mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 cb4a0a3444
			
		
	
	
		cb4a0a3444
		
	
	
	
	
		
			
			Change the representation of the TCR_EL* registers in the CPU state struct from struct TCR to uint64_t. This allows us to drop the custom vmsa_ttbcr_raw_write() function, moving the "enforce RES0" checks to their more usual location in the writefn vmsa_ttbcr_write(). We also don't need the resetfn any more. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220714132303.1287193-7-peter.maydell@linaro.org
		
			
				
	
	
		
			1137 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1137 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM debug helpers.
 | |
|  *
 | |
|  * This code is licensed under the GNU GPL v2 or later.
 | |
|  *
 | |
|  * SPDX-License-Identifier: GPL-2.0-or-later
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "cpregs.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/helper-proto.h"
 | |
| 
 | |
| 
 | |
| /* Return the Exception Level targeted by debug exceptions. */
 | |
| static int arm_debug_target_el(CPUARMState *env)
 | |
| {
 | |
|     bool secure = arm_is_secure(env);
 | |
|     bool route_to_el2 = false;
 | |
| 
 | |
|     if (arm_is_el2_enabled(env)) {
 | |
|         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
 | |
|                        env->cp15.mdcr_el2 & MDCR_TDE;
 | |
|     }
 | |
| 
 | |
|     if (route_to_el2) {
 | |
|         return 2;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|                !arm_el_is_aa64(env, 3) && secure) {
 | |
|         return 3;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Raise an exception to the debug target el.
 | |
|  * Modify syndrome to indicate when origin and target EL are the same.
 | |
|  */
 | |
| G_NORETURN static void
 | |
| raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
 | |
| {
 | |
|     int debug_el = arm_debug_target_el(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
| 
 | |
|     /*
 | |
|      * If singlestep is targeting a lower EL than the current one, then
 | |
|      * DisasContext.ss_active must be false and we can never get here.
 | |
|      * Similarly for watchpoint and breakpoint matches.
 | |
|      */
 | |
|     assert(debug_el >= cur_el);
 | |
|     syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
 | |
|     raise_exception(env, excp, syndrome, debug_el);
 | |
| }
 | |
| 
 | |
| /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
 | |
| static bool aa64_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     int debug_el;
 | |
| 
 | |
|     if (cur_el == 3) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* MDCR_EL3.SDD disables debug events from Secure state */
 | |
|     if (arm_is_secure_below_el3(env)
 | |
|         && extract32(env->cp15.mdcr_el3, 16, 1)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
 | |
|      * while not masking the (D)ebug bit in DAIF.
 | |
|      */
 | |
|     debug_el = arm_debug_target_el(env);
 | |
| 
 | |
|     if (cur_el == debug_el) {
 | |
|         return extract32(env->cp15.mdscr_el1, 13, 1)
 | |
|             && !(env->daif & PSTATE_D);
 | |
|     }
 | |
| 
 | |
|     /* Otherwise the debug target needs to be a higher EL */
 | |
|     return debug_el > cur_el;
 | |
| }
 | |
| 
 | |
| static bool aa32_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el == 0 && arm_el_is_aa64(env, 1)) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     }
 | |
| 
 | |
|     if (arm_is_secure(env)) {
 | |
|         int spd;
 | |
| 
 | |
|         if (el == 0 && (env->cp15.sder & 1)) {
 | |
|             /*
 | |
|              * SDER.SUIDEN means debug exceptions from Secure EL0
 | |
|              * are always enabled. Otherwise they are controlled by
 | |
|              * SDCR.SPD like those from other Secure ELs.
 | |
|              */
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         spd = extract32(env->cp15.mdcr_el3, 14, 2);
 | |
|         switch (spd) {
 | |
|         case 1:
 | |
|             /* SPD == 0b01 is reserved, but behaves as 0b00. */
 | |
|         case 0:
 | |
|             /*
 | |
|              * For 0b00 we return true if external secure invasive debug
 | |
|              * is enabled. On real hardware this is controlled by external
 | |
|              * signals to the core. QEMU always permits debug, and behaves
 | |
|              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
 | |
|              */
 | |
|             return true;
 | |
|         case 2:
 | |
|             return false;
 | |
|         case 3:
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return el != 2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if debugging exceptions are currently enabled.
