mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 6f4e1405b9
			
		
	
	
		6f4e1405b9
		
	
	
	
	
		
			
			Control this cpu feature via a machine property, much as we do with secure=on, since both require specialized support in the machine setup to be functional. Default MTE to off, since this feature implies extra overhead. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20200713213341.590275-2-richard.henderson@linaro.org Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			847 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			847 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU AArch64 CPU
 | |
|  *
 | |
|  * Copyright (c) 2013 Linaro Ltd
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see
 | |
|  * <http://www.gnu.org/licenses/gpl-2.0.html>
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "cpu.h"
 | |
| #include "qemu/module.h"
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #include "hw/loader.h"
 | |
| #endif
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "qapi/visitor.h"
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
| 
 | |
|     /* Number of cores is in [25:24]; otherwise we RAZ */
 | |
|     return (cpu->core_count - 1) << 24;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
 | |
|       .writefn = arm_cp_write_ignore },
 | |
|     { .name = "L2CTLR",
 | |
|       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
 | |
|       .writefn = arm_cp_write_ignore },
 | |
| #endif
 | |
|     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "L2ECTLR",
 | |
|       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CPUACTLR",
 | |
|       .cp = 15, .opc1 = 0, .crm = 15,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CPUECTLR",
 | |
|       .cp = 15, .opc1 = 1, .crm = 15,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CPUMERRSR",
 | |
|       .cp = 15, .opc1 = 2, .crm = 15,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "L2MERRSR",
 | |
|       .cp = 15, .opc1 = 3, .crm = 15,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void aarch64_a57_initfn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     cpu->dtb_compatible = "arm,cortex-a57";
 | |
|     set_feature(&cpu->env, ARM_FEATURE_V8);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_NEON);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL2);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL3);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_PMU);
 | |
|     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
 | |
|     cpu->midr = 0x411fd070;
 | |
|     cpu->revidr = 0x00000000;
 | |
|     cpu->reset_fpsid = 0x41034070;
 | |
|     cpu->isar.mvfr0 = 0x10110222;
 | |
|     cpu->isar.mvfr1 = 0x12111111;
 | |
|     cpu->isar.mvfr2 = 0x00000043;
 | |
|     cpu->ctr = 0x8444c004;
 | |
|     cpu->reset_sctlr = 0x00c50838;
 | |
|     cpu->id_pfr0 = 0x00000131;
 | |
|     cpu->id_pfr1 = 0x00011011;
 | |
|     cpu->isar.id_dfr0 = 0x03010066;
 | |
|     cpu->id_afr0 = 0x00000000;
 | |
|     cpu->isar.id_mmfr0 = 0x10101105;
 | |
|     cpu->isar.id_mmfr1 = 0x40000000;
 | |
|     cpu->isar.id_mmfr2 = 0x01260000;
 | |
|     cpu->isar.id_mmfr3 = 0x02102211;
 | |
|     cpu->isar.id_isar0 = 0x02101110;
 | |
|     cpu->isar.id_isar1 = 0x13112111;
 | |
|     cpu->isar.id_isar2 = 0x21232042;
 | |
|     cpu->isar.id_isar3 = 0x01112131;
 | |
|     cpu->isar.id_isar4 = 0x00011142;
 | |
|     cpu->isar.id_isar5 = 0x00011121;
 | |
|     cpu->isar.id_isar6 = 0;
 | |
|     cpu->isar.id_aa64pfr0 = 0x00002222;
 | |
|     cpu->isar.id_aa64dfr0 = 0x10305106;
 | |
|     cpu->isar.id_aa64isar0 = 0x00011120;
 | |
|     cpu->isar.id_aa64mmfr0 = 0x00001124;
 | |
|     cpu->isar.dbgdidr = 0x3516d000;
 | |
|     cpu->clidr = 0x0a200023;
 | |
|     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
 | |
|     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
 | |
|     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
