | |
|         assert(stride == 9);
 | |
| 
 | |
|         if (level == 0) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Translate from the 4-bit stage 2 representation of
 | |
|  * memory attributes (without cache-allocation hints) to
 | |
|  * the 8-bit representation of the stage 1 MAIR registers
 | |
|  * (which includes allocation hints).
 | |
|  *
 | |
|  * ref: shared/translation/attrs/S2AttrDecode()
 | |
|  *      .../S2ConvertAttrsHints()
 | |
|  */
 | |
| static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
 | |
| {
 | |
|     uint8_t hiattr = extract32(s2attrs, 2, 2);
 | |
|     uint8_t loattr = extract32(s2attrs, 0, 2);
 | |
|     uint8_t hihint = 0, lohint = 0;
 | |
| 
 | |
|     if (hiattr != 0) { /* normal memory */
 | |
|         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
 | |
|             hiattr = loattr = 1; /* non-cacheable */
 | |
|         } else {
 | |
|             if (hiattr != 1) { /* Write-through or write-back */
 | |
|                 hihint = 3; /* RW allocate */
 | |
|             }
 | |
|             if (loattr != 1) { /* Write-through or write-back */
 | |
|                 lohint = 3; /* RW allocate */
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
 | |
| }
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (regime_has_2_ranges(mmu_idx)) {
 | |
|         return extract64(tcr, 37, 2);
 | |
|     } else if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         return 0; /* VTCR_EL2 */
 | |
|     } else {
 | |
|         /* Replicate the single TBI bit so we always have 2 bits.  */
 | |
|         return extract32(tcr, 20, 1) * 3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (regime_has_2_ranges(mmu_idx)) {
 | |
|         return extract64(tcr, 51, 2);
 | |
|     } else if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         return 0; /* VTCR_EL2 */
 | |
|     } else {
 | |
|         /* Replicate the single TBID bit so we always have 2 bits.  */
 | |
|         return extract32(tcr, 29, 1) * 3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (regime_has_2_ranges(mmu_idx)) {
 | |
|         return extract64(tcr, 57, 2);
 | |
|     } else {
 | |
|         /* Replicate the single TCMA bit so we always have 2 bits.  */
 | |
|         return extract32(tcr, 30, 1) * 3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
 | |
|                                    ARMMMUIdx mmu_idx, bool data)
 | |
| {
 | |
|     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
 | |
|     bool epd, hpd, using16k, using64k;
 | |
|     int select, tsz, tbi;
 | |
| 
 | |
|     if (!regime_has_2_ranges(mmu_idx)) {
 | |
|         select = 0;
 | |
|         tsz = extract32(tcr, 0, 6);
 | |
|         using64k = extract32(tcr, 14, 1);
 | |
|         using16k = extract32(tcr, 15, 1);
 | |
|         if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|             /* VTCR_EL2 */
 | |
|             hpd = false;
 | |
|         } else {
 | |
|             hpd = extract32(tcr, 24, 1);
 | |
|         }
 | |
|         epd = false;
 | |
|     } else {
 | |
|         /*
 | |
|          * Bit 55 is always between the two regions, and is canonical for
 | |
|          * determining if address tagging is enabled.
 | |
|          */
 | |
|         select = extract64(va, 55, 1);
 | |
|         if (!select) {
 | |
|             tsz = extract32(tcr, 0, 6);
 | |
|             epd = extract32(tcr, 7, 1);
 | |
|             using64k = extract32(tcr, 14, 1);
 | |
|             using16k = extract32(tcr, 15, 1);
 | |
|             hpd = extract64(tcr, 41, 1);
 | |
|         } else {
 | |
|             int tg = extract32(tcr, 30, 2);
 | |
|             using16k = tg == 1;
 | |
|             using64k = tg == 3;
 | |
|             tsz = extract32(tcr, 16, 6);
 | |
|             epd = extract32(tcr, 23, 1);
 | |
|             hpd = extract64(tcr, 42, 1);
 | |
|         }
 | |
|     }
 | |
|     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
 | |
|     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
 | |
| 
 | |
|     /* Present TBI as a composite with TBID.  */
 | |
|     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
 | |
|     if (!data) {
 | |
|         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
 | |
|     }
 | |
|     tbi = (tbi >> select) & 1;
 | |
| 
 | |
|     return (ARMVAParameters) {
 | |
|         .tsz = tsz,
 | |
|         .select = select,
 | |
|         .tbi = tbi,
 | |
|         .epd = epd,
 | |
|         .hpd = hpd,
 | |
|         .using16k = using16k,
 | |
|         .using64k = using64k,
 | |
|     };
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
 | |
|                                           ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
 | |
|     uint32_t el = regime_el(env, mmu_idx);
 | |
|     int select, tsz;
 | |
|     bool epd, hpd;
 | |
| 
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         /* VTCR */
 | |
|         bool sext = extract32(tcr, 4, 1);
 | |
|         bool sign = extract32(tcr, 3, 1);
 | |
| 
 | |
|         /*
 | |
|          * If the sign-extend bit is not the same as t0sz[3], the result
 | |
|          * is unpredictable. Flag this as a guest error.
 | |
|          */
 | |
|         if (sign != sext) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
 | |
|         }
 | |
|         tsz = sextract32(tcr, 0, 4) + 8;
 | |
|         select = 0;
 | |
|         hpd = false;
 | |
|         epd = false;
 | |
|     } else if (el == 2) {
 | |
|         /* HTCR */
 | |
|         tsz = extract32(tcr, 0, 3);
 | |
|         select = 0;
 | |
|         hpd = extract64(tcr, 24, 1);
 | |
|         epd = false;
 | |
|     } else {
 | |
|         int t0sz = extract32(tcr, 0, 3);
 | |
|         int t1sz = extract32(tcr, 16, 3);
 | |
| 
 | |
|         if (t1sz == 0) {
 | |
|             select = va > (0xffffffffu >> t0sz);
 | |
|         } else {
 | |
|             /* Note that we will detect errors later.  */
 | |
|             select = va >= ~(0xffffffffu >> t1sz);
 | |
|         }
 | |
|         if (!select) {
 | |
|             tsz = t0sz;
 | |
|             epd = extract32(tcr, 7, 1);
 | |
|             hpd = extract64(tcr, 41, 1);
 | |
|         } else {
 | |
|             tsz = t1sz;
 | |
|             epd = extract32(tcr, 23, 1);
 | |
|             hpd = extract64(tcr, 42, 1);
 | |
|         }
 | |
|         /* For aarch32, hpd0 is not enabled without t2e as well.  */
 | |
|         hpd &= extract32(tcr, 6, 1);
 | |
|     }
 | |
| 
 | |
|     return (ARMVAParameters) {
 | |
|         .tsz = tsz,
 | |
|         .select = select,
 | |
|         .epd = epd,
 | |
|         .hpd = hpd,
 | |
|     };
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
 | |
|  *
 | |
|  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 | |
|  * prot and page_size may not be filled in, and the populated fsr value provides
 | |
|  * information on why the translation aborted, in the format of a long-format
 | |
|  * DFSR/IFSR fault register, with the following caveats:
 | |
|  *  * the WnR bit is never set (the caller must do this).
 | |
|  *
 | |
|  * @env: CPUARMState
 | |
|  * @address: virtual address to get physical address for
 | |
|  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
 | |
|  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
 | |
|  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
 | |
|  * @phys_ptr: set to the physical address corresponding to the virtual address
 | |
|  * @attrs: set to the memory transaction attributes to use
 | |
|  * @prot: set to the permissions for the page containing phys_ptr
 | |
|  * @page_size_ptr: set to the size of the page containing phys_ptr
 | |
|  * @fi: set to fault info if the translation fails
 | |
|  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 | |
|  */
 | |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | |
|                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                bool s1_is_el0,
 | |
|                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | |
|                                target_ulong *page_size_ptr,
 | |
|                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     /* Read an LPAE long-descriptor translation table. */
 | |
|     ARMFaultType fault_type = ARMFault_Translation;
 | |
|     uint32_t level;
 | |
|     ARMVAParameters param;
 | |
|     uint64_t ttbr;
 | |
|     hwaddr descaddr, indexmask, indexmask_grainsize;
 | |
|     uint32_t tableattrs;
 | |
|     target_ulong page_size;
 | |
|     uint32_t attrs;
 | |
|     int32_t stride;
 | |
|     int addrsize, inputsize;
 | |
|     TCR *tcr = regime_tcr(env, mmu_idx);
 | |
|     int ap, ns, xn, pxn;
 | |
|     uint32_t el = regime_el(env, mmu_idx);
 | |
|     uint64_t descaddrmask;
 | |
|     bool aarch64 = arm_el_is_aa64(env, el);
 | |
|     bool guarded = false;
 | |
| 
 | |
|     /* TODO: This code does not support shareability levels. */
 | |
|     if (aarch64) {
 | |
|         param = aa64_va_parameters(env, address, mmu_idx,
 | |
|                                    access_type != MMU_INST_FETCH);
 | |
|         level = 0;
 | |
|         addrsize = 64 - 8 * param.tbi;
 | |
|         inputsize = 64 - param.tsz;
 | |
|     } else {
 | |
|         param = aa32_va_parameters(env, address, mmu_idx);
 | |
|         level = 1;
 | |
|         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
 | |
|         inputsize = addrsize - param.tsz;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We determined the region when collecting the parameters, but we
 | |
|      * have not yet validated that the address is valid for the region.
