mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 4e14008f3a
			
		
	
	
		4e14008f3a
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4236 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			2855 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2855 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "exec.h"
 | |
| #include "host-utils.h"
 | |
| #include "helper.h"
 | |
| 
 | |
| //#define DEBUG_PCALL
 | |
| //#define DEBUG_MMU
 | |
| //#define DEBUG_MXCC
 | |
| //#define DEBUG_UNALIGNED
 | |
| //#define DEBUG_UNASSIGNED
 | |
| //#define DEBUG_ASI
 | |
| 
 | |
| #ifdef DEBUG_MMU
 | |
| #define DPRINTF_MMU(fmt, args...) \
 | |
| do { printf("MMU: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF_MMU(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_MXCC
 | |
| #define DPRINTF_MXCC(fmt, args...) \
 | |
| do { printf("MXCC: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF_MXCC(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_ASI
 | |
| #define DPRINTF_ASI(fmt, args...) \
 | |
| do { printf("ASI: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF_ASI(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| void raise_exception(int tt)
 | |
| {
 | |
|     env->exception_index = tt;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| void helper_trap(target_ulong nb_trap)
 | |
| {
 | |
|     env->exception_index = TT_TRAP + (nb_trap & 0x7f);
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
 | |
| {
 | |
|     if (do_trap) {
 | |
|         env->exception_index = TT_TRAP + (nb_trap & 0x7f);
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_check_align(target_ulong addr, uint32_t align)
 | |
| {
 | |
|     if (addr & align)
 | |
|         raise_exception(TT_UNALIGNED);
 | |
| }
 | |
| 
 | |
| #define F_HELPER(name, p) void helper_f##name##p(void)
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #define F_BINOP(name)                                           \
 | |
|     F_HELPER(name, s)                                           \
 | |
|     {                                                           \
 | |
|         FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
 | |
|     }                                                           \
 | |
|     F_HELPER(name, d)                                           \
 | |
|     {                                                           \
 | |
|         DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
 | |
|     }                                                           \
 | |
|     F_HELPER(name, q)                                           \
 | |
|     {                                                           \
 | |
|         QT0 = float128_ ## name (QT0, QT1, &env->fp_status);    \
 | |
|     }
 | |
| #else
 | |
| #define F_BINOP(name)                                           \
 | |
|     F_HELPER(name, s)                                           \
 | |
|     {                                                           \
 | |
|         FT0 = float32_ ## name (FT0, FT1, &env->fp_status);     \
 | |
|     }                                                           \
 | |
|     F_HELPER(name, d)                                           \
 | |
|     {                                                           \
 | |
|         DT0 = float64_ ## name (DT0, DT1, &env->fp_status);     \
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| F_BINOP(add);
 | |
| F_BINOP(sub);
 | |
| F_BINOP(mul);
 | |
| F_BINOP(div);
 | |
| #undef F_BINOP
 | |
| 
 | |
| void helper_fsmuld(void)
 | |
| {
 | |
|     DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
 | |
|                       float32_to_float64(FT1, &env->fp_status),
 | |
|                       &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fdmulq(void)
 | |
| {
 | |
|     QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
 | |
|                        float64_to_float128(DT1, &env->fp_status),
 | |
|                        &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| F_HELPER(neg, s)
 | |
| {
 | |
|     FT0 = float32_chs(FT1);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| F_HELPER(neg, d)
 | |
| {
 | |
|     DT0 = float64_chs(DT1);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| F_HELPER(neg, q)
 | |
| {
 | |
|     QT0 = float128_chs(QT1);
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* Integer to float conversion.  */
 | |
| F_HELPER(ito, s)
 | |
| {
 | |
|     FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
 | |
| }
 | |
| 
 | |
| F_HELPER(ito, d)
 | |
| {
 | |
|     DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| F_HELPER(ito, q)
 | |
| {
 | |
|     QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| F_HELPER(xto, s)
 | |
| {
 | |
|     FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
 | |
| }
 | |
| 
 | |
| F_HELPER(xto, d)
 | |
| {
 | |
|     DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
 | |
| }
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| F_HELPER(xto, q)
 | |
| {
 | |
|     QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| #undef F_HELPER