 | |
|     cpu->dcz_blocksize = 4; /* 64 bytes */
 | |
|     cpu->gic_num_lrs = 4;
 | |
|     cpu->gic_vpribits = 5;
 | |
|     cpu->gic_vprebits = 5;
 | |
|     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
 | |
| }
 | |
| 
 | |
| static void aarch64_a53_initfn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     cpu->dtb_compatible = "arm,cortex-a53";
 | |
|     set_feature(&cpu->env, ARM_FEATURE_V8);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_NEON);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL2);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL3);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_PMU);
 | |
|     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
 | |
|     cpu->midr = 0x410fd034;
 | |
|     cpu->revidr = 0x00000000;
 | |
|     cpu->reset_fpsid = 0x41034070;
 | |
|     cpu->isar.mvfr0 = 0x10110222;
 | |
|     cpu->isar.mvfr1 = 0x12111111;
 | |
|     cpu->isar.mvfr2 = 0x00000043;
 | |
|     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
 | |
|     cpu->reset_sctlr = 0x00c50838;
 | |
|     cpu->id_pfr0 = 0x00000131;
 | |
|     cpu->id_pfr1 = 0x00011011;
 | |
|     cpu->isar.id_dfr0 = 0x03010066;
 | |
|     cpu->id_afr0 = 0x00000000;
 | |
|     cpu->isar.id_mmfr0 = 0x10101105;
 | |
|     cpu->isar.id_mmfr1 = 0x40000000;
 | |
|     cpu->isar.id_mmfr2 = 0x01260000;
 | |
|     cpu->isar.id_mmfr3 = 0x02102211;
 | |
|     cpu->isar.id_isar0 = 0x02101110;
 | |
|     cpu->isar.id_isar1 = 0x13112111;
 | |
|     cpu->isar.id_isar2 = 0x21232042;
 | |
|     cpu->isar.id_isar3 = 0x01112131;
 | |
|     cpu->isar.id_isar4 = 0x00011142;
 | |
|     cpu->isar.id_isar5 = 0x00011121;
 | |
|     cpu->isar.id_isar6 = 0;
 | |
|     cpu->isar.id_aa64pfr0 = 0x00002222;
 | |
|     cpu->isar.id_aa64dfr0 = 0x10305106;
 | |
|     cpu->isar.id_aa64isar0 = 0x00011120;
 | |
|     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
 | |
|     cpu->isar.dbgdidr = 0x3516d000;
 | |
|     cpu->clidr = 0x0a200023;
 | |
|     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
 | |
|     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
 | |
|     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
 | |
|     cpu->dcz_blocksize = 4; /* 64 bytes */
 | |
|     cpu->gic_num_lrs = 4;
 | |
|     cpu->gic_vpribits = 5;
 | |
|     cpu->gic_vprebits = 5;
 | |
|     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
 | |
| }
 | |
| 
 | |
| static void aarch64_a72_initfn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     cpu->dtb_compatible = "arm,cortex-a72";
 | |
|     set_feature(&cpu->env, ARM_FEATURE_V8);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_NEON);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL2);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_EL3);
 | |
|     set_feature(&cpu->env, ARM_FEATURE_PMU);
 | |
|     cpu->midr = 0x410fd083;
 | |
|     cpu->revidr = 0x00000000;
 | |
|     cpu->reset_fpsid = 0x41034080;
 | |
|     cpu->isar.mvfr0 = 0x10110222;
 | |
|     cpu->isar.mvfr1 = 0x12111111;
 | |
|     cpu->isar.mvfr2 = 0x00000043;
 | |
|     cpu->ctr = 0x8444c004;
 | |
|     cpu->reset_sctlr = 0x00c50838;
 | |
|     cpu->id_pfr0 = 0x00000131;
 | |
|     cpu->id_pfr1 = 0x00011011;
 | |
|     cpu->isar.id_dfr0 = 0x03010066;
 | |
|     cpu->id_afr0 = 0x00000000;
 | |
|     cpu->isar.id_mmfr0 = 0x10201105;
 | |
|     cpu->isar.id_mmfr1 = 0x40000000;
 | |
|     cpu->isar.id_mmfr2 = 0x01260000;
 | |
|     cpu->isar.id_mmfr3 = 0x02102211;
 | |
|     cpu->isar.id_isar0 = 0x02101110;
 | |
|     cpu->isar.id_isar1 = 0x13112111;
 | |
|     cpu->isar.id_isar2 = 0x21232042;
 | |
|     cpu->isar.id_isar3 = 0x01112131;
 | |
|     cpu->isar.id_isar4 = 0x00011142;
 | |
|     cpu->isar.id_isar5 = 0x00011121;
 | |
|     cpu->isar.id_aa64pfr0 = 0x00002222;
 | |
|     cpu->isar.id_aa64dfr0 = 0x10305106;
 | |
|     cpu->isar.id_aa64isar0 = 0x00011120;
 | |