 | |
|  * This corresponds to what in ARM ARM pseudocode would be
 | |
|  *    if UsingAArch32() then
 | |
|  *        return AArch32.GenerateDebugExceptions()
 | |
|  *    else
 | |
|  *        return AArch64.GenerateDebugExceptions()
 | |
|  * We choose to push the if() down into this function for clarity,
 | |
|  * since the pseudocode has it at all callsites except for the one in
 | |
|  * CheckSoftwareStep(), where it is elided because both branches would
 | |
|  * always return the same value.
 | |
|  */
 | |
| bool arm_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
 | |
|         return false;
 | |
|     }
 | |
|     if (is_a64(env)) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     } else {
 | |
|         return aa32_generate_debug_exceptions(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is single-stepping active? (Note that the "is EL_D AArch64?" check
 | |
|  * implicitly means this always returns false in pre-v8 CPUs.)
 | |
|  */
 | |
| bool arm_singlestep_active(CPUARMState *env)
 | |
| {
 | |
|     return extract32(env->cp15.mdscr_el1, 0, 1)
 | |
|         && arm_el_is_aa64(env, arm_debug_target_el(env))
 | |
|         && arm_generate_debug_exceptions(env);
 | |
| }
 | |
| 
 | |
| /* Return true if the linked breakpoint entry lbn passes its checks */
 | |
| static bool linked_bp_matches(ARMCPU *cpu, int lbn)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t bcr = env->cp15.dbgbcr[lbn];
 | |
|     int brps = arm_num_brps(cpu);
 | |
|     int ctx_cmps = arm_num_ctx_cmps(cpu);
 | |
|     int bt;
 | |
|     uint32_t contextidr;
 | |
|     uint64_t hcr_el2;
 | |
| 
 | |
|     /*
 | |
|      * Links to unimplemented or non-context aware breakpoints are
 | |
|      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
 | |
|      * as if linked to an UNKNOWN context-aware breakpoint (in which
 | |
|      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
 | |
|      * We choose the former.
 | |
|      */
 | |
|     if (lbn >= brps || lbn < (brps - ctx_cmps)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bcr = env->cp15.dbgbcr[lbn];
 | |
| 
 | |
|     if (extract64(bcr, 0, 1) == 0) {
 | |
|         /* Linked breakpoint disabled : generate no events */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bt = extract64(bcr, 20, 4);
 | |
|     hcr_el2 = arm_hcr_el2_eff(env);
 | |
| 
 | |
|     switch (bt) {
 | |
|     case 3: /* linked context ID match */
 | |
|         switch (arm_current_el(env)) {
 | |
|         default:
 | |
|             /* Context matches never fire in AArch64 EL3 */
 | |
|             return false;
 | |
|         case 2:
 | |
|             if (!(hcr_el2 & HCR_E2H)) {
 | |
|                 /* Context matches never fire in EL2 without E2H enabled. */
 | |
|                 return false;
 | |
|             }
 | |
|             contextidr = env->cp15.contextidr_el[2];
 | |
|             break;
 | |
|         case 1:
 | |
|             contextidr = env->cp15.contextidr_el[1];
 | |
|             break;
 | |
|         case 0:
 | |
|             if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 | |
|                 contextidr = env->cp15.contextidr_el[2];
 | |
|             } else {
 | |
|                 contextidr = env->cp15.contextidr_el[1];
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case 7:  /* linked contextidr_el1 match */
 | |
|         contextidr = env->cp15.contextidr_el[1];
 | |
|         break;
 | |
|     case 13: /* linked contextidr_el2 match */
 | |
|         contextidr = env->cp15.contextidr_el[2];
 | |
|         break;
 | |
| 
 | |
|     case 9: /* linked VMID match (reserved if no EL2) */
 | |
|     case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | |
|     case 15: /* linked full context ID match */
 | |
|     default:
 | |
|         /*
 | |
|          * Links to Unlinked context breakpoints must generate no
 | |
|          * events; we choose to do the same for reserved values too.
 | |
|          */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We match the whole register even if this is AArch32 using the
 | |
|      * short descriptor format (in which case it holds both PROCID and ASID),
 | |
|      * since we don't implement the optional v7 context ID masking.