 | |
|      * Extract the top bits and verify that they all match select.
 | |
|      *
 | |
|      * For aa32, if inputsize == addrsize, then we have selected the
 | |
|      * region by exclusion in aa32_va_parameters and there is no more
 | |
|      * validation to do here.
 | |
|      */
 | |
|     if (inputsize < addrsize) {
 | |
|         target_ulong top_bits = sextract64(address, inputsize,
 | |
|                                            addrsize - inputsize);
 | |
|         if (-top_bits != param.select) {
 | |
|             /* The gap between the two regions is a Translation fault */
 | |
|             fault_type = ARMFault_Translation;
 | |
|             goto do_fault;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (param.using64k) {
 | |
|         stride = 13;
 | |
|     } else if (param.using16k) {
 | |
|         stride = 11;
 | |
|     } else {
 | |
|         stride = 9;
 | |
|     }
 | |
| 
 | |
|     /* Note that QEMU ignores shareability and cacheability attributes,
 | |
|      * so we don't need to do anything with the SH, ORGN, IRGN fields
 | |
|      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
 | |
|      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
 | |
|      * implement any ASID-like capability so we can ignore it (instead
 | |
|      * we will always flush the TLB any time the ASID is changed).
 | |
|      */
 | |
|     ttbr = regime_ttbr(env, mmu_idx, param.select);
 | |
| 
 | |
|     /* Here we should have set up all the parameters for the translation:
 | |
|      * inputsize, ttbr, epd, stride, tbi
 | |
|      */
 | |
| 
 | |
|     if (param.epd) {
 | |
|         /* Translation table walk disabled => Translation fault on TLB miss
 | |
|          * Note: This is always 0 on 64-bit EL2 and EL3.
 | |
|          */
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     if (mmu_idx != ARMMMUIdx_Stage2) {
 | |
|         /* The starting level depends on the virtual address size (which can
 | |
|          * be up to 48 bits) and the translation granule size. It indicates
 | |
|          * the number of strides (stride bits at a time) needed to
 | |
|          * consume the bits of the input address. In the pseudocode this is:
 | |
|          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
 | |
|          * where their 'inputsize' is our 'inputsize', 'grainsize' is
 | |
|          * our 'stride + 3' and 'stride' is our 'stride'.
 | |
|          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
 | |
|          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
 | |
|          * = 4 - (inputsize - 4) / stride;
 | |
|          */
 | |
|         level = 4 - (inputsize - 4) / stride;
 | |
|     } else {
 | |
|         /* For stage 2 translations the starting level is specified by the
 | |
|          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
 | |
|          */
 | |
|         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
 | |
|         uint32_t startlevel;
 | |
|         bool ok;
 | |
| 
 | |
|         if (!aarch64 || stride == 9) {
 | |
|             /* AArch32 or 4KB pages */
 | |
|             startlevel = 2 - sl0;
 | |
|         } else {
 | |
|             /* 16KB or 64KB pages */
 | |
|             startlevel = 3 - sl0;
 | |
|         }
 | |
| 
 | |
|         /* Check that the starting level is valid. */
 | |
|         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
 | |
|                                 inputsize, stride);
 | |
|         if (!ok) {
 | |
|             fault_type = ARMFault_Translation;
 | |
|             goto do_fault;
 | |
|         }
 | |
|         level = startlevel;
 | |
|     }
 | |
| 
 | |
|     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
 | |
|     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
 | |
| 
 | |
|     /* Now we can extract the actual base address from the TTBR */
 | |
|     descaddr = extract64(ttbr, 0, 48);
 | |
|     /*
 | |
|      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
 | |
|      * and also to mask out CnP (bit 0) which could validly be non-zero.
 | |
|      */
 | |
|     descaddr &= ~indexmask;
 | |
| 
 | |
|     /* The address field in the descriptor goes up to bit 39 for ARMv7
 | |
|      * but up to bit 47 for ARMv8, but we use the descaddrmask
 | |
|      * up to bit 39 for AArch32, because we don't need other bits in that case
 | |
|      * to construct next descriptor address (anyway they should be all zeroes).
 | |
|      */
 | |
|     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
 | |
|                    ~indexmask_grainsize;
 | |
| 
 | |
|     /* Secure accesses start with the page table in secure memory and
 | |
|      * can be downgraded to non-secure at any step. Non-secure accesses
 | |
|      * remain non-secure. We implement this by just ORing in the NSTable/NS
 | |
|      * bits at each step.
 | |
|      */
 | |
|     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
 | |
|     for (;;) {
 | |
|         uint64_t descriptor;
 | |
|         bool nstable;
 | |
| 
 | |
|         descaddr |= (address >> (stride * (4 - level))) & indexmask;
 | |
|         descaddr &= ~7ULL;
 | |
|         nstable = extract32(tableattrs, 4, 1);
 | |
|         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
 | |
|         if (fi->type != ARMFault_None) {
 | |
|             goto do_fault;
 | |
|         }
 | |
| 
 | |
|         if (!(descriptor & 1) ||
 | |
|             (!(descriptor & 2) && (level == 3))) {
 | |
|             /* Invalid, or the Reserved level 3 encoding */
 | |
|             goto do_fault;
 | |
|         }
 | |
|         descaddr = descriptor & descaddrmask;
 | |
| 
 | |
|         if ((descriptor & 2) && (level < 3)) {
 | |
|             /* Table entry. The top five bits are attributes which may
 | |
|              * propagate down through lower levels of the table (and
 | |
|              * which are all arranged so that 0 means "no effect", so
 | |
|              * we can gather them up by ORing in the bits at each level).
 | |
|              */
 | |
|             tableattrs |= extract64(descriptor, 59, 5);
 | |
|             level++;
 | |
|             indexmask = indexmask_grainsize;
 | |
|             continue;
 | |
|         }
 | |
|         /* Block entry at level 1 or 2, or page entry at level 3.
 | |
|          * These are basically the same thing, although the number
 | |
|          * of bits we pull in from the vaddr varies.
 | |
|          */
 | |
|         page_size = (1ULL << ((stride * (4 - level)) + 3));
 | |
|         descaddr |= (address & (page_size - 1));
 | |
|         /* Extract attributes from the descriptor */
 | |
|         attrs = extract64(descriptor, 2, 10)
 | |
|             | (extract64(descriptor, 52, 12) << 10);
 | |
| 
 | |
|         if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|             /* Stage 2 table descriptors do not include any attribute fields */
 | |
|             break;
 | |
|         }
 | |
|         /* Merge in attributes from table descriptors */
 | |
|         attrs |= nstable << 3; /* NS */
 | |
|         guarded = extract64(descriptor, 50, 1);  /* GP */
 | |
|         if (param.hpd) {
 | |
|             /* HPD disables all the table attributes except NSTable.  */
 | |
|             break;
 | |
|         }
 | |
|         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
 | |
|         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
 | |
|          * means "force PL1 access only", which means forcing AP[1] to 0.
 | |
|          */
 | |
|         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
 | |
|         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
 | |
|         break;
 | |
|     }
 | |
|     /* Here descaddr is the final physical address, and attributes
 | |
|      * are all in attrs.
 | |
|      */
 | |
|     fault_type = ARMFault_AccessFlag;
 | |
|     if ((attrs & (1 << 8)) == 0) {
 | |
|         /* Access flag */
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     ap = extract32(attrs, 4, 2);
 | |
| 
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         ns = true;
 | |
|         xn = extract32(attrs, 11, 2);
 | |
|         *prot = get_S2prot(env, ap, xn, s1_is_el0);
 | |
|     } else {
 | |
|         ns = extract32(attrs, 3, 1);
 | |
|         xn = extract32(attrs, 12, 1);
 | |
|         pxn = extract32(attrs, 11, 1);
 | |
|         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
 | |
|     }
 | |
| 
 | |
|     fault_type = ARMFault_Permission;
 | |
|     if (!(*prot & (1 << access_type))) {
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     if (ns) {
 | |
|         /* The NS bit will (as required by the architecture) have no effect if
 | |
|          * the CPU doesn't support TZ or this is a non-secure translation
 | |
|          * regime, because the attribute will already be non-secure.
 | |
|          */
 | |
|         txattrs->secure = false;
 | |
|     }
 | |
|     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
 | |
|     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
 | |
|         arm_tlb_bti_gp(txattrs) = true;
 | |
|     }
 | |
| 
 | |
|     if (mmu_idx == ARMMMUIdx_Stage2) {
 | |
|         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
 | |
|     } else {
 | |
|         /* Index into MAIR registers for cache attributes */
 | |
|         uint8_t attrindx = extract32(attrs, 0, 3);
 | |
|         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
 | |
|         assert(attrindx <= 7);
 | |
|         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
 | |
|     }
 | |
|     cacheattrs->shareability = extract32(attrs, 6, 2);
 | |
| 
 | |
|     *phys_ptr = descaddr;
 | |
|     *page_size_ptr = page_size;
 | |
|     return false;
 | |
| 
 | |
| do_fault:
 | |
|     fi->type = fault_type;
 | |
|     fi->level = level;
 | |
|     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
 | |
|     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
 | |
|                                                 ARMMMUIdx mmu_idx,
 | |
|                                                 int32_t address, int *prot)
 | |
| {
 | |
|     if (!arm_feature(env, ARM_FEATURE_M)) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE;
 | |
|         switch (address) {
 | |
|         case 0xF0000000 ... 0xFFFFFFFF:
 | |
|             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
 | |
|                 /* hivecs execing is ok */
 | |
|                 *prot |= PAGE_EXEC;
 | |
|             }
 | |
|             break;
 | |
|         case 0x00000000 ... 0x7FFFFFFF:
 | |
|             *prot |= PAGE_EXEC;
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         /* Default system address map for M profile cores.