 | |
| 
 | |
| /* floating point conversion */
 | |
| void helper_fdtos(void)
 | |
| {
 | |
|     FT0 = float64_to_float32(DT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fstod(void)
 | |
| {
 | |
|     DT0 = float32_to_float64(FT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fqtos(void)
 | |
| {
 | |
|     FT0 = float128_to_float32(QT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fstoq(void)
 | |
| {
 | |
|     QT0 = float32_to_float128(FT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fqtod(void)
 | |
| {
 | |
|     DT0 = float128_to_float64(QT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fdtoq(void)
 | |
| {
 | |
|     QT0 = float64_to_float128(DT1, &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Float to integer conversion.  */
 | |
| void helper_fstoi(void)
 | |
| {
 | |
|     *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fdtoi(void)
 | |
| {
 | |
|     *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fqtoi(void)
 | |
| {
 | |
|     *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void helper_fstox(void)
 | |
| {
 | |
|     *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fdtox(void)
 | |
| {
 | |
|     *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fqtox(void)
 | |
| {
 | |
|     *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_faligndata(void)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
 | |
|     tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
 | |
|     *((uint64_t *)&DT0) = tmp;
 | |
| }
 | |
| 
 | |
| void helper_movl_FT0_0(void)
 | |
| {
 | |
|     *((uint32_t *)&FT0) = 0;
 | |
| }
 | |
| 
 | |
| void helper_movl_DT0_0(void)
 | |
| {
 | |
|     *((uint64_t *)&DT0) = 0;
 | |
| }
 | |
| 
 | |
| void helper_movl_FT0_1(void)
 | |
| {
 | |
|     *((uint32_t *)&FT0) = 0xffffffff;
 | |
| }
 | |
| 
 | |
| void helper_movl_DT0_1(void)
 | |
| {
 | |
|     *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
 | |
| }
 | |
| 
 | |
| void helper_fnot(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fnots(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fnor(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
 | |
| }
 | |
| 
 | |
| void helper_fnors(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
 | |
| }
 | |
| 
 | |
| void helper_for(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fors(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fxor(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fxors(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fand(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fands(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fornot(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fornots(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fandnot(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fandnots(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| void helper_fnand(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
 | |
| }
 | |
| 
 | |
| void helper_fnands(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
 | |
| }
 | |
| 
 | |
| void helper_fxnor(void)
 | |
| {
 | |
|     *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
 | |
| }
 | |
| 
 | |
| void helper_fxnors(void)
 | |
| {
 | |
|     *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
 | |
| }
 | |
| 
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| #define VIS_B64(n) b[7 - (n)]
 | |
| #define VIS_W64(n) w[3 - (n)]
 | |
| #define VIS_SW64(n) sw[3 - (n)]
 | |
| #define VIS_L64(n) l[1 - (n)]
 | |
| #define VIS_B32(n) b[3 - (n)]
 | |
| #define VIS_W32(n) w[1 - (n)]
 | |
| #else
 | |
| #define VIS_B64(n) b[n]
 | |
| #define VIS_W64(n) w[n]
 | |
| #define VIS_SW64(n) sw[n]
 | |
| #define VIS_L64(n) l[n]
 | |
| #define VIS_B32(n) b[n]
 | |
| #define VIS_W32(n) w[n]
 | |
| #endif
 | |
| 
 | |
| typedef union {
 | |
|     uint8_t b[8];
 | |
|     uint16_t w[4];
 | |
|     int16_t sw[4];
 | |
|     uint32_t l[2];
 | |
|     float64 d;
 | |
| } vis64;
 | |
| 
 | |
| typedef union {
 | |
|     uint8_t b[4];
 | |
|     uint16_t w[2];
 | |
|     uint32_t l;
 | |
|     float32 f;
 | |
| } vis32;
 | |
| 
 | |
| void helper_fpmerge(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
|     // Reverse calculation order to handle overlap
 | |
|     d.VIS_B64(7) = s.VIS_B64(3);
 | |
|     d.VIS_B64(6) = d.VIS_B64(3);
 | |
|     d.VIS_B64(5) = s.VIS_B64(2);
 | |
|     d.VIS_B64(4) = d.VIS_B64(2);
 | |
|     d.VIS_B64(3) = s.VIS_B64(1);
 | |
|     d.VIS_B64(2) = d.VIS_B64(1);
 | |
|     d.VIS_B64(1) = s.VIS_B64(0);
 | |
|     //d.VIS_B64(0) = d.VIS_B64(0);
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmul8x16(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                 \
 | |
|     tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r);       \
 | |
|     if ((tmp & 0xff) > 0x7f)                                    \
 | |
|         tmp += 0x100;                                           \
 | |
|     d.VIS_W64(r) = tmp >> 8;
 | |
| 
 | |
|     PMUL(0);
 | |
|     PMUL(1);
 | |
|     PMUL(2);
 | |