 | |
|      */
 | |
|     return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
 | |
| }
 | |
| 
 | |
| static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t cr;
 | |
|     int pac, hmc, ssc, wt, lbn;
 | |
|     /*
 | |
|      * Note that for watchpoints the check is against the CPU security
 | |
|      * state, not the S/NS attribute on the offending data access.
 | |
|      */
 | |
|     bool is_secure = arm_is_secure(env);
 | |
|     int access_el = arm_current_el(env);
 | |
| 
 | |
|     if (is_wp) {
 | |
|         CPUWatchpoint *wp = env->cpu_watchpoint[n];
 | |
| 
 | |
|         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
 | |
|             return false;
 | |
|         }
 | |
|         cr = env->cp15.dbgwcr[n];
 | |
|         if (wp->hitattrs.user) {
 | |
|             /*
 | |
|              * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
 | |
|              * match watchpoints as if they were accesses done at EL0, even if
 | |
|              * the CPU is at EL1 or higher.
 | |
|              */
 | |
|             access_el = 0;
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | |
| 
 | |
|         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
 | |
|             return false;
 | |
|         }
 | |
|         cr = env->cp15.dbgbcr[n];
 | |
|     }
 | |
|     /*
 | |
|      * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
 | |
|      * enabled and that the address and access type match; for breakpoints
 | |
|      * we know the address matched; check the remaining fields, including
 | |
|      * linked breakpoints. We rely on WCR and BCR having the same layout
 | |
|      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
 | |
|      * Note that some combinations of {PAC, HMC, SSC} are reserved and
 | |
|      * must act either like some valid combination or as if the watchpoint
 | |
|      * were disabled. We choose the former, and use this together with
 | |
|      * the fact that EL3 must always be Secure and EL2 must always be
 | |
|      * Non-Secure to simplify the code slightly compared to the full
 | |
|      * table in the ARM ARM.
 | |
|      */
 | |
|     pac = FIELD_EX64(cr, DBGWCR, PAC);
 | |
|     hmc = FIELD_EX64(cr, DBGWCR, HMC);
 | |
|     ssc = FIELD_EX64(cr, DBGWCR, SSC);
 | |
| 
 | |
|     switch (ssc) {
 | |
|     case 0:
 | |
|         break;
 | |
|     case 1:
 | |
|     case 3:
 | |
|         if (is_secure) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         if (!is_secure) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (access_el) {
 | |
|     case 3:
 | |
|     case 2:
 | |
|         if (!hmc) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (extract32(pac, 0, 1) == 0) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 0:
 | |
|         if (extract32(pac, 1, 1) == 0) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     wt = FIELD_EX64(cr, DBGWCR, WT);
 | |
|     lbn = FIELD_EX64(cr, DBGWCR, LBN);
 | |
| 
 | |
|     if (wt && !linked_bp_matches(cpu, lbn)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool check_watchpoints(ARMCPU *cpu)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int n;
 | |
| 
 | |
|     /*
 | |
|      * If watchpoints are disabled globally or we can't take debug
 | |
|      * exceptions here then watchpoint firings are ignored.
 | |
|      */
 | |
|     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | |
|         || !arm_generate_debug_exceptions(env)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
 | |
|         if (bp_wp_matches(cpu, n, true)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool arm_debug_check_breakpoint(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     target_ulong pc;
 | |
|     int n;
 | |
| 
 | |
|     /*
 | |
|      * If breakpoints are disabled globally or we can't take debug
 | |
|      * exceptions here then breakpoint firings are ignored.
 | |
|      */
 | |
|     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | |
|         || !arm_generate_debug_exceptions(env)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Single-step exceptions have priority over breakpoint exceptions.
 | |
|      * If single-step state is active-pending, suppress the bp.
 | |
|      */
 | |
|     if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * PC alignment faults have priority over breakpoint exceptions.
 | |
|      */
 | |
|     pc = is_a64(env) ? env->pc : env->regs[15];
 | |
|     if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Instruction aborts have priority over breakpoint exceptions.
 | |
|      * TODO: We would need to look up the page for PC and verify that
 | |
|      * it is present and executable.
 | |
|      */
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
 | |
|         if (bp_wp_matches(cpu, n, false)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
 | |
| {
 | |
|     /*
 | |
|      * Called by core code when a CPU watchpoint fires; need to check if this
 | |
|      * is also an architectural watchpoint match.