 | |
|          * The architecture specifies which regions are execute-never;
 | |
|          * at the MPU level no other checks are defined.
 | |
|          */
 | |
|         switch (address) {
 | |
|         case 0x00000000 ... 0x1fffffff: /* ROM */
 | |
|         case 0x20000000 ... 0x3fffffff: /* SRAM */
 | |
|         case 0x60000000 ... 0x7fffffff: /* RAM */
 | |
|         case 0x80000000 ... 0x9fffffff: /* RAM */
 | |
|             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|             break;
 | |
|         case 0x40000000 ... 0x5fffffff: /* Peripheral */
 | |
|         case 0xa0000000 ... 0xbfffffff: /* Device */
 | |
|         case 0xc0000000 ... 0xdfffffff: /* Device */
 | |
|         case 0xe0000000 ... 0xffffffff: /* System */
 | |
|             *prot = PAGE_READ | PAGE_WRITE;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool pmsav7_use_background_region(ARMCPU *cpu,
 | |
|                                          ARMMMUIdx mmu_idx, bool is_user)
 | |
| {
 | |
|     /* Return true if we should use the default memory map as a
 | |
|      * "background" region if there are no hits against any MPU regions.
 | |
|      */
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (is_user) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
 | |
|             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
 | |
|     } else {
 | |
|         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
 | |
| {
 | |
|     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
 | |
|     return arm_feature(env, ARM_FEATURE_M) &&
 | |
|         extract32(address, 20, 12) == 0xe00;
 | |
| }
 | |
| 
 | |
| static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
 | |
| {
 | |
|     /* True if address is in the M profile system region
 | |
|      * 0xe0000000 - 0xffffffff
 | |
|      */
 | |
|     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
 | |
|                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                  hwaddr *phys_ptr, int *prot,
 | |
|                                  target_ulong *page_size,
 | |
|                                  ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int n;
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     *page_size = TARGET_PAGE_SIZE;
 | |
|     *prot = 0;
 | |
| 
 | |
|     if (regime_translation_disabled(env, mmu_idx) ||
 | |
|         m_is_ppb_region(env, address)) {
 | |
|         /* MPU disabled or M profile PPB access: use default memory map.
 | |
|          * The other case which uses the default memory map in the
 | |
|          * v7M ARM ARM pseudocode is exception vector reads from the vector
 | |
|          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
 | |
|          * which always does a direct read using address_space_ldl(), rather
 | |
|          * than going via this function, so we don't need to check that here.
 | |
|          */
 | |
|         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | |
|     } else { /* MPU enabled */
 | |
|         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
 | |
|             /* region search */
 | |
|             uint32_t base = env->pmsav7.drbar[n];
 | |
|             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
 | |
|             uint32_t rmask;
 | |
|             bool srdis = false;
 | |
| 
 | |
|             if (!(env->pmsav7.drsr[n] & 0x1)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (!rsize) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "DRSR[%d]: Rsize field cannot be 0\n", n);
 | |
|                 continue;
 | |
|             }
 | |
|             rsize++;
 | |
|             rmask = (1ull << rsize) - 1;
 | |
| 
 | |
|             if (base & rmask) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
 | |
|                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
 | |
|                               n, base, rmask);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (address < base || address > base + rmask) {
 | |
|                 /*
 | |
|                  * Address not in this region. We must check whether the
 | |
|                  * region covers addresses in the same page as our address.
 | |
|                  * In that case we must not report a size that covers the
 | |
|                  * whole page for a subsequent hit against a different MPU
 | |
|                  * region or the background region, because it would result in
 | |
|                  * incorrect TLB hits for subsequent accesses to addresses that
 | |
|                  * are in this MPU region.
 | |
|                  */
 | |
|                 if (ranges_overlap(base, rmask,
 | |
|                                    address & TARGET_PAGE_MASK,
 | |
|                                    TARGET_PAGE_SIZE)) {
 | |
|                     *page_size = 1;
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* Region matched */
 | |
| 
 | |
|             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
 | |
|                 int i, snd;
 | |
|                 uint32_t srdis_mask;
 | |
| 
 | |
|                 rsize -= 3; /* sub region size (power of 2) */
 | |
|                 snd = ((address - base) >> rsize) & 0x7;
 | |
|                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
 | |
| 
 | |
|                 srdis_mask = srdis ? 0x3 : 0x0;
 | |
|                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
 | |
|                     /* This will check in groups of 2, 4 and then 8, whether
 | |
|                      * the subregion bits are consistent. rsize is incremented
 | |
|                      * back up to give the region size, considering consistent
 | |
|                      * adjacent subregions as one region. Stop testing if rsize
 | |
|                      * is already big enough for an entire QEMU page.
 | |
|                      */
 | |
|                     int snd_rounded = snd & ~(i - 1);
 | |
|                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
 | |
|                                                      snd_rounded + 8, i);
 | |
|                     if (srdis_mask ^ srdis_multi) {
 | |
|                         break;
 | |
|                     }
 | |
|                     srdis_mask = (srdis_mask << i) | srdis_mask;
 | |
|                     rsize++;
 | |
|                 }
 | |
|             }
 | |
|             if (srdis) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (rsize < TARGET_PAGE_BITS) {
 | |
|                 *page_size = 1 << rsize;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (n == -1) { /* no hits */
 | |
|             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
 | |
|                 /* background fault */
 | |
|                 fi->type = ARMFault_Background;
 | |
|                 return true;
 | |
|             }
 | |
|             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | |
|         } else { /* a MPU hit! */
 | |
|             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
 | |
|             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
 | |
| 
 | |
|             if (m_is_system_region(env, address)) {
 | |
|                 /* System space is always execute never */
 | |
|                 xn = 1;
 | |
|             }
 | |
| 
 | |
|             if (is_user) { /* User mode AP bit decoding */
 | |
|                 switch (ap) {
 | |
|                 case 0:
 | |
|                 case 1:
 | |
|                 case 5:
 | |
|                     break; /* no access */
 | |
|                 case 3:
 | |
|                     *prot |= PAGE_WRITE;
 | |
|                     /* fall through */
 | |
|                 case 2:
 | |
|                 case 6:
 | |
|                     *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                     break;
 | |
|                 case 7:
 | |
|                     /* for v7M, same as 6; for R profile a reserved value */
 | |
|                     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|                         *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                         break;
 | |
|                     }
 | |
|                     /* fall through */
 | |
|                 default:
 | |
|                     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                                   "DRACR[%d]: Bad value for AP bits: 0x%"
 | |
|                                   PRIx32 "\n", n, ap);
 | |
|                 }
 | |
|             } else { /* Priv. mode AP bits decoding */
 | |
|                 switch (ap) {
 | |
|                 case 0:
 | |
|                     break; /* no access */
 | |
|                 case 1:
 | |
|                 case 2:
 | |
|                 case 3:
 | |
|                     *prot |= PAGE_WRITE;
 | |
|                     /* fall through */
 | |
|                 case 5:
 | |
|                 case 6:
 | |
|                     *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                     break;
 | |
|                 case 7:
 | |
|                     /* for v7M, same as 6; for R profile a reserved value */
 | |
|                     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|                         *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                         break;
 | |
|                     }
 | |
|                     /* fall through */
 | |
|                 default:
 | |
|                     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                                   "DRACR[%d]: Bad value for AP bits: 0x%"
 | |
|                                   PRIx32 "\n", n, ap);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* execute never */
 | |
|             if (xn) {
 | |
|                 *prot &= ~PAGE_EXEC;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fi->type = ARMFault_Permission;
 | |
|     fi->level = 1;
 | |
|     return !(*prot & (1 << access_type));
 | |
| }
 | |
| 
 | |
| static bool v8m_is_sau_exempt(CPUARMState *env,
 | |
|                               uint32_t address, MMUAccessType access_type)
 | |
| {
 | |
|     /* The architecture specifies that certain address ranges are
 | |
|      * exempt from v8M SAU/IDAU checks.
 | |
|      */
 | |
|     return
 | |
|         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
 | |
|         (address >= 0xe0000000 && address <= 0xe0002fff) ||
 | |
|         (address >= 0xe000e000 && address <= 0xe000efff) ||
 | |
|         (address >= 0xe002e000 && address <= 0xe002efff) ||
 | |
|         (address >= 0xe0040000 && address <= 0xe0041fff) ||
 | |
|         (address >= 0xe00ff000 && address <= 0xe00fffff);
 | |
| }
 | |
| 
 | |
| void v8m_security_lookup(CPUARMState *env, uint32_t address,
 | |
|                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                 V8M_SAttributes *sattrs)
 | |
| {
 | |
|     /* Look up the security attributes for this address. Compare the
 | |
|      * pseudocode SecurityCheck() function.