|     cpu->isar.id_aa64mmfr0 = 0x00001124;
 | |
|     cpu->isar.dbgdidr = 0x3516d000;
 | |
|     cpu->clidr = 0x0a200023;
 | |
|     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
 | |
|     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
 | |
|     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
 | |
|     cpu->dcz_blocksize = 4; /* 64 bytes */
 | |
|     cpu->gic_num_lrs = 4;
 | |
|     cpu->gic_vpribits = 5;
 | |
|     cpu->gic_vprebits = 5;
 | |
|     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
 | |
| }
 | |
| 
 | |
| void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
 | |
| {
 | |
|     /*
 | |
|      * If any vector lengths are explicitly enabled with sve<N> properties,
 | |
|      * then all other lengths are implicitly disabled.  If sve-max-vq is
 | |
|      * specified then it is the same as explicitly enabling all lengths
 | |
|      * up to and including the specified maximum, which means all larger
 | |
|      * lengths will be implicitly disabled.  If no sve<N> properties
 | |
|      * are enabled and sve-max-vq is not specified, then all lengths not
 | |
|      * explicitly disabled will be enabled.  Additionally, all power-of-two
 | |
|      * vector lengths less than the maximum enabled length will be
 | |
|      * automatically enabled and all vector lengths larger than the largest
 | |
|      * disabled power-of-two vector length will be automatically disabled.
 | |
|      * Errors are generated if the user provided input that interferes with
 | |
|      * any of the above.  Finally, if SVE is not disabled, then at least one
 | |
|      * vector length must be enabled.
 | |
|      */
 | |
|     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
 | |
|     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
 | |
|     uint32_t vq, max_vq = 0;
 | |
| 
 | |
|     /* Collect the set of vector lengths supported by KVM. */
 | |
|     bitmap_zero(kvm_supported, ARM_MAX_VQ);
 | |
|     if (kvm_enabled() && kvm_arm_sve_supported()) {
 | |
|         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
 | |
|     } else if (kvm_enabled()) {
 | |
|         assert(!cpu_isar_feature(aa64_sve, cpu));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Process explicit sve<N> properties.
 | |
|      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
 | |
|      * Check first for any sve<N> enabled.
 | |
|      */
 | |
|     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
 | |
|         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
 | |
| 
 | |
|         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
 | |
|             error_setg(errp, "cannot enable sve%d", max_vq * 128);
 | |
|             error_append_hint(errp, "sve%d is larger than the maximum vector "
 | |
|                               "length, sve-max-vq=%d (%d bits)\n",
 | |
|                               max_vq * 128, cpu->sve_max_vq,
 | |
|                               cpu->sve_max_vq * 128);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (kvm_enabled()) {
 | |
|             /*
 | |
|              * For KVM we have to automatically enable all supported unitialized
 | |
|              * lengths, even when the smaller lengths are not all powers-of-two.
 | |
|              */
 | |
|             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
 | |
|             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
 | |
|         } else {
 | |
|             /* Propagate enabled bits down through required powers-of-two. */
 | |
|             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
 | |
|                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
 | |
|                     set_bit(vq - 1, cpu->sve_vq_map);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (cpu->sve_max_vq == 0) {
 | |
|         /*
 | |
|          * No explicit bits enabled, and no implicit bits from sve-max-vq.