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     return check_watchpoints(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the FSR value for a debug exception (watchpoint, hardware
 | |
|  * breakpoint or BKPT insn) targeting the specified exception level.
 | |
|  */
 | |
| static uint32_t arm_debug_exception_fsr(CPUARMState *env)
 | |
| {
 | |
|     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 | |
|     int target_el = arm_debug_target_el(env);
 | |
|     bool using_lpae = false;
 | |
| 
 | |
|     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 | |
|         using_lpae = true;
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_LPAE) &&
 | |
|             (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
 | |
|             using_lpae = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (using_lpae) {
 | |
|         return arm_fi_to_lfsc(&fi);
 | |
|     } else {
 | |
|         return arm_fi_to_sfsc(&fi);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void arm_debug_excp_handler(CPUState *cs)
 | |
| {
 | |
|     /*
 | |
|      * Called by core code when a watchpoint or breakpoint fires;
 | |
|      * need to check which one and raise the appropriate exception.
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
 | |
| 
 | |
|     if (wp_hit) {
 | |
|         if (wp_hit->flags & BP_CPU) {
 | |
|             bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
 | |
| 
 | |
|             cs->watchpoint_hit = NULL;
 | |
| 
 | |
|             env->exception.fsr = arm_debug_exception_fsr(env);
 | |
|             env->exception.vaddress = wp_hit->hitaddr;
 | |
|             raise_exception_debug(env, EXCP_DATA_ABORT,
 | |
|                                   syn_watchpoint(0, 0, wnr));
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | |
| 
 | |
|         /*
 | |
|          * (1) GDB breakpoints should be handled first.
 | |
|          * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
 | |
|          * since singlestep is also done by generating a debug internal
 | |
|          * exception.
 | |
|          */
 | |
|         if (cpu_breakpoint_test(cs, pc, BP_GDB)
 | |
|             || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         env->exception.fsr = arm_debug_exception_fsr(env);
 | |
|         /*
 | |
|          * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
 | |
|          * values to the guest that it shouldn't be able to see at its
 | |
|          * exception/security level.
 | |
|          */
 | |
|         env->exception.vaddress = 0;
 | |
|         raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Raise an EXCP_BKPT with the specified syndrome register value,
 | |
|  * targeting the correct exception level for debug exceptions.
 | |
|  */
 | |
| void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
 | |
| {
 | |
|     int debug_el = arm_debug_target_el(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
| 
 | |
|     /* FSR will only be used if the debug target EL is AArch32. */
 | |
|     env->exception.fsr = arm_debug_exception_fsr(env);
 | |
|     /*
 | |
|      * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
 | |
|      * values to the guest that it shouldn't be able to see at its
 | |
|      * exception/security level.
 | |
|      */
 | |
|     env->exception.vaddress = 0;
 | |
|     /*
 | |
|      * Other kinds of architectural debug exception are ignored if
 | |
|      * they target an exception level below the current one (in QEMU
 | |
|      * this is checked by arm_generate_debug_exceptions()). Breakpoint
 | |
|      * instructions are special because they always generate an exception
 | |
|      * to somewhere: if they can't go to the configured debug exception
 | |
|      * level they are taken to the current exception level.
 | |
|      */
 | |
|     if (debug_el < cur_el) {
 | |
|         debug_el = cur_el;
 | |
|     }
 | |
|     raise_exception(env, EXCP_BKPT, syndrome, debug_el);
 | |
| }
 | |
| 
 | |
| void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
 | |
| {
 | |
|     raise_exception_debug(env, EXCP_UDEF, syndrome);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for traps to "powerdown debug" registers, which are controlled
 | |
|  * by MDCR.TDOSA
 | |
|  */
 | |
| static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 | |
|     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tdosa) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for traps to "debug ROM" registers, which are controlled
 | |
|  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 | |
|     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tdra) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for traps to general debug registers, which are controlled
 | |
|  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
|     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 | |
|     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
 | |
|         (arm_hcr_el2_eff(env) & HCR_TGE);
 | |
| 
 | |
|     if (el < 2 && mdcr_el2_tda) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     /*
 | |
|      * Writes to OSLAR_EL1 may update the OS lock status, which can be
 | |
|      * read via a bit in OSLSR_EL1.