 | |
|      * We assume the caller has zero-initialized *sattrs.
 | |
|      */
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int r;
 | |
|     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
 | |
|     int idau_region = IREGION_NOTVALID;
 | |
|     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
 | |
|     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
 | |
| 
 | |
|     if (cpu->idau) {
 | |
|         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
 | |
|         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
 | |
| 
 | |
|         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
 | |
|                    &idau_nsc);
 | |
|     }
 | |
| 
 | |
|     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
 | |
|         /* 0xf0000000..0xffffffff is always S for insn fetches */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
 | |
|         sattrs->ns = !regime_is_secure(env, mmu_idx);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (idau_region != IREGION_NOTVALID) {
 | |
|         sattrs->irvalid = true;
 | |
|         sattrs->iregion = idau_region;
 | |
|     }
 | |
| 
 | |
|     switch (env->sau.ctrl & 3) {
 | |
|     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
 | |
|         break;
 | |
|     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
 | |
|         sattrs->ns = true;
 | |
|         break;
 | |
|     default: /* SAU.ENABLE == 1 */
 | |
|         for (r = 0; r < cpu->sau_sregion; r++) {
 | |
|             if (env->sau.rlar[r] & 1) {
 | |
|                 uint32_t base = env->sau.rbar[r] & ~0x1f;
 | |
|                 uint32_t limit = env->sau.rlar[r] | 0x1f;
 | |
| 
 | |
|                 if (base <= address && limit >= address) {
 | |
|                     if (base > addr_page_base || limit < addr_page_limit) {
 | |
|                         sattrs->subpage = true;
 | |
|                     }
 | |
|                     if (sattrs->srvalid) {
 | |
|                         /* If we hit in more than one region then we must report
 | |
|                          * as Secure, not NS-Callable, with no valid region
 | |
|                          * number info.
 | |
|                          */
 | |
|                         sattrs->ns = false;
 | |
|                         sattrs->nsc = false;
 | |
|                         sattrs->sregion = 0;
 | |
|                         sattrs->srvalid = false;
 | |
|                         break;
 | |
|                     } else {
 | |
|                         if (env->sau.rlar[r] & 2) {
 | |
|                             sattrs->nsc = true;
 | |
|                         } else {
 | |
|                             sattrs->ns = true;
 | |
|                         }
 | |
|                         sattrs->srvalid = true;
 | |
|                         sattrs->sregion = r;
 | |
|                     }
 | |
|                 } else {
 | |
|                     /*
 | |
|                      * Address not in this region. We must check whether the
 | |
|                      * region covers addresses in the same page as our address.
 | |
|                      * In that case we must not report a size that covers the
 | |
|                      * whole page for a subsequent hit against a different MPU
 | |
|                      * region or the background region, because it would result
 | |
|                      * in incorrect TLB hits for subsequent accesses to
 | |
|                      * addresses that are in this MPU region.
 | |
|                      */
 | |
|                     if (limit >= base &&
 | |
|                         ranges_overlap(base, limit - base + 1,
 | |
|                                        addr_page_base,
 | |
|                                        TARGET_PAGE_SIZE)) {
 | |
|                         sattrs->subpage = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The IDAU will override the SAU lookup results if it specifies
 | |
|      * higher security than the SAU does.
 | |
|      */
 | |
|     if (!idau_ns) {
 | |
|         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
 | |
|             sattrs->ns = false;
 | |
|             sattrs->nsc = idau_nsc;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
 | |
|                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
 | |
|                               int *prot, bool *is_subpage,
 | |
|                               ARMMMUFaultInfo *fi, uint32_t *mregion)
 | |
| {
 | |
|     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
 | |
|      * that a full phys-to-virt translation does).
 | |
|      * mregion is (if not NULL) set to the region number which matched,
 | |
|      * or -1 if no region number is returned (MPU off, address did not
 | |
|      * hit a region, address hit in multiple regions).
 | |
|      * We set is_subpage to true if the region hit doesn't cover the
 | |
|      * entire TARGET_PAGE the address is within.
 | |
|      */
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
|     uint32_t secure = regime_is_secure(env, mmu_idx);
 | |
|     int n;
 | |
|     int matchregion = -1;
 | |
|     bool hit = false;
 | |
|     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
 | |
|     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
 | |
| 
 | |
|     *is_subpage = false;
 | |
|     *phys_ptr = address;
 | |
|     *prot = 0;
 | |
|     if (mregion) {
 | |
|         *mregion = -1;
 | |
|     }
 | |
| 
 | |
|     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
 | |
|      * was an exception vector read from the vector table (which is always
 | |
|      * done using the default system address map), because those accesses
 | |
|      * are done in arm_v7m_load_vector(), which always does a direct
 | |
|      * read using address_space_ldl(), rather than going via this function.
 | |
|      */
 | |
|     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
 | |
|         hit = true;
 | |
|     } else if (m_is_ppb_region(env, address)) {
 | |
|         hit = true;
 | |
|     } else {
 | |
|         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
 | |
|             hit = true;
 | |
|         }
 | |
| 
 | |
|         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
 | |
|             /* region search */
 | |
|             /* Note that the base address is bits [31:5] from the register
 | |
|              * with bits [4:0] all zeroes, but the limit address is bits
 | |
|              * [31:5] from the register with bits [4:0] all ones.
 | |
|              */
 | |
|             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
 | |
|             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
 | |
| 
 | |
|             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
 | |
|                 /* Region disabled */
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (address < base || address > limit) {
 | |
|                 /*
 | |
|                  * Address not in this region. We must check whether the
 | |
|                  * region covers addresses in the same page as our address.
 | |
|                  * In that case we must not report a size that covers the
 | |
|                  * whole page for a subsequent hit against a different MPU
 | |
|                  * region or the background region, because it would result in
 | |
|                  * incorrect TLB hits for subsequent accesses to addresses that
 | |
|                  * are in this MPU region.
 | |
|                  */
 | |
|                 if (limit >= base &&
 | |
|                     ranges_overlap(base, limit - base + 1,
 | |
|                                    addr_page_base,
 | |
|                                    TARGET_PAGE_SIZE)) {
 | |
|                     *is_subpage = true;
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (base > addr_page_base || limit < addr_page_limit) {
 | |
|                 *is_subpage = true;
 | |
|             }
 | |
| 
 | |
|             if (matchregion != -1) {
 | |
|                 /* Multiple regions match -- always a failure (unlike
 | |
|                  * PMSAv7 where highest-numbered-region wins)
 | |
|                  */
 | |
|                 fi->type = ARMFault_Permission;
 | |
|                 fi->level = 1;
 | |
|                 return true;
 | |
|             }
 | |
| 
 | |
|             matchregion = n;
 | |
|             hit = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!hit) {
 | |
|         /* background fault */
 | |
|         fi->type = ARMFault_Background;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (matchregion == -1) {
 | |
|         /* hit using the background region */
 | |
|         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | |
|     } else {
 | |
|         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
 | |
|         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
 | |
| 
 | |
|         if (m_is_system_region(env, address)) {
 | |
|             /* System space is always execute never */
 | |
|             xn = 1;
 | |
|         }
 | |
| 
 | |
|         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
 | |
|         if (*prot && !xn) {
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|         /* We don't need to look the attribute up in the MAIR0/MAIR1
 | |
|          * registers because that only tells us about cacheability.
 | |
|          */
 | |
|         if (mregion) {
 | |
|             *mregion = matchregion;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fi->type = ARMFault_Permission;
 | |
|     fi->level = 1;
 | |
|     return !(*prot & (1 << access_type));
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
 | |
|                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
 | |
|                                  int *prot, target_ulong *page_size,
 | |
|                                  ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     uint32_t secure = regime_is_secure(env, mmu_idx);
 | |
|     V8M_SAttributes sattrs = {};
 | |
|     bool ret;
 | |
|     bool mpu_is_subpage;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | |
|         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
 | |
|         if (access_type == MMU_INST_FETCH) {
 | |
|             /* Instruction fetches always use the MMU bank and the
 | |
|              * transaction attribute determined by the fetch address,
 | |
|              * regardless of CPU state. This is painful for QEMU
 | |
|              * to handle, because it would mean we need to encode
 | |
|              * into the mmu_idx not just the (user, negpri) information
 | |
|              * for the current security state but also that for the
 | |
|              * other security state, which would balloon the number
 | |
|              * of mmu_idx values needed alarmingly.
 | |
|              * Fortunately we can avoid this because it's not actually
 | |
|              * possible to arbitrarily execute code from memory with
 | |
|              * the wrong security attribute: it will always generate
 | |
|              * an exception of some kind or another, apart from the
 | |
|              * special case of an NS CPU executing an SG instruction
 | |
|              * in S&NSC memory. So we always just fail the translation
 | |
|              * here and sort things out in the exception handler
 | |
|              * (including possibly emulating an SG instruction).