|     PMUL(3);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmul8x16al(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                 \
 | |
|     tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r);       \
 | |
|     if ((tmp & 0xff) > 0x7f)                                    \
 | |
|         tmp += 0x100;                                           \
 | |
|     d.VIS_W64(r) = tmp >> 8;
 | |
| 
 | |
|     PMUL(0);
 | |
|     PMUL(1);
 | |
|     PMUL(2);
 | |
|     PMUL(3);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmul8x16au(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                 \
 | |
|     tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r);       \
 | |
|     if ((tmp & 0xff) > 0x7f)                                    \
 | |
|         tmp += 0x100;                                           \
 | |
|     d.VIS_W64(r) = tmp >> 8;
 | |
| 
 | |
|     PMUL(0);
 | |
|     PMUL(1);
 | |
|     PMUL(2);
 | |
|     PMUL(3);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmul8sux16(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                         \
 | |
|     tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
 | |
|     if ((tmp & 0xff) > 0x7f)                                            \
 | |
|         tmp += 0x100;                                                   \
 | |
|     d.VIS_W64(r) = tmp >> 8;
 | |
| 
 | |
|     PMUL(0);
 | |
|     PMUL(1);
 | |
|     PMUL(2);
 | |
|     PMUL(3);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmul8ulx16(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                         \
 | |
|     tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
 | |
|     if ((tmp & 0xff) > 0x7f)                                            \
 | |
|         tmp += 0x100;                                                   \
 | |
|     d.VIS_W64(r) = tmp >> 8;
 | |
| 
 | |
|     PMUL(0);
 | |
|     PMUL(1);
 | |
|     PMUL(2);
 | |
|     PMUL(3);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmuld8sux16(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                         \
 | |
|     tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8);       \
 | |
|     if ((tmp & 0xff) > 0x7f)                                            \
 | |
|         tmp += 0x100;                                                   \
 | |
|     d.VIS_L64(r) = tmp;
 | |
| 
 | |
|     // Reverse calculation order to handle overlap
 | |
|     PMUL(1);
 | |
|     PMUL(0);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fmuld8ulx16(void)
 | |
| {
 | |
|     vis64 s, d;
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     s.d = DT0;
 | |
|     d.d = DT1;
 | |
| 
 | |
| #define PMUL(r)                                                         \
 | |
|     tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2));        \
 | |
|     if ((tmp & 0xff) > 0x7f)                                            \
 | |
|         tmp += 0x100;                                                   \
 | |
|     d.VIS_L64(r) = tmp;
 | |
| 
 | |
|     // Reverse calculation order to handle overlap
 | |
|     PMUL(1);
 | |
|     PMUL(0);
 | |
| #undef PMUL
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| void helper_fexpand(void)
 | |
| {
 | |
|     vis32 s;
 | |
|     vis64 d;
 | |
| 
 | |
|     s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
 | |
|     d.d = DT1;
 | |
|     d.VIS_L64(0) = s.VIS_W32(0) << 4;
 | |
|     d.VIS_L64(1) = s.VIS_W32(1) << 4;
 | |
|     d.VIS_L64(2) = s.VIS_W32(2) << 4;
 | |
|     d.VIS_L64(3) = s.VIS_W32(3) << 4;
 | |
| 
 | |
|     DT0 = d.d;
 | |
| }
 | |
| 
 | |
| #define VIS_HELPER(name, F)                             \
 | |
|     void name##16(void)                                 \
 | |
|     {                                                   \
 | |
|         vis64 s, d;                                     \
 | |
|                                                         \
 | |
|         s.d = DT0;                                      \
 | |
|         d.d = DT1;                                      \
 | |
|                                                         \
 | |
|         d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0));   \
 | |
|         d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1));   \
 | |
|         d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2));   \
 | |
|         d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3));   \
 | |
|                                                         \
 | |
|         DT0 = d.d;                                      \
 | |
|     }                                                   \
 | |
|                                                         \
 | |
|     void name##16s(void)                                \
 | |
|     {                                                   \
 | |
|         vis32 s, d;                                     \
 | |
|                                                         \
 | |
|         s.f = FT0;                                      \
 | |