 | |
|      */
 | |
|     int oslock;
 | |
| 
 | |
|     if (ri->state == ARM_CP_STATE_AA32) {
 | |
|         oslock = (value == 0xC5ACCE55);
 | |
|     } else {
 | |
|         oslock = value & 1;
 | |
|     }
 | |
| 
 | |
|     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
 | |
| }
 | |
| 
 | |
| static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     /*
 | |
|      * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
 | |
|      * implemented this is RAZ/WI.
 | |
|      */
 | |
|     if(arm_feature(env, ARM_FEATURE_AARCH64)
 | |
|        ? cpu_isar_feature(aa64_doublelock, cpu)
 | |
|        : cpu_isar_feature(aa32_doublelock, cpu)) {
 | |
|         env->cp15.osdlr_el1 = value & 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo debug_cp_reginfo[] = {
 | |
|     /*
 | |
|      * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 | |
|      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
 | |
|      * unlike DBGDRAR it is never accessible from EL0.
 | |
|      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
 | |
|      * accessor.
 | |
|      */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
 | |
|     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
 | |
|       .resetvalue = 0 },
 | |
|     /*
 | |
|      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
 | |
|      * Debug Communication Channel is not implemented.
 | |
|      */
 | |
|     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tda,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /*
 | |
|      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
 | |
|      * it is unlikely a guest will care.
 | |
|      * We don't implement the configurable EL0 access.
 | |
|      */
 | |
|     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL1_R, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
 | |
|     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .accessfn = access_tdosa,
 | |
|       .writefn = oslar_write },
 | |
|     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
 | |
|       .access = PL1_R, .resetvalue = 10,
 | |
|       .accessfn = access_tdosa,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
 | |
|     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
 | |
|     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
 | |
|       .access = PL1_RW, .accessfn = access_tdosa,
 | |
|       .writefn = osdlr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
 | |
|     /*
 | |
|      * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
 | |
|      * implement vector catch debug events yet.
 | |
|      */
 | |
|     { .name = "DBGVCR",
 | |
|       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
|     /*
 | |
|      * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
 | |
|      * to save and restore a 32-bit guest's DBGVCR)
 | |
|      */
 | |
|     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|       .access = PL2_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
 | |
|     /*
 | |
|      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
 | |
|      * Channel but Linux may try to access this register. The 32-bit
 | |
|      * alias is DBGDCCINT.
 | |
|      */
 | |
|     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
 | |
|     /* 64 bit access versions of the (dummy) debug registers */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
| };
 | |
| 
 | |
| void hw_watchpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     vaddr len = 0;
 | |
|     vaddr wvr = env->cp15.dbgwvr[n];
 | |
|     uint64_t wcr = env->cp15.dbgwcr[n];
 | |
|     int mask;
 | |
|     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 | |
| 
 | |
|     if (env->cpu_watchpoint[n]) {
 | |
|         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
 | |
|         env->cpu_watchpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!FIELD_EX64(wcr, DBGWCR, E)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
 | |
|     case 0:
 | |
|         /* LSC 00 is reserved and must behave as if the wp is disabled */
 | |
|         return;
 | |
|     case 1:
 | |
|         flags |= BP_MEM_READ;
 | |
|         break;
 | |
|     case 2:
 | |
|         flags |= BP_MEM_WRITE;
 | |
|         break;
 | |
|     case 3:
 | |
|         flags |= BP_MEM_ACCESS;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Attempts to use both MASK and BAS fields simultaneously are
 | |
|      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
 | |
|      * thus generating a watchpoint for every byte in the masked region.
 | |
|      */
 | |
|     mask = FIELD_EX64(wcr, DBGWCR, MASK);
 | |
|     if (mask == 1 || mask == 2) {
 | |
|         /*
 | |
|          * Reserved values of MASK; we must act as if the mask value was
 | |
|          * some non-reserved value, or as if the watchpoint were disabled.
 | |
|          * We choose the latter.
 | |
|          */
 | |
|         return;
 | |
|     } else if (mask) {
 | |
|         /* Watchpoint covers an aligned area up to 2GB in size */
 | |
|         len = 1ULL << mask;
 | |
|         /*
 | |
|          * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
 | |
|          * whether the watchpoint fires when the unmasked bits match; we opt
 | |
|          * to generate the exceptions.