 | |
|              */
 | |
|             if (sattrs.ns != !secure) {
 | |
|                 if (sattrs.nsc) {
 | |
|                     fi->type = ARMFault_QEMU_NSCExec;
 | |
|                 } else {
 | |
|                     fi->type = ARMFault_QEMU_SFault;
 | |
|                 }
 | |
|                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
 | |
|                 *phys_ptr = address;
 | |
|                 *prot = 0;
 | |
|                 return true;
 | |
|             }
 | |
|         } else {
 | |
|             /* For data accesses we always use the MMU bank indicated
 | |
|              * by the current CPU state, but the security attributes
 | |
|              * might downgrade a secure access to nonsecure.
 | |
|              */
 | |
|             if (sattrs.ns) {
 | |
|                 txattrs->secure = false;
 | |
|             } else if (!secure) {
 | |
|                 /* NS access to S memory must fault.
 | |
|                  * Architecturally we should first check whether the
 | |
|                  * MPU information for this address indicates that we
 | |
|                  * are doing an unaligned access to Device memory, which
 | |
|                  * should generate a UsageFault instead. QEMU does not
 | |
|                  * currently check for that kind of unaligned access though.
 | |
|                  * If we added it we would need to do so as a special case
 | |
|                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
 | |
|                  */
 | |
|                 fi->type = ARMFault_QEMU_SFault;
 | |
|                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
 | |
|                 *phys_ptr = address;
 | |
|                 *prot = 0;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
 | |
|                             txattrs, prot, &mpu_is_subpage, fi, NULL);
 | |
|     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
 | |
|                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                                  hwaddr *phys_ptr, int *prot,
 | |
|                                  ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     int n;
 | |
|     uint32_t mask;
 | |
|     uint32_t base;
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     if (regime_translation_disabled(env, mmu_idx)) {
 | |
|         /* MPU disabled.  */
 | |
|         *phys_ptr = address;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     for (n = 7; n >= 0; n--) {
 | |
|         base = env->cp15.c6_region[n];
 | |
|         if ((base & 1) == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         mask = 1 << ((base >> 1) & 0x1f);
 | |
|         /* Keep this shift separate from the above to avoid an
 | |
|            (undefined) << 32.  */
 | |
|         mask = (mask << 1) - 1;
 | |
|         if (((base ^ address) & ~mask) == 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (n < 0) {
 | |
|         fi->type = ARMFault_Background;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (access_type == MMU_INST_FETCH) {
 | |
|         mask = env->cp15.pmsav5_insn_ap;
 | |
|     } else {
 | |
|         mask = env->cp15.pmsav5_data_ap;
 | |
|     }
 | |
|     mask = (mask >> (n * 4)) & 0xf;
 | |
|     switch (mask) {
 | |
|     case 0:
 | |
|         fi->type = ARMFault_Permission;
 | |
|         fi->level = 1;
 | |
|         return true;
 | |
|     case 1:
 | |
|         if (is_user) {
 | |
|             fi->type = ARMFault_Permission;
 | |
|             fi->level = 1;
 | |
|             return true;
 | |
|         }
 | |
|         *prot = PAGE_READ | PAGE_WRITE;
 | |
|         break;
 | |
|     case 2:
 | |
|         *prot = PAGE_READ;
 | |
|         if (!is_user) {
 | |
|             *prot |= PAGE_WRITE;
 | |
|         }
 | |
|         break;
 | |
|     case 3:
 | |
|         *prot = PAGE_READ | PAGE_WRITE;
 | |
|         break;
 | |
|     case 5:
 | |
|         if (is_user) {
 | |
|             fi->type = ARMFault_Permission;
 | |
|             fi->level = 1;
 | |
|             return true;
 | |
|         }
 | |
|         *prot = PAGE_READ;
 | |
|         break;
 | |
|     case 6:
 | |
|         *prot = PAGE_READ;
 | |
|         break;
 | |
|     default:
 | |
|         /* Bad permission.  */
 | |
|         fi->type = ARMFault_Permission;
 | |
|         fi->level = 1;
 | |
|         return true;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Combine either inner or outer cacheability attributes for normal
 | |
|  * memory, according to table D4-42 and pseudocode procedure
 | |
|  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 | |
|  *
 | |
|  * NB: only stage 1 includes allocation hints (RW bits), leading to
 | |
|  * some asymmetry.
 | |
|  */
 | |
| static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
 | |
| {
 | |
|     if (s1 == 4 || s2 == 4) {
 | |
|         /* non-cacheable has precedence */
 | |
|         return 4;
 | |
|     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
 | |
|         /* stage 1 write-through takes precedence */
 | |
|         return s1;
 | |
|     } else if (extract32(s2, 2, 2) == 2) {
 | |
|         /* stage 2 write-through takes precedence, but the allocation hint
 | |
|          * is still taken from stage 1
 | |
|          */
 | |
|         return (2 << 2) | extract32(s1, 0, 2);
 | |
|     } else { /* write-back */
 | |
|         return s1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 | |
|  * and CombineS1S2Desc()
 | |
|  *
 | |
|  * @s1:      Attributes from stage 1 walk
 | |
|  * @s2:      Attributes from stage 2 walk
 | |
|  */
 | |
| static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
 | |
| {
 | |
|     uint8_t s1lo, s2lo, s1hi, s2hi;
 | |
|     ARMCacheAttrs ret;
 | |
|     bool tagged = false;
 | |
| 
 | |
|     if (s1.attrs == 0xf0) {
 | |
|         tagged = true;
 | |
|         s1.attrs = 0xff;
 | |
|     }
 | |
| 
 | |
|     s1lo = extract32(s1.attrs, 0, 4);
 | |
|     s2lo = extract32(s2.attrs, 0, 4);
 | |
|     s1hi = extract32(s1.attrs, 4, 4);
 | |
|     s2hi = extract32(s2.attrs, 4, 4);
 | |
| 
 | |
|     /* Combine shareability attributes (table D4-43) */
 | |
|     if (s1.shareability == 2 || s2.shareability == 2) {
 | |
|         /* if either are outer-shareable, the result is outer-shareable */
 | |
|         ret.shareability = 2;
 | |
|     } else if (s1.shareability == 3 || s2.shareability == 3) {
 | |
|         /* if either are inner-shareable, the result is inner-shareable */
 | |
|         ret.shareability = 3;
 | |
|     } else {
 | |
|         /* both non-shareable */
 | |
|         ret.shareability = 0;
 | |
|     }
 | |
| 
 | |
|     /* Combine memory type and cacheability attributes */
 | |
|     if (s1hi == 0 || s2hi == 0) {
 | |
|         /* Device has precedence over normal */
 | |
|         if (s1lo == 0 || s2lo == 0) {
 | |
|             /* nGnRnE has precedence over anything */
 | |
|             ret.attrs = 0;
 | |
|         } else if (s1lo == 4 || s2lo == 4) {
 | |
|             /* non-Reordering has precedence over Reordering */
 | |
|             ret.attrs = 4;  /* nGnRE */
 | |
|         } else if (s1lo == 8 || s2lo == 8) {
 | |
|             /* non-Gathering has precedence over Gathering */
 | |
|             ret.attrs = 8;  /* nGRE */
 | |
|         } else {
 | |
|             ret.attrs = 0xc; /* GRE */
 | |
|         }
 | |
| 
 | |
|         /* Any location for which the resultant memory type is any
 | |
|          * type of Device memory is always treated as Outer Shareable.
 | |
|          */
 | |
|         ret.shareability = 2;
 | |
|     } else { /* Normal memory */
 | |
|         /* Outer/inner cacheability combine independently */
 | |
|         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
 | |
|                   | combine_cacheattr_nibble(s1lo, s2lo);
 | |
| 
 | |
|         if (ret.attrs == 0x44) {
 | |
|             /* Any location for which the resultant memory type is Normal
 | |
|              * Inner Non-cacheable, Outer Non-cacheable is always treated
 | |
|              * as Outer Shareable.
 | |
|              */
 | |
|             ret.shareability = 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
 | |
|     if (tagged && ret.attrs == 0xff) {
 | |
|         ret.attrs = 0xf0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* get_phys_addr - get the physical address for this virtual address
 | |
|  *
 | |
|  * Find the physical address corresponding to the given virtual address,
 | |
|  * by doing a translation table walk on MMU based systems or using the
 | |
|  * MPU state on MPU based systems.
 | |
|  *
 | |
|  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 | |
|  * prot and page_size may not be filled in, and the populated fsr value provides
 | |
|  * information on why the translation aborted, in the format of a
 | |
|  * DFSR/IFSR fault register, with the following caveats:
 | |
|  *  * we honour the short vs long DFSR format differences.
 | |
|  *  * the WnR bit is never set (the caller must do this).
 | |
|  *  * for PSMAv5 based systems we don't bother to return a full FSR format
 | |
|  *    value.