|         d.f = FT1;                                      \
 | |
|                                                         \
 | |
|         d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0));   \
 | |
|         d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1));   \
 | |
|                                                         \
 | |
|         FT0 = d.f;                                      \
 | |
|     }                                                   \
 | |
|                                                         \
 | |
|     void name##32(void)                                 \
 | |
|     {                                                   \
 | |
|         vis64 s, d;                                     \
 | |
|                                                         \
 | |
|         s.d = DT0;                                      \
 | |
|         d.d = DT1;                                      \
 | |
|                                                         \
 | |
|         d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0));   \
 | |
|         d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1));   \
 | |
|                                                         \
 | |
|         DT0 = d.d;                                      \
 | |
|     }                                                   \
 | |
|                                                         \
 | |
|     void name##32s(void)                                \
 | |
|     {                                                   \
 | |
|         vis32 s, d;                                     \
 | |
|                                                         \
 | |
|         s.f = FT0;                                      \
 | |
|         d.f = FT1;                                      \
 | |
|                                                         \
 | |
|         d.l = F(d.l, s.l);                              \
 | |
|                                                         \
 | |
|         FT0 = d.f;                                      \
 | |
|     }
 | |
| 
 | |
| #define FADD(a, b) ((a) + (b))
 | |
| #define FSUB(a, b) ((a) - (b))
 | |
| VIS_HELPER(helper_fpadd, FADD)
 | |
| VIS_HELPER(helper_fpsub, FSUB)
 | |
| 
 | |
| #define VIS_CMPHELPER(name, F)                                        \
 | |
|     void name##16(void)                                           \
 | |
|     {                                                             \
 | |
|         vis64 s, d;                                               \
 | |
|                                                                   \
 | |
|         s.d = DT0;                                                \
 | |
|         d.d = DT1;                                                \
 | |
|                                                                   \
 | |
|         d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0;       \
 | |
|         d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0;      \
 | |
|         d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0;      \
 | |
|         d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0;      \
 | |
|                                                                   \
 | |
|         DT0 = d.d;                                                \
 | |
|     }                                                             \
 | |
|                                                                   \
 | |
|     void name##32(void)                                           \
 | |
|     {                                                             \
 | |
|         vis64 s, d;                                               \
 | |
|                                                                   \
 | |
|         s.d = DT0;                                                \
 | |
|         d.d = DT1;                                                \
 | |
|                                                                   \
 | |
|         d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0;       \
 | |
|         d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0;      \
 | |
|                                                                   \
 | |
|         DT0 = d.d;                                                \
 | |
|     }
 | |
| 
 | |
| #define FCMPGT(a, b) ((a) > (b))
 | |
| #define FCMPEQ(a, b) ((a) == (b))
 | |
| #define FCMPLE(a, b) ((a) <= (b))
 | |
| #define FCMPNE(a, b) ((a) != (b))
 | |
| 
 | |
| VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
 | |
| VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
 | |
| VIS_CMPHELPER(helper_fcmple, FCMPLE)
 | |
| VIS_CMPHELPER(helper_fcmpne, FCMPNE)
 | |
| #endif
 | |
| 
 | |
| void helper_check_ieee_exceptions(void)
 | |
| {
 | |
|     target_ulong status;
 | |
| 
 | |
|     status = get_float_exception_flags(&env->fp_status);
 | |
|     if (status) {
 | |
|         /* Copy IEEE 754 flags into FSR */
 | |
|         if (status & float_flag_invalid)
 | |
|             env->fsr |= FSR_NVC;
 | |
|         if (status & float_flag_overflow)