 | |
|          */
 | |
|         wvr &= ~(len - 1);
 | |
|     } else {
 | |
|         /* Watchpoint covers bytes defined by the byte address select bits */
 | |
|         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
 | |
|         int basstart;
 | |
| 
 | |
|         if (extract64(wvr, 2, 1)) {
 | |
|             /*
 | |
|              * Deprecated case of an only 4-aligned address. BAS[7:4] are
 | |
|              * ignored, and BAS[3:0] define which bytes to watch.
 | |
|              */
 | |
|             bas &= 0xf;
 | |
|         }
 | |
| 
 | |
|         if (bas == 0) {
 | |
|             /* This must act as if the watchpoint is disabled */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * The BAS bits are supposed to be programmed to indicate a contiguous
 | |
|          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * we fire for each byte in the word/doubleword addressed by the WVR.
 | |
|          * We choose to ignore any non-zero bits after the first range of 1s.
 | |
|          */
 | |
|         basstart = ctz32(bas);
 | |
|         len = cto32(bas >> basstart);
 | |
|         wvr += basstart;
 | |
|     }
 | |
| 
 | |
|     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
 | |
|                           &env->cpu_watchpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_watchpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /*
 | |
|      * Completely clear out existing QEMU watchpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
 | |
|         hw_watchpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /*
 | |
|      * Bits [1:0] are RES0.
 | |
|      *
 | |
|      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
 | |
|      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
 | |
|      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
 | |
|      * whether the RESS bits are ignored when comparing an address.
 | |
|      *
 | |
|      * Therefore we are allowed to compare the entire register, which lets
 | |
|      * us avoid considering whether or not FEAT_LVA is actually enabled.
 | |
|      */
 | |
|     value &= ~3ULL;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t bvr = env->cp15.dbgbvr[n];
 | |
|     uint64_t bcr = env->cp15.dbgbcr[n];
 | |
|     vaddr addr;
 | |
|     int bt;
 | |
|     int flags = BP_CPU;
 | |
| 
 | |
|     if (env->cpu_breakpoint[n]) {
 | |
|         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
 | |
|         env->cpu_breakpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!extract64(bcr, 0, 1)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bt = extract64(bcr, 20, 4);
 | |
| 
 | |
|     switch (bt) {
 | |
|     case 4: /* unlinked address mismatch (reserved if AArch64) */
 | |
|     case 5: /* linked address mismatch (reserved if AArch64) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: address mismatch breakpoint types not implemented\n");
 | |
|         return;
 | |
|     case 0: /* unlinked address match */
 | |
|     case 1: /* linked address match */
 | |
|     {
 | |
|         /*
 | |
|          * Bits [1:0] are RES0.
 | |
|          *
 | |
|          * It is IMPLEMENTATION DEFINED whether bits [63:49]
 | |
|          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
 | |
|          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
 | |
|          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
 | |
|          * whether the RESS bits are ignored when comparing an address.
 | |
|          * Therefore we are allowed to compare the entire register, which
 | |
|          * lets us avoid considering whether FEAT_LVA is actually enabled.
 | |
|          *
 | |
|          * The BAS field is used to allow setting breakpoints on 16-bit
 | |
|          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * a bp will fire if the addresses covered by the bp and the addresses
 | |
|          * covered by the insn overlap but the insn doesn't start at the
 | |
|          * start of the bp address range. We choose to require the insn and
 | |
|          * the bp to have the same address. The constraints on writing to
 | |
|          * BAS enforced in dbgbcr_write mean we have only four cases:
 | |
|          *  0b0000  => no breakpoint
 | |
|          *  0b0011  => breakpoint on addr
 | |
|          *  0b1100  => breakpoint on addr + 2
 | |
|          *  0b1111  => breakpoint on addr
 | |
|          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
 | |
|          */
 | |
|         int bas = extract64(bcr, 5, 4);
 | |
|         addr = bvr & ~3ULL;
 | |
|         if (bas == 0) {
 | |
|             return;
 | |
|         }
 | |
|         if (bas == 0xc) {
 | |
|             addr += 2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case 2: /* unlinked context ID match */
 | |
|     case 8: /* unlinked VMID match (reserved if no EL2) */
 | |
|     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: unlinked context breakpoint types not implemented\n");
 | |
|         return;
 | |
|     case 9: /* linked VMID match (reserved if no EL2) */
 | |
|     case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | |
|     case 3: /* linked context ID match */
 | |
|     default:
 | |
|         /*
 | |
|          * We must generate no events for Linked context matches (unless
 | |
|          * they are linked to by some other bp/wp, which is handled in
 | |
|          * updates for the linking bp/wp). We choose to also generate no events
 | |
|          * for reserved values.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /*
 | |
|      * Completely clear out existing QEMU breakpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
 | |
|         hw_breakpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = env_archcpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /*
 | |
|      * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
 | |
|      * copy of BAS[0].
