mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 d102f19a20
			
		
	
	
		d102f19a20
		
	
	
	
	
		
			
			As per the privilege specification, any access from S/U mode should fail if no pmp region is configured. Signed-off-by: Atish Patra <atish.patra@wdc.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-id: 20201223192553.332508-1-atish.patra@wdc.com Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
		
			
				
	
	
		
			445 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			445 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU RISC-V PMP (Physical Memory Protection)
 | |
|  *
 | |
|  * Author: Daire McNamara, daire.mcnamara@emdalo.com
 | |
|  *         Ivan Griffin, ivan.griffin@emdalo.com
 | |
|  *
 | |
|  * This provides a RISC-V Physical Memory Protection implementation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qapi/error.h"
 | |
| #include "cpu.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
 | |
|     uint8_t val);
 | |
| static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
 | |
| static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
 | |
| 
 | |
| /*
 | |
|  * Accessor method to extract address matching type 'a field' from cfg reg
 | |
|  */
 | |
| static inline uint8_t pmp_get_a_field(uint8_t cfg)
 | |
| {
 | |
|     uint8_t a = cfg >> 3;
 | |
|     return a & 0x3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a PMP is locked or not.
 | |
|  */
 | |
| static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
 | |
| {
 | |
| 
 | |
|     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* Top PMP has no 'next' to check */
 | |
|     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* In TOR mode, need to check the lock bit of the next pmp
 | |
|      * (if there is a next)
 | |
|      */
 | |
|     const uint8_t a_field =
 | |
|         pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
 | |
|     if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
 | |
|          (PMP_AMATCH_TOR == a_field)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count the number of active rules.
 | |
|  */
 | |
| uint32_t pmp_get_num_rules(CPURISCVState *env)
 | |
| {
 | |
|      return env->pmp_state.num_rules;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Accessor to get the cfg reg for a specific PMP/HART
 | |
|  */
 | |
| static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
 | |
| {
 | |
|     if (pmp_index < MAX_RISCV_PMPS) {
 | |
|         return env->pmp_state.pmp[pmp_index].cfg_reg;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Accessor to set the cfg reg for a specific PMP/HART
 | |
|  * Bounds checks and relevant lock bit.
 | |
|  */
 | |
| static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
 | |
| {
 | |
|     if (pmp_index < MAX_RISCV_PMPS) {
 | |
|         if (!pmp_is_locked(env, pmp_index)) {
 | |
|             env->pmp_state.pmp[pmp_index].cfg_reg = val;
 | |
|             pmp_update_rule(env, pmp_index);
 | |
|         } else {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
 | |
|         }
 | |
|     } else {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "ignoring pmpcfg write - out of bounds\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
 | |
| {
 | |
|     /*
 | |
|        aaaa...aaa0   8-byte NAPOT range
 | |
|        aaaa...aa01   16-byte NAPOT range
 | |
|        aaaa...a011   32-byte NAPOT range
 | |
|        ...
 | |
|        aa01...1111   2^XLEN-byte NAPOT range
 | |
|        a011...1111   2^(XLEN+1)-byte NAPOT range
 | |
|        0111...1111   2^(XLEN+2)-byte NAPOT range
 | |
|        1111...1111   Reserved
 | |
|     */
 | |
|     if (a == -1) {
 | |
|         *sa = 0u;
 | |
|         *ea = -1;
 | |
|         return;
 | |
|     } else {
 | |
|         target_ulong t1 = ctz64(~a);
 | |
|         target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
 | |
|         target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
 | |
|         *sa = base;
 | |
|         *ea = base + range;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
 | |
| {
 | |
|     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
 | |
|     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
 | |
|     target_ulong prev_addr = 0u;
 | |
|     target_ulong sa = 0u;
 | |
|     target_ulong ea = 0u;
 | |
| 
 | |
|     if (pmp_index >= 1u) {
 | |
|         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
 | |
|     }
 | |
| 
 | |
|     switch (pmp_get_a_field(this_cfg)) {
 | |
|     case PMP_AMATCH_OFF:
 | |
|         sa = 0u;