 | |
|  *
 | |
|  * @env: CPUARMState
 | |
|  * @address: virtual address to get physical address for
 | |
|  * @access_type: 0 for read, 1 for write, 2 for execute
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  * @phys_ptr: set to the physical address corresponding to the virtual address
 | |
|  * @attrs: set to the memory transaction attributes to use
 | |
|  * @prot: set to the permissions for the page containing phys_ptr
 | |
|  * @page_size: set to the size of the page containing phys_ptr
 | |
|  * @fi: set to fault info if the translation fails
 | |
|  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 | |
|  */
 | |
| bool get_phys_addr(CPUARMState *env, target_ulong address,
 | |
|                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | |
|                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | |
|                    target_ulong *page_size,
 | |
|                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_E10_0 ||
 | |
|         mmu_idx == ARMMMUIdx_E10_1 ||
 | |
|         mmu_idx == ARMMMUIdx_E10_1_PAN) {
 | |
|         /* Call ourselves recursively to do the stage 1 and then stage 2
 | |
|          * translations.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             hwaddr ipa;
 | |
|             int s2_prot;
 | |
|             int ret;
 | |
|             ARMCacheAttrs cacheattrs2 = {};
 | |
| 
 | |
|             ret = get_phys_addr(env, address, access_type,
 | |
|                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
 | |
|                                 prot, page_size, fi, cacheattrs);
 | |
| 
 | |
|             /* If S1 fails or S2 is disabled, return early.  */
 | |
|             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
 | |
|                 *phys_ptr = ipa;
 | |
|                 return ret;
 | |
|             }
 | |
| 
 | |
|             /* S1 is done. Now do S2 translation.  */
 | |
|             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
 | |
|                                      mmu_idx == ARMMMUIdx_E10_0,
 | |
|                                      phys_ptr, attrs, &s2_prot,
 | |
|                                      page_size, fi, &cacheattrs2);
 | |
|             fi->s2addr = ipa;
 | |
|             /* Combine the S1 and S2 perms.  */
 | |
|             *prot &= s2_prot;
 | |
| 
 | |
|             /* If S2 fails, return early.  */
 | |
|             if (ret) {
 | |
|                 return ret;
 | |
|             }
 | |
| 
 | |
|             /* Combine the S1 and S2 cache attributes. */
 | |
|             if (env->cp15.hcr_el2 & HCR_DC) {
 | |
|                 /*
 | |
|                  * HCR.DC forces the first stage attributes to
 | |
|                  *  Normal Non-Shareable,
 | |
|                  *  Inner Write-Back Read-Allocate Write-Allocate,
 | |
|                  *  Outer Write-Back Read-Allocate Write-Allocate.
 | |
|                  * Do not overwrite Tagged within attrs.
 | |
|                  */
 | |
|                 if (cacheattrs->attrs != 0xf0) {
 | |
|                     cacheattrs->attrs = 0xff;
 | |
|                 }
 | |
|                 cacheattrs->shareability = 0;
 | |
|             }
 | |
|             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
 | |
|             return 0;
 | |
|         } else {
 | |
|             /*
 | |
|              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
 | |
|              */
 | |
|             mmu_idx = stage_1_mmu_idx(mmu_idx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The page table entries may downgrade secure to non-secure, but
 | |
|      * cannot upgrade an non-secure translation regime's attributes
 | |
|      * to secure.
 | |
|      */
 | |
|     attrs->secure = regime_is_secure(env, mmu_idx);
 | |
|     attrs->user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     /* Fast Context Switch Extension. This doesn't exist at all in v8.
 | |
|      * In v7 and earlier it affects all stage 1 translations.
 | |
|      */
 | |
|     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
 | |
|         && !arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         if (regime_el(env, mmu_idx) == 3) {
 | |
|             address += env->cp15.fcseidr_s;
 | |
|         } else {
 | |
|             address += env->cp15.fcseidr_ns;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_PMSA)) {
 | |
|         bool ret;
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             /* PMSAv8 */
 | |
|             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
 | |
|                                        phys_ptr, attrs, prot, page_size, fi);
 | |
|         } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|             /* PMSAv7 */
 | |
|             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
 | |
|                                        phys_ptr, prot, page_size, fi);
 | |
|         } else {
 | |
|             /* Pre-v7 MPU */
 | |
|             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
 | |
|                                        phys_ptr, prot, fi);
 | |
|         }
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
 | |
|                       " mmu_idx %u -> %s (prot %c%c%c)\n",
 | |
|                       access_type == MMU_DATA_LOAD ? "reading" :
 | |
|                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
 | |
|                       (uint32_t)address, mmu_idx,
 | |
|                       ret ? "Miss" : "Hit",
 | |
|                       *prot & PAGE_READ ? 'r' : '-',
 | |
|                       *prot & PAGE_WRITE ? 'w' : '-',
 | |
|                       *prot & PAGE_EXEC ? 'x' : '-');
 | |
| 
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Definitely a real MMU, not an MPU */
 | |
| 
 | |
|     if (regime_translation_disabled(env, mmu_idx)) {
 | |
|         uint64_t hcr;
 | |
|         uint8_t memattr;
 | |
| 
 | |
|         /*
 | |
|          * MMU disabled.  S1 addresses within aa64 translation regimes are
 | |
|          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
 | |
|          */
 | |
|         if (mmu_idx != ARMMMUIdx_Stage2) {
 | |
|             int r_el = regime_el(env, mmu_idx);
 | |
|             if (arm_el_is_aa64(env, r_el)) {
 | |
|                 int pamax = arm_pamax(env_archcpu(env));
 | |
|                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
 | |
|                 int addrtop, tbi;
 | |
| 
 | |
|                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
 | |
|                 if (access_type == MMU_INST_FETCH) {
 | |
|                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
 | |
|                 }
 | |
|                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
 | |
|                 addrtop = (tbi ? 55 : 63);
 | |
| 
 | |
|                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
 | |
|                     fi->type = ARMFault_AddressSize;
 | |
|                     fi->level = 0;
 | |
|                     fi->stage2 = false;
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 /*
 | |
|                  * When TBI is disabled, we've just validated that all of the
 | |
|                  * bits above PAMax are zero, so logically we only need to
 | |
|                  * clear the top byte for TBI.  But it's clearer to follow
 | |
|                  * the pseudocode set of addrdesc.paddress.
 | |
|                  */
 | |
|                 address = extract64(address, 0, 52);
 | |
|             }
 | |
|         }
 | |
|         *phys_ptr = address;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
| 
 | |
|         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
 | |
|         hcr = arm_hcr_el2_eff(env);
 | |
|         cacheattrs->shareability = 0;
 | |
|         if (hcr & HCR_DC) {
 | |
|             if (hcr & HCR_DCT) {
 | |
|                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
 | |
|             } else {
 | |
|                 memattr = 0xff;  /* Normal, WB, RWA */
 | |
|             }
 | |
|         } else if (access_type == MMU_INST_FETCH) {
 | |
|             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
 | |
|                 memattr = 0xee;  /* Normal, WT, RA, NT */
 | |
|             } else {
 | |
|                 memattr = 0x44;  /* Normal, NC, No */
 | |
|             }
 | |
|             cacheattrs->shareability = 2; /* outer sharable */
 | |
|         } else {
 | |
|             memattr = 0x00;      /* Device, nGnRnE */
 | |
|         }
 | |
|         cacheattrs->attrs = memattr;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (regime_using_lpae_format(env, mmu_idx)) {
 | |
|         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
 | |
|                                   phys_ptr, attrs, prot, page_size,
 | |
|                                   fi, cacheattrs);
 | |
|     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
 | |
|         return get_phys_addr_v6(env, address, access_type, mmu_idx,
 | |
|                                 phys_ptr, attrs, prot, page_size, fi);
 | |
|     } else {
 | |
|         return get_phys_addr_v5(env, address, access_type, mmu_idx,
 | |
|                                     phys_ptr, prot, page_size, fi);
 | |
|     }
 | |
| }
 | |
| 
 | |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
 | |
|                                          MemTxAttrs *attrs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     bool ret;
 | |
|     ARMMMUFaultInfo fi = {};
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
 | |
|     ARMCacheAttrs cacheattrs = {};
 | |
| 
 | |
|     *attrs = (MemTxAttrs) {};
 | |
| 
 | |
|     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
 | |
|                         attrs, &prot, &page_size, &fi, &cacheattrs);
 | |
| 
 | |
|     if (ret) {
 | |
|         return -1;
 | |
|     }
 | |
|     return phys_addr;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Note that signed overflow is undefined in C.  The following routines are
 | |
|    careful to use unsigned types where modulo arithmetic is required.