 | |
|          */
 | |
|         if (!cpu_isar_feature(aa64_sve, cpu)) {
 | |
|             /* SVE is disabled and so are all vector lengths.  Good. */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (kvm_enabled()) {
 | |
|             /* Disabling a supported length disables all larger lengths. */
 | |
|             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
 | |
|                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
 | |
|                     test_bit(vq - 1, kvm_supported)) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
 | |
|             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
 | |
|                           cpu->sve_vq_init, max_vq);
 | |
|             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
 | |
|                 error_setg(errp, "cannot disable sve%d", vq * 128);
 | |
|                 error_append_hint(errp, "Disabling sve%d results in all "
 | |
|                                   "vector lengths being disabled.\n",
 | |
|                                   vq * 128);
 | |
|                 error_append_hint(errp, "With SVE enabled, at least one "
 | |
|                                   "vector length must be enabled.\n");
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             /* Disabling a power-of-two disables all larger lengths. */
 | |
|             if (test_bit(0, cpu->sve_vq_init)) {
 | |
|                 error_setg(errp, "cannot disable sve128");
 | |
|                 error_append_hint(errp, "Disabling sve128 results in all "
 | |
|                                   "vector lengths being disabled.\n");
 | |
|                 error_append_hint(errp, "With SVE enabled, at least one "
 | |
|                                   "vector length must be enabled.\n");
 | |
|                 return;
 | |
|             }
 | |
|             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
 | |
|                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
 | |
|             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
 | |
|         }
 | |
| 
 | |
|         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Process the sve-max-vq property.
 | |
|      * Note that we know from the above that no bit above
 | |
|      * sve-max-vq is currently set.
 | |
|      */
 | |
|     if (cpu->sve_max_vq != 0) {
 | |
|         max_vq = cpu->sve_max_vq;
 | |
| 
 | |
|         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
 | |
|             test_bit(max_vq - 1, cpu->sve_vq_init)) {
 | |
|             error_setg(errp, "cannot disable sve%d", max_vq * 128);
 | |
|             error_append_hint(errp, "The maximum vector length must be "
 | |
|                               "enabled, sve-max-vq=%d (%d bits)\n",
 | |
|                               max_vq, max_vq * 128);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /* Set all bits not explicitly set within sve-max-vq. */
 | |
|         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
 | |
|         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We should know what max-vq is now.  Also, as we're done
 | |
|      * manipulating sve-vq-map, we ensure any bits above max-vq
 | |
|      * are clear, just in case anybody looks.
 | |
|      */
 | |
|     assert(max_vq != 0);
 | |
|     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         /* Ensure the set of lengths matches what KVM supports. */
 | |
|         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
 | |
|         if (!bitmap_empty(tmp, max_vq)) {
 | |
|             vq = find_last_bit(tmp, max_vq) + 1;
 | |
|             if (test_bit(vq - 1, cpu->sve_vq_map)) {
 | |
|                 if (cpu->sve_max_vq) {
 | |
|                     error_setg(errp, "cannot set sve-max-vq=%d",
 | |
|                                cpu->sve_max_vq);
 | |
|                     error_append_hint(errp, "This KVM host does not support "
 | |
|                                       "the vector length %d-bits.\n",
 | |
|                                       vq * 128);
 | |
|                     error_append_hint(errp, "It may not be possible to use "
 | |
|                                       "sve-max-vq with this KVM host. Try "
 | |
|                                       "using only sve<N> properties.\n");
 | |
|                 } else {
 | |
|                     error_setg(errp, "cannot enable sve%d", vq * 128);
 | |
|                     error_append_hint(errp, "This KVM host does not support "
 | |
|                                       "the vector length %d-bits.\n",
 | |
|                                       vq * 128);
 | |
|                 }
 | |
|             } else {
 | |
|                 error_setg(errp, "cannot disable sve%d", vq * 128);
 | |
|                 error_append_hint(errp, "The KVM host requires all "
 | |
|                                   "supported vector lengths smaller "
 | |
|                                   "than %d bits to also be enabled.\n",
 | |
|                                   max_vq * 128);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     } else {
 | |
|         /* Ensure all required powers-of-two are enabled. */
 | |
|         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
 | |
|             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
 | |
|                 error_setg(errp, "cannot disable sve%d", vq * 128);
 | |
|                 error_append_hint(errp, "sve%d is required as it "
 | |
|                                   "is a power-of-two length smaller than "
 | |
|                                   "the maximum, sve%d\n",
 | |
|                                   vq * 128, max_vq * 128);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now that we validated all our vector lengths, the only question
 | |
|      * left to answer is if we even want SVE at all.