 | |
|         ea = -1;
 | |
|         break;
 | |
| 
 | |
|     case PMP_AMATCH_TOR:
 | |
|         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
 | |
|         ea = (this_addr << 2) - 1u;
 | |
|         break;
 | |
| 
 | |
|     case PMP_AMATCH_NA4:
 | |
|         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
 | |
|         ea = (sa + 4u) - 1u;
 | |
|         break;
 | |
| 
 | |
|     case PMP_AMATCH_NAPOT:
 | |
|         pmp_decode_napot(this_addr, &sa, &ea);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         sa = 0u;
 | |
|         ea = 0u;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     env->pmp_state.addr[pmp_index].sa = sa;
 | |
|     env->pmp_state.addr[pmp_index].ea = ea;
 | |
| }
 | |
| 
 | |
| void pmp_update_rule_nums(CPURISCVState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     env->pmp_state.num_rules = 0;
 | |
|     for (i = 0; i < MAX_RISCV_PMPS; i++) {
 | |
|         const uint8_t a_field =
 | |
|             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
 | |
|         if (PMP_AMATCH_OFF != a_field) {
 | |
|             env->pmp_state.num_rules++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
 | |
|  *   end address values.
 | |
|  *   This function is called relatively infrequently whereas the check that
 | |
|  *   an address is within a pmp rule is called often, so optimise that one
 | |
|  */
 | |
| static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
 | |
| {
 | |
|     pmp_update_rule_addr(env, pmp_index);
 | |
|     pmp_update_rule_nums(env);
 | |
| }
 | |
| 
 | |
| static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
 | |
| {
 | |
|     int result = 0;
 | |
| 
 | |
|     if ((addr >= env->pmp_state.addr[pmp_index].sa)
 | |
|         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
 | |
|         result = 1;
 | |
|     } else {
 | |
|         result = 0;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Public Interface
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Check if the address has required RWX privs to complete desired operation
 | |
|  */
 | |
| bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
 | |
|     target_ulong size, pmp_priv_t privs, target_ulong mode)
 | |
| {
 | |
|     int i = 0;
 | |
|     int ret = -1;
 | |
|     int pmp_size = 0;
 | |
|     target_ulong s = 0;
 | |
|     target_ulong e = 0;
 | |
|     pmp_priv_t allowed_privs = 0;
 | |
| 
 | |
|     /* Short cut if no rules */
 | |
|     if (0 == pmp_get_num_rules(env)) {
 | |
|         return (env->priv == PRV_M) ? true : false;
 | |
|     }
 | |
| 
 | |
|     if (size == 0) {
 | |
|         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
 | |
|             /*
 | |
|              * If size is unknown (0), assume that all bytes
 | |
|              * from addr to the end of the page will be accessed.
 | |
|              */
 | |
|             pmp_size = -(addr | TARGET_PAGE_MASK);
 | |
|         } else {
 | |
|             pmp_size = sizeof(target_ulong);
 | |
|         }
 | |
|     } else {
 | |
|         pmp_size = size;
 | |
|     }
 | |
| 
 | |
|     /* 1.10 draft priv spec states there is an implicit order
 | |
|          from low to high */
 | |
|     for (i = 0; i < MAX_RISCV_PMPS; i++) {
 | |
|         s = pmp_is_in_range(env, i, addr);
 | |
|         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
 | |
| 
 | |
|         /* partially inside */
 | |
|         if ((s + e) == 1) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "pmp violation - access is partially inside\n");
 | |
|             ret = 0;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* fully inside */
 | |
|         const uint8_t a_field =
 | |
|             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
 | |
| 
 | |
|         /*
 | |
|          * If the PMP entry is not off and the address is in range, do the priv
 | |
|          * check
 | |
|          */
 | |
|         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
 | |
|             allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
 | |
|             if ((mode != PRV_M) || pmp_is_locked(env, i)) {
 | |
|                 allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
 | |
|             }
 | |
| 
 | |
|             if ((privs & allowed_privs) == privs) {
 | |
|                 ret = 1;
 | |
|                 break;
 | |
|             } else {
 | |
|                 ret = 0;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No rule matched */
 | |
|     if (ret == -1) {