 | |
|    Failure to do so _will_ break on newer gcc.  */
 | |
| 
 | |
| /* Signed saturating arithmetic.  */
 | |
| 
 | |
| /* Perform 16-bit signed saturating addition.  */
 | |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating addition.  */
 | |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 16-bit signed saturating subtraction.  */
 | |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating subtraction.  */
 | |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
 | |
| #define PFX q
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned saturating arithmetic.  */
 | |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xffff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
 | |
| #define PFX uq
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Signed modulo arithmetic.  */
 | |
| #define SARITH16(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SARITH8(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| 
 | |
| #define ADD16(a, b, n) SARITH16(a, b, n, +)
 | |
| #define SUB16(a, b, n) SARITH16(a, b, n, -)
 | |
| #define ADD8(a, b, n)  SARITH8(a, b, n, +)
 | |
| #define SUB8(a, b, n)  SARITH8(a, b, n, -)
 | |
| #define PFX s
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned modulo arithmetic.  */
 | |
| #define ADD16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 1) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define ADD8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 1) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define PFX u
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved signed arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define PFX sh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved unsigned arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define PFX uh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| static inline uint8_t do_usad(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return b - a;
 | |
| }
 | |
| 
 | |
| /* Unsigned sum of absolute byte differences.  */
 | |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t sum;
 | |
|     sum = do_usad(a, b);
 | |
|     sum += do_usad(a >> 8, b >> 8);
 | |
|     sum += do_usad(a >> 16, b >>16);
 | |
|     sum += do_usad(a >> 24, b >> 24);
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /* For ARMv6 SEL instruction.  */
 | |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     if (flags & 1)
 | |
|         mask |= 0xff;
 | |
|     if (flags & 2)
 | |
|         mask |= 0xff00;
 | |
|     if (flags & 4)
 | |
|         mask |= 0xff0000;
 | |
|     if (flags & 8)
 | |
|         mask |= 0xff000000;
 | |
|     return (a & mask) | (b & ~mask);
 | |
| }
 | |
| 
 | |
| /* CRC helpers.
 | |
|  * The upper bytes of val (above the number specified by 'bytes') must have
 | |
|  * been zeroed out by the caller.
 | |
|  */
 | |
| uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[4];
 | |
| 
 | |
|     stl_le_p(buf, val);
 | |
| 
 | |
|     /* zlib crc32 converts the accumulator and output to one's complement.  */
 | |
|     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[4];
 | |
| 
 | |
|     stl_le_p(buf, val);
 | |
| 
 | |
|     /* Linux crc32c converts the output to one's complement.  */
 | |
|     return crc32c(acc, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| /* Return the exception level to which FP-disabled exceptions should
 | |
|  * be taken, or 0 if FP is enabled.
 | |
|  */
 | |
| int fp_exception_el(CPUARMState *env, int cur_el)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* CPACR and the CPTR registers don't exist before v6, so FP is
 | |
|      * always accessible
 | |
|      */
 | |
|     if (!arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /* CPACR can cause a NOCP UsageFault taken to current security state */
 | |
|         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
 | |
|             if (!extract32(env->v7m.nsacr, 10, 1)) {
 | |
|                 /* FP insns cause a NOCP UsageFault taken to Secure */
 | |
|                 return 3;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
 | |
|      * 0, 2 : trap EL0 and EL1/PL1 accesses
 | |
|      * 1    : trap only EL0 accesses
 | |
|      * 3    : trap no accesses
 | |
|      * This register is ignored if E2H+TGE are both set.
 | |
|      */
 | |
|     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 | |
|         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
 | |
| 
 | |
|         switch (fpen) {
 | |
|         case 0:
 | |
|         case 2:
 | |
|             if (cur_el == 0 || cur_el == 1) {
 | |
|                 /* Trap to PL1, which might be EL1 or EL3 */
 | |
|                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | |
|                     return 3;
 | |
|                 }
 | |
|                 return 1;
 | |
|             }
 | |
|             if (cur_el == 3 && !is_a64(env)) {
 | |
|                 /* Secure PL1 running at EL3 */
 | |
|                 return 3;
 | |
|             }
 | |
|             break;
 | |
|         case 1:
 | |
|             if (cur_el == 0) {
 | |
|                 return 1;
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
 | |
|      * to control non-secure access to the FPU. It doesn't have any
 | |
|      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
 | |
|      */
 | |
|     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
 | |
|          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
 | |
|         if (!extract32(env->cp15.nsacr, 10, 1)) {
 | |
|             /* FP insns act as UNDEF */
 | |
|             return cur_el == 2 ? 2 : 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
 | |
|      * check because zero bits in the registers mean "don't trap".
 | |
|      */
 | |
| 
 | |
|     /* CPTR_EL2 : present in v7VE or v8 */
 | |
|     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
 | |
|         return 2;
 | |
|     }
 | |
| 
 | |
|     /* CPTR_EL3 : present in v8 */
 | |
|     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
 | |
|         /* Trap all FP ops to EL3 */
 | |
|         return 3;
 | |
|     }
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Return the exception level we're running at if this is our mmu_idx */
 | |
| int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (mmu_idx & ARM_MMU_IDX_M) {
 | |
|         return mmu_idx & ARM_MMU_IDX_M_PRIV;
 | |
|     }
 | |
| 
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_E10_0:
 | |
|     case ARMMMUIdx_E20_0:
 | |
|     case ARMMMUIdx_SE10_0:
 | |
|         return 0;
 | |
|     case ARMMMUIdx_E10_1:
 | |
|     case ARMMMUIdx_E10_1_PAN:
 | |
|     case ARMMMUIdx_SE10_1:
 | |
|     case ARMMMUIdx_SE10_1_PAN:
 | |
|         return 1;
 | |
|     case ARMMMUIdx_E2:
 | |
|     case ARMMMUIdx_E20_2:
 | |
|     case ARMMMUIdx_E20_2_PAN:
 | |
|         return 2;
 | |
|     case ARMMMUIdx_SE3:
 | |
|         return 3;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_TCG
 | |
| ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
 | |
|     }
 | |
| 
 | |
|     /* See ARM pseudo-function ELIsInHost.  */
 | |
|     switch (el) {
 | |
|     case 0:
 | |
|         if (arm_is_secure_below_el3(env)) {
 | |
|             return ARMMMUIdx_SE10_0;
 | |
|         }
 | |
|         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
 | |
|             && arm_el_is_aa64(env, 2)) {
 | |
|             return ARMMMUIdx_E20_0;
 | |
|         }
 | |
|         return ARMMMUIdx_E10_0;
 | |
|     case 1:
 | |
|         if (arm_is_secure_below_el3(env)) {
 | |
|             if (env->pstate & PSTATE_PAN) {
 | |
|                 return ARMMMUIdx_SE10_1_PAN;
 | |
|             }
 | |
|             return ARMMMUIdx_SE10_1;
 | |
|         }
 | |
|         if (env->pstate & PSTATE_PAN) {
 | |
|             return ARMMMUIdx_E10_1_PAN;
 | |
|         }
 | |
|         return ARMMMUIdx_E10_1;
 | |
|     case 2:
 | |
|         /* TODO: ARMv8.4-SecEL2 */
 | |
|         /* Note that TGE does not apply at EL2.  */
 | |
|         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
 | |
|             if (env->pstate & PSTATE_PAN) {
 | |
|                 return ARMMMUIdx_E20_2_PAN;
 | |
|             }
 | |
|             return ARMMMUIdx_E20_2;
 | |
|         }
 | |
|         return ARMMMUIdx_E2;
 | |
|     case 3:
 | |
|         return ARMMMUIdx_SE3;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| ARMMMUIdx arm_mmu_idx(CPUARMState *env)
 | |
| {
 | |
|     return arm_mmu_idx_el(env, arm_current_el(env));
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 | |
| {
 | |
|     return stage_1_mmu_idx(arm_mmu_idx(env));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
 | |
|                                       ARMMMUIdx mmu_idx, uint32_t flags)
 | |
| {
 | |
|     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
 | |
|     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
 | |
|                        arm_to_core_mmu_idx(mmu_idx));
 | |
| 
 | |
|     if (arm_singlestep_active(env)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
 | |
|     }
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
 | |
|                                          ARMMMUIdx mmu_idx, uint32_t flags)
 | |
| {
 | |
|     bool sctlr_b = arm_sctlr_b(env);
 | |
| 
 | |
|     if (sctlr_b) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
 | |
|     }
 | |
|     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
 | |
|     }
 | |
|     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
 | |
| 
 | |
|     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
 | |
|                                    ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     uint32_t flags = 0;
 | |
| 
 | |
|     if (arm_v7m_is_handler_mode(env)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
 | |
|      * is suppressing them because the requested execution priority
 | |
|      * is less than 0.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8) &&
 | |
|         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
 | |
|           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
 | |
|     }
 | |
| 
 | |
|     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
 | |
| {
 | |
|     int flags = 0;
 | |
| 
 | |
|     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
 | |
|                        arm_debug_target_el(env));
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
 | |
|                                    ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     uint32_t flags = rebuild_hflags_aprofile(env);
 | |
| 
 | |
|     if (arm_el_is_aa64(env, 1)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
 | |
|     }
 | |
| 
 | |
|     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
 | |
|         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
 | |
|     }
 | |
| 
 | |
|     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
 | |
|                                    ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     uint32_t flags = rebuild_hflags_aprofile(env);
 | |
|     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
 | |
|     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
 | |
|     uint64_t sctlr;
 | |
|     int tbii, tbid;
 | |
| 
 | |
|     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
 | |
| 
 | |
|     /* Get control bits for tagged addresses.  */
 | |
|     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
 | |
|     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
 | |
| 
 | |
|     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
 | |
|     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
 | |
|         int sve_el = sve_exception_el(env, el);
 | |
|         uint32_t zcr_len;
 | |
| 
 | |
|         /*
 | |
|          * If SVE is disabled, but FP is enabled,
 | |
|          * then the effective len is 0.