 | |
|      */
 | |
|     if (!cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         error_setg(errp, "cannot enable sve%d", max_vq * 128);
 | |
|         error_append_hint(errp, "SVE must be enabled to enable vector "
 | |
|                           "lengths.\n");
 | |
|         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* From now on sve_max_vq is the actual maximum supported length. */
 | |
|     cpu->sve_max_vq = max_vq;
 | |
| }
 | |
| 
 | |
| static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     uint32_t value;
 | |
| 
 | |
|     /* All vector lengths are disabled when SVE is off. */
 | |
|     if (!cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         value = 0;
 | |
|     } else {
 | |
|         value = cpu->sve_max_vq;
 | |
|     }
 | |
|     visit_type_uint32(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     uint32_t max_vq;
 | |
| 
 | |
|     if (!visit_type_uint32(v, name, &max_vq, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_arm_sve_supported()) {
 | |
|         error_setg(errp, "cannot set sve-max-vq");
 | |
|         error_append_hint(errp, "SVE not supported by KVM on this host\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
 | |
|         error_setg(errp, "unsupported SVE vector length");
 | |
|         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
 | |
|                           ARM_MAX_VQ);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu->sve_max_vq = max_vq;
 | |
| }
 | |
| 
 | |
| static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
 | |
|                                void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     uint32_t vq = atoi(&name[3]) / 128;
 | |
|     bool value;
 | |
| 
 | |
|     /* All vector lengths are disabled when SVE is off. */
 | |
|     if (!cpu_isar_feature(aa64_sve, cpu)) {
 | |
|         value = false;
 | |
|     } else {
 | |
|         value = test_bit(vq - 1, cpu->sve_vq_map);
 | |
|     }
 | |
|     visit_type_bool(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
 | |
|                                void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     uint32_t vq = atoi(&name[3]) / 128;
 | |
|     bool value;
 | |
| 
 | |
|     if (!visit_type_bool(v, name, &value, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
 | |
|         error_setg(errp, "cannot enable %s", name);
 | |
|         error_append_hint(errp, "SVE not supported by KVM on this host\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (value) {
 | |
|         set_bit(vq - 1, cpu->sve_vq_map);
 | |
|     } else {
 | |
|         clear_bit(vq - 1, cpu->sve_vq_map);
 | |
|     }
 | |
|     set_bit(vq - 1, cpu->sve_vq_init);
 | |
| }
 | |
| 
 | |
| static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
 | |
|                             void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     bool value = cpu_isar_feature(aa64_sve, cpu);
 | |
| 
 | |
|     visit_type_bool(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
 | |
|                             void *opaque, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     bool value;
 | |
|     uint64_t t;
 | |
| 
 | |
|     if (!visit_type_bool(v, name, &value, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
 | |
|         error_setg(errp, "'sve' feature not supported by KVM on this host");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     t = cpu->isar.id_aa64pfr0;
 | |
|     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
 | |
|     cpu->isar.id_aa64pfr0 = t;
 | |
| }
 | |
| 
 | |
| void aarch64_add_sve_properties(Object *obj)
 | |
| {
 | |
|     uint32_t vq;
 | |
| 
 | |
|     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
 | |
|                         cpu_arm_set_sve, NULL, NULL);
 | |
| 
 | |
|     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
 | |
|         char name[8];
 | |
|         sprintf(name, "sve%d", vq * 128);
 | |
|         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
 | |
|                             cpu_arm_set_sve_vq, NULL, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
 | |
|  * otherwise, a CPU with as many features enabled as our emulation supports.