 | |
|      */
 | |
|     value = deposit64(value, 6, 1, extract64(value, 5, 1));
 | |
|     value = deposit64(value, 8, 1, extract64(value, 7, 1));
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| void define_debug_regs(ARMCPU *cpu)
 | |
| {
 | |
|     /*
 | |
|      * Define v7 and v8 architectural debug registers.
 | |
|      * These are just dummy implementations for now.
 | |
|      */
 | |
|     int i;
 | |
|     int wrps, brps, ctx_cmps;
 | |
| 
 | |
|     /*
 | |
|      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
 | |
|      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
 | |
|      * the register must not exist for this cpu.
 | |
|      */
 | |
|     if (cpu->isar.dbgdidr != 0) {
 | |
|         ARMCPRegInfo dbgdidr = {
 | |
|             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
 | |
|             .opc1 = 0, .opc2 = 0,
 | |
|             .access = PL0_R, .accessfn = access_tda,
 | |
|             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &dbgdidr);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * DBGDEVID is present in the v7 debug architecture if
 | |
|      * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
 | |
|      * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
 | |
|      * from v7.1 of the debug architecture. Because no fields have yet
 | |
|      * been defined in DBGDEVID2 (and quite possibly none will ever
 | |
|      * be) we don't define an ARMISARegisters field for it.
 | |
|      * These registers exist only if EL1 can use AArch32, but that
 | |
|      * happens naturally because they are only PL1 accessible anyway.
 | |
|      */
 | |
|     if (extract32(cpu->isar.dbgdidr, 15, 1)) {
 | |
|         ARMCPRegInfo dbgdevid = {
 | |
|             .name = "DBGDEVID",
 | |
|             .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
 | |
|             .access = PL1_R, .accessfn = access_tda,
 | |
|             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &dbgdevid);
 | |
|     }
 | |
|     if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
 | |
|         ARMCPRegInfo dbgdevid12[] = {
 | |
|             {
 | |
|                 .name = "DBGDEVID1",
 | |
|                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
 | |
|                 .access = PL1_R, .accessfn = access_tda,
 | |
|                 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
 | |
|             }, {
 | |
|                 .name = "DBGDEVID2",
 | |
|                 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
 | |
|                 .access = PL1_R, .accessfn = access_tda,
 | |
|                 .type = ARM_CP_CONST, .resetvalue = 0,
 | |
|             },
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgdevid12);
 | |
|     }
 | |
| 
 | |
|     brps = arm_num_brps(cpu);
 | |
|     wrps = arm_num_wrps(cpu);
 | |
|     ctx_cmps = arm_num_ctx_cmps(cpu);
 | |
| 
 | |
|     assert(ctx_cmps <= brps);
 | |
| 
 | |
|     define_arm_cp_regs(cpu, debug_cp_reginfo);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < brps; i++) {
 | |
|         char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
 | |
|         char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
 | |
|               .writefn = dbgbvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
 | |
|               .writefn = dbgbcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|         g_free(dbgbvr_el1_name);
 | |
|         g_free(dbgbcr_el1_name);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < wrps; i++) {
 | |
|         char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
 | |
|         char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
 | |
|               .writefn = dbgwvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
 | |
|               .writefn = dbgwcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|         g_free(dbgwvr_el1_name);
 | |
|         g_free(dbgwcr_el1_name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /*
 | |
|      * In BE32 system mode, target memory is stored byteswapped (on a
 | |
|      * little-endian host system), and by the time we reach here (via an
 | |
|      * opcode helper) the addresses of subword accesses have been adjusted
 | |
|      * to account for that, which means that watchpoints will not match.
 | |
|      * Undo the adjustment here.
 | |
|      */
 | |
|     if (arm_sctlr_b(env)) {
 | |
|         if (len == 1) {
 | |
|             addr ^= 3;
 | |
|         } else if (len == 2) {
 | |
|             addr ^= 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| #endif
 |