 | |
|         if (mode == PRV_M) {
 | |
|             ret = 1; /* Privileged spec v1.10 states if no PMP entry matches an
 | |
|                       * M-Mode access, the access succeeds */
 | |
|         } else {
 | |
|             ret = 0; /* Other modes are not allowed to succeed if they don't
 | |
|                       * match a rule, but there are rules.  We've checked for
 | |
|                       * no rule earlier in this function. */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret == 1 ? true : false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle a write to a pmpcfg CSP
 | |
|  */
 | |
| void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
 | |
|     target_ulong val)
 | |
| {
 | |
|     int i;
 | |
|     uint8_t cfg_val;
 | |
| 
 | |
|     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
 | |
| 
 | |
|     if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "ignoring pmpcfg write - incorrect address\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < sizeof(target_ulong); i++) {
 | |
|         cfg_val = (val >> 8 * i)  & 0xff;
 | |
|         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle a read from a pmpcfg CSP
 | |
|  */
 | |
| target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
 | |
| {
 | |
|     int i;
 | |
|     target_ulong cfg_val = 0;
 | |
|     target_ulong val = 0;
 | |
| 
 | |
|     for (i = 0; i < sizeof(target_ulong); i++) {
 | |
|         val = pmp_read_cfg(env, (reg_index * 4) + i);
 | |
|         cfg_val |= (val << (i * 8));
 | |
|     }
 | |
|     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
 | |
| 
 | |
|     return cfg_val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle a write to a pmpaddr CSP
 | |
|  */
 | |
| void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
 | |
|     target_ulong val)
 | |
| {
 | |
|     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
 | |
|     if (addr_index < MAX_RISCV_PMPS) {
 | |
|         if (!pmp_is_locked(env, addr_index)) {
 | |
|             env->pmp_state.pmp[addr_index].addr_reg = val;
 | |
|             pmp_update_rule(env, addr_index);
 | |
|         } else {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "ignoring pmpaddr write - locked\n");
 | |
|         }
 | |
|     } else {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "ignoring pmpaddr write - out of bounds\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Handle a read from a pmpaddr CSP
 | |
|  */
 | |
| target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
 | |
| {
 | |
|     target_ulong val = 0;
 | |
| 
 | |
|     if (addr_index < MAX_RISCV_PMPS) {
 | |
|         val = env->pmp_state.pmp[addr_index].addr_reg;
 | |
|         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
 | |
|     } else {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "ignoring pmpaddr read - out of bounds\n");
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the TLB size if the start address or the end address of
 | |
|  * PMP entry is presented in thie TLB page.
 | |
|  */
 | |
| static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
 | |
|                                      target_ulong tlb_sa, target_ulong tlb_ea)
 | |
| {
 | |
|     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
 | |
|     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
 | |
| 
 | |
|     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
 | |
|         return pmp_ea - pmp_sa + 1;
 | |
|     }
 | |
| 
 | |
|     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
 | |
|         return tlb_ea - pmp_sa + 1;
 | |
|     }
 | |
| 
 | |
|     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
 | |
|         return pmp_ea - tlb_sa + 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check is there a PMP entry which range covers this page. If so,
 | |
|  * try to find the minimum granularity for the TLB size.
 | |
|  */
 | |
| bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
 | |
|                          target_ulong *tlb_size)
 | |
| {
 | |
|     int i;
 | |
|     target_ulong val;
 | |
|     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
 | |
| 
 | |
|     for (i = 0; i < MAX_RISCV_PMPS; i++) {
 | |
|         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
 | |
|         if (val) {
 | |
|             if (*tlb_size == 0 || *tlb_size > val) {
 | |
|                 *tlb_size = val;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (*tlb_size != 0) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 |