 | |
|  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
 | |
|  * this only needs to handle 64 bits.
 | |
|  */
 | |
| static void aarch64_max_initfn(Object *obj)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         kvm_arm_set_cpu_features_from_host(cpu);
 | |
|     } else {
 | |
|         uint64_t t;
 | |
|         uint32_t u;
 | |
|         aarch64_a57_initfn(obj);
 | |
| 
 | |
|         /*
 | |
|          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
 | |
|          * one and try to apply errata workarounds or use impdef features we
 | |
|          * don't provide.
 | |
|          * An IMPLEMENTER field of 0 means "reserved for software use";
 | |
|          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
 | |
|          * to see which features are present";
 | |
|          * the VARIANT, PARTNUM and REVISION fields are all implementation
 | |
|          * defined and we choose to define PARTNUM just in case guest
 | |
|          * code needs to distinguish this QEMU CPU from other software
 | |
|          * implementations, though this shouldn't be needed.
 | |
|          */
 | |
|         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
 | |
|         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
 | |
|         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
 | |
|         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
 | |
|         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
 | |
|         cpu->midr = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar0;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
 | |
|         cpu->isar.id_aa64isar0 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64isar1;
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
 | |
|         cpu->isar.id_aa64isar1 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64pfr0;
 | |
|         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
 | |
|         cpu->isar.id_aa64pfr0 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64pfr1;
 | |
|         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
 | |
|         /*
 | |
|          * Begin with full support for MTE. This will be downgraded to MTE=0
 | |
|          * during realize if the board provides no tag memory, much like
 | |
|          * we do for EL2 with the virtualization=on property.
 | |
|          */
 | |
|         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
 | |
|         cpu->isar.id_aa64pfr1 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64mmfr1;
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
 | |
|         cpu->isar.id_aa64mmfr1 = t;
 | |
| 
 | |
|         t = cpu->isar.id_aa64mmfr2;
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
 | |
|         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
 | |
|         cpu->isar.id_aa64mmfr2 = t;
 | |
| 
 | |
|         /* Replicate the same data to the 32-bit id registers.  */
 | |
|         u = cpu->isar.id_isar5;
 | |
|         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
 | |
|         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
 | |
|         cpu->isar.id_isar5 = u;
 | |
| 
 | |
|         u = cpu->isar.id_isar6;
 | |
|         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
 | |
|         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
 | |
|         cpu->isar.id_isar6 = u;
 | |
| 
 | |
|         u = cpu->isar.id_mmfr3;
 | |
|         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
 | |
|         cpu->isar.id_mmfr3 = u;
 | |
| 
 | |
|         u = cpu->isar.id_mmfr4;
 | |
|         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
 | |
|         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
 | |
|         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
 | |
|         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
 | |
|         cpu->isar.id_mmfr4 = u;
 | |
| 
 | |
|         t = cpu->isar.id_aa64dfr0;
 | |
|         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
 | |
|         cpu->isar.id_aa64dfr0 = t;
 | |
| 
 | |
|         u = cpu->isar.id_dfr0;
 | |
|         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
 | |
|         cpu->isar.id_dfr0 = u;
 | |
| 
 | |
|         /*
 | |
|          * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
 | |
|          * so do not set MVFR1.FPHP.  Strictly speaking this is not legal,
 | |
|          * but it is also not legal to enable SVE without support for FP16,
 | |
|          * and enabling SVE in system mode is more useful in the short term.
 | |
|          */
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         /* For usermode -cpu max we can use a larger and more efficient DCZ
 | |
|          * blocksize since we don't have to follow what the hardware does.