 | |
|          */
 | |
|         if (sve_el != 0 && fp_el == 0) {
 | |
|             zcr_len = 0;
 | |
|         } else {
 | |
|             zcr_len = sve_zcr_len_for_el(env, el);
 | |
|         }
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
 | |
|     }
 | |
| 
 | |
|     sctlr = regime_sctlr(env, stage1);
 | |
| 
 | |
|     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
 | |
|         /*
 | |
|          * In order to save space in flags, we record only whether
 | |
|          * pauth is "inactive", meaning all insns are implemented as
 | |
|          * a nop, or "active" when some action must be performed.
 | |
|          * The decision of which action to take is left to a helper.
 | |
|          */
 | |
|         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
 | |
|         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
 | |
|         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
 | |
|     if (!(env->pstate & PSTATE_UAO)) {
 | |
|         switch (mmu_idx) {
 | |
|         case ARMMMUIdx_E10_1:
 | |
|         case ARMMMUIdx_E10_1_PAN:
 | |
|         case ARMMMUIdx_SE10_1:
 | |
|         case ARMMMUIdx_SE10_1_PAN:
 | |
|             /* TODO: ARMv8.3-NV */
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
 | |
|             break;
 | |
|         case ARMMMUIdx_E20_2:
 | |
|         case ARMMMUIdx_E20_2_PAN:
 | |
|             /* TODO: ARMv8.4-SecEL2 */
 | |
|             /*
 | |
|              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
 | |
|              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
 | |
|              */
 | |
|             if (env->cp15.hcr_el2 & HCR_TGE) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
 | |
|         /*
 | |
|          * Set MTE_ACTIVE if any access may be Checked, and leave clear
 | |
|          * if all accesses must be Unchecked:
 | |
|          * 1) If no TBI, then there are no tags in the address to check,
 | |
|          * 2) If Tag Check Override, then all accesses are Unchecked,
 | |
|          * 3) If Tag Check Fail == 0, then Checked access have no effect,
 | |
|          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
 | |
|          */
 | |
|         if (allocation_tag_access_enabled(env, el, sctlr)) {
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
 | |
|             if (tbid
 | |
|                 && !(env->pstate & PSTATE_TCO)
 | |
|                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
 | |
|             }
 | |
|         }
 | |
|         /* And again for unprivileged accesses, if required.  */
 | |
|         if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
 | |
|             && tbid
 | |
|             && !(env->pstate & PSTATE_TCO)
 | |
|             && (sctlr & SCTLR_TCF0)
 | |
|             && allocation_tag_access_enabled(env, 0, sctlr)) {
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
 | |
|         }
 | |
|         /* Cache TCMA as well as TBI. */
 | |
|         flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
 | |
|                            aa64_va_parameter_tcma(tcr, mmu_idx));
 | |
|     }
 | |
| 
 | |
|     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
 | |
| }
 | |
| 
 | |
| static uint32_t rebuild_hflags_internal(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return rebuild_hflags_m32(env, fp_el, mmu_idx);
 | |
|     } else {
 | |
|         return rebuild_hflags_a32(env, fp_el, mmu_idx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void arm_rebuild_hflags(CPUARMState *env)
 | |
| {
 | |
|     env->hflags = rebuild_hflags_internal(env);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we have triggered a EL state change we can't rely on the
 | |
|  * translator having passed it to us, we need to recompute.
 | |
|  */
 | |
| void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
|     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
 | |
| }
 | |
| 
 | |
| void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
 | |
| {
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
| 
 | |
|     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we have triggered a EL state change we can't rely on the
 | |
|  * translator having passed it to us, we need to recompute.
 | |
|  */
 | |
| void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
|     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
 | |
| }
 | |
| 
 | |
| void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
 | |
| {
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
| 
 | |
|     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
 | |
| }
 | |
| 
 | |
| void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
 | |
| {
 | |
|     int fp_el = fp_exception_el(env, el);
 | |
|     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
 | |
| 
 | |
|     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
 | |
| }
 | |
| 
 | |
| static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_TCG
 | |
|     uint32_t env_flags_current = env->hflags;
 | |
|     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
 | |
| 
 | |
|     if (unlikely(env_flags_current != env_flags_rebuilt)) {
 | |
|         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
 | |
|                 env_flags_current, env_flags_rebuilt);
 | |
|         abort();
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
 | |
|                           target_ulong *cs_base, uint32_t *pflags)
 | |
| {
 | |
|     uint32_t flags = env->hflags;
 | |
|     uint32_t pstate_for_ss;
 | |
| 
 | |
|     *cs_base = 0;
 | |
|     assert_hflags_rebuild_correctly(env);
 | |
| 
 | |
|     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
 | |
|         *pc = env->pc;
 | |
|         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
 | |
|             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
 | |
|         }
 | |
|         pstate_for_ss = env->pstate;
 | |
|     } else {
 | |
|         *pc = env->regs[15];
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
 | |
|                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
 | |
|                 != env->v7m.secure) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
 | |
|             }
 | |
| 
 | |
|             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
 | |
|                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
 | |
|                  (env->v7m.secure &&
 | |
|                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
 | |
|                 /*
 | |
|                  * ASPEN is set, but FPCA/SFPA indicate that there is no
 | |
|                  * active FP context; we must create a new FP context before
 | |
|                  * executing any FP insn.
 | |
|                  */
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
 | |
|             }
 | |
| 
 | |
|             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
 | |
|             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
 | |
|              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
 | |
|              */
 | |
|             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A32,
 | |
|                                    XSCALE_CPAR, env->cp15.c15_cpar);
 | |
|             } else {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
 | |
|                                    env->vfp.vec_len);
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
 | |
|                                    env->vfp.vec_stride);
 | |
|             }
 | |
|             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
 | |
|                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
 | |
|         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
 | |
|         pstate_for_ss = env->uncached_cpsr;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
 | |
|      * states defined in the ARM ARM for software singlestep:
 | |
|      *  SS_ACTIVE   PSTATE.SS   State
 | |
|      *     0            x       Inactive (the TB flag for SS is always 0)
 | |
|      *     1            0       Active-pending
 | |
|      *     1            1       Active-not-pending
 | |
|      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
 | |
|      */
 | |
|     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
 | |
|         (pstate_for_ss & PSTATE_SS)) {
 | |
|         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
 | |
|     }
 | |
| 
 | |
|     *pflags = flags;
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| /*
 | |
|  * The manual says that when SVE is enabled and VQ is widened the
 | |
|  * implementation is allowed to zero the previously inaccessible
 | |
|  * portion of the registers.  The corollary to that is that when
 | |
|  * SVE is enabled and VQ is narrowed we are also allowed to zero
 | |
|  * the now inaccessible portion of the registers.
 | |
|  *
 | |
|  * The intent of this is that no predicate bit beyond VQ is ever set.
 | |
|  * Which means that some operations on predicate registers themselves
 | |
|  * may operate on full uint64_t or even unrolled across the maximum
 | |
|  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
 | |
|  * may well be cheaper than conditionals to restrict the operation
 | |
|  * to the relevant portion of a uint16_t[16].
 | |
|  */
 | |
| void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
 | |
| {
 | |
|     int i, j;
 | |
|     uint64_t pmask;
 | |
| 
 | |
|     assert(vq >= 1 && vq <= ARM_MAX_VQ);
 | |
|     assert(vq <= env_archcpu(env)->sve_max_vq);
 | |
| 
 | |
|     /* Zap the high bits of the zregs.  */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
 | |
|     }
 | |
| 
 | |
|     /* Zap the high bits of the pregs and ffr.  */
 | |
|     pmask = 0;
 | |
|     if (vq & 3) {
 | |
|         pmask = ~(-1ULL << (16 * (vq & 3)));
 | |
|     }
 | |
|     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
 | |
|         for (i = 0; i < 17; ++i) {
 | |
|             env->vfp.pregs[i].p[j] &= pmask;
 | |
|         }
 | |
|         pmask = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Notice a change in SVE vector size when changing EL.
 | |
|  */
 | |
| void aarch64_sve_change_el(CPUARMState *env, int old_el,
 | |
|                            int new_el, bool el0_a64)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int old_len, new_len;
 | |
|     bool old_a64, new_a64;
 | |
| 
 | |
|     /* Nothing to do if no SVE.  */
 | |
|     if (!cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Nothing to do if FP is disabled in either EL.  */
 | |
|     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
 | |
|      * at ELx, or not available because the EL is in AArch32 state, then
 | |
|      * for all purposes other than a direct read, the ZCR_ELx.LEN field
 | |
|      * has an effective value of 0".
 | |
|      *
 | |
|      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
 | |
|      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
 | |
|      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
 | |
|      * we already have the correct register contents when encountering the
 | |
|      * vq0->vq0 transition between EL0->EL1.
 | |
|      */
 | |
|     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
 | |
|     old_len = (old_a64 && !sve_exception_el(env, old_el)
 | |
|                ? sve_zcr_len_for_el(env, old_el) : 0);
 | |
|     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
 | |
|     new_len = (new_a64 && !sve_exception_el(env, new_el)
 | |
|                ? sve_zcr_len_for_el(env, new_el) : 0);
 | |
| 
 | |
|     /* When changing vector length, clear inaccessible state.  */
 | |
|     if (new_len < old_len) {
 | |
|         aarch64_sve_narrow_vq(env, new_len + 1);
 | |
|     }
 | |
| }
 | |
| #endif
 |