 | |
|          */
 | |
|         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
 | |
|         cpu->dcz_blocksize = 7; /*  512 bytes */
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     aarch64_add_sve_properties(obj);
 | |
|     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
 | |
|                         cpu_max_set_sve_max_vq, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static const ARMCPUInfo aarch64_cpus[] = {
 | |
|     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
 | |
|     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
 | |
|     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
 | |
|     { .name = "max",                .initfn = aarch64_max_initfn },
 | |
| };
 | |
| 
 | |
| static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
| }
 | |
| 
 | |
| static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
| 
 | |
|     /* At this time, this property is only allowed if KVM is enabled.  This
 | |
|      * restriction allows us to avoid fixing up functionality that assumes a
 | |
|      * uniform execution state like do_interrupt.
 | |
|      */
 | |
|     if (value == false) {
 | |
|         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
 | |
|             error_setg(errp, "'aarch64' feature cannot be disabled "
 | |
|                              "unless KVM is enabled and 32-bit EL1 "
 | |
|                              "is supported");
 | |
|             return;
 | |
|         }
 | |
|         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
|     } else {
 | |
|         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aarch64_cpu_initfn(Object *obj)
 | |
| {
 | |
|     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
 | |
|                              aarch64_cpu_set_aarch64);
 | |
|     object_property_set_description(obj, "aarch64",
 | |
|                                     "Set on/off to enable/disable aarch64 "
 | |
|                                     "execution state ");
 | |
| }
 | |
| 
 | |
| static void aarch64_cpu_finalizefn(Object *obj)
 | |
| {
 | |
| }
 | |
| 
 | |
| static gchar *aarch64_gdb_arch_name(CPUState *cs)
 | |
| {
 | |
|     return g_strdup("aarch64");
 | |
| }
 | |
| 
 | |
| static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     CPUClass *cc = CPU_CLASS(oc);
 | |
| 
 | |
|     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
 | |
|     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
 | |
|     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
 | |
|     cc->gdb_num_core_regs = 34;
 | |
|     cc->gdb_core_xml_file = "aarch64-core.xml";
 | |
|     cc->gdb_arch_name = aarch64_gdb_arch_name;
 | |
| }
 | |
| 
 | |
| static void aarch64_cpu_instance_init(Object *obj)
 | |
| {
 | |
|     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
 | |
| 
 | |
|     acc->info->initfn(obj);
 | |
|     arm_cpu_post_init(obj);
 | |
| }
 | |
| 
 | |
| static void cpu_register_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
 | |
| 
 | |
|     acc->info = data;
 | |
| }
 | |
| 
 | |
| void aarch64_cpu_register(const ARMCPUInfo *info)
 | |
| {
 | |
|     TypeInfo type_info = {
 | |
|         .parent = TYPE_AARCH64_CPU,
 | |
|         .instance_size = sizeof(ARMCPU),
 | |
|         .instance_init = aarch64_cpu_instance_init,
 | |
|         .class_size = sizeof(ARMCPUClass),
 | |
|         .class_init = info->class_init ?: cpu_register_class_init,
 | |
|         .class_data = (void *)info,
 | |
|     };
 | |
| 
 | |
|     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
 | |
|     type_register(&type_info);
 | |
|     g_free((void *)type_info.name);
 | |
| }
 | |
| 
 | |
| static const TypeInfo aarch64_cpu_type_info = {
 | |
|     .name = TYPE_AARCH64_CPU,
 | |
|     .parent = TYPE_ARM_CPU,
 | |
|     .instance_size = sizeof(ARMCPU),
 | |
|     .instance_init = aarch64_cpu_initfn,
 | |
|     .instance_finalize = aarch64_cpu_finalizefn,
 | |
|     .abstract = true,
 | |
|     .class_size = sizeof(AArch64CPUClass),
 | |
|     .class_init = aarch64_cpu_class_init,
 | |
| };
 | |
| 
 | |
| static void aarch64_cpu_register_types(void)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     type_register_static(&aarch64_cpu_type_info);
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
 | |
|         aarch64_cpu_register(&aarch64_cpus[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| type_init(aarch64_cpu_register_types)
 |