 | |
|             env->fsr |= FSR_OFC;
 | |
|         if (status & float_flag_underflow)
 | |
|             env->fsr |= FSR_UFC;
 | |
|         if (status & float_flag_divbyzero)
 | |
|             env->fsr |= FSR_DZC;
 | |
|         if (status & float_flag_inexact)
 | |
|             env->fsr |= FSR_NXC;
 | |
| 
 | |
|         if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
 | |
|             /* Unmasked exception, generate a trap */
 | |
|             env->fsr |= FSR_FTT_IEEE_EXCP;
 | |
|             raise_exception(TT_FP_EXCP);
 | |
|         } else {
 | |
|             /* Accumulate exceptions */
 | |
|             env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_clear_float_exceptions(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fabss(void)
 | |
| {
 | |
|     FT0 = float32_abs(FT1);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void helper_fabsd(void)
 | |
| {
 | |
|     DT0 = float64_abs(DT1);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fabsq(void)
 | |
| {
 | |
|     QT0 = float128_abs(QT1);
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| void helper_fsqrts(void)
 | |
| {
 | |
|     FT0 = float32_sqrt(FT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fsqrtd(void)
 | |
| {
 | |
|     DT0 = float64_sqrt(DT1, &env->fp_status);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void helper_fsqrtq(void)
 | |
| {
 | |
|     QT0 = float128_sqrt(QT1, &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
 | |
|     void glue(helper_, name) (void)                                     \
 | |
|     {                                                                   \
 | |
|         target_ulong new_fsr;                                           \
 | |
|                                                                         \
 | |
|         env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
 | |
|         switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
 | |
|         case float_relation_unordered:                                  \
 | |
|             new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
 | |
|             if ((env->fsr & FSR_NVM) || TRAP) {                         \
 | |
|                 env->fsr |= new_fsr;                                    \
 | |
|                 env->fsr |= FSR_NVC;                                    \
 | |
|                 env->fsr |= FSR_FTT_IEEE_EXCP;                          \
 | |
|                 raise_exception(TT_FP_EXCP);                            \
 | |
|             } else {                                                    \
 | |
|                 env->fsr |= FSR_NVA;                                    \
 | |
|             }                                                           \
 | |
|             break;                                                      \
 | |
|         case float_relation_less:                                       \
 | |
|             new_fsr = FSR_FCC0 << FS;                                   \
 | |
|             break;                                                      \
 | |
|         case float_relation_greater:                                    \
 | |
|             new_fsr = FSR_FCC1 << FS;                                   \
 | |
|             break;                                                      \
 | |
|         default:                                                        \
 | |
|             new_fsr = 0;                                                \
 | |
|             break;                                                      \
 | |
|         }                                                               \
 | |
|         env->fsr |= new_fsr;                                            \
 | |
|     }
 | |
| 
 | |
| GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
 | |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
 | |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
 | |
| GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
 | |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
 | |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
 | |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
 | |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
 | |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
 | |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
 | |
| GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
 | |
| GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
 | |
| GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
 | |
| GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
 | |
| GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC)
 | |
| static void dump_mxcc(CPUState *env)
 | |
| {
 | |
|     printf("mxccdata: %016llx %016llx %016llx %016llx\n",
 | |
|         env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
 | |
|     printf("mxccregs: %016llx %016llx %016llx %016llx\n"
 | |
|            "          %016llx %016llx %016llx %016llx\n",
 | |
|         env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
 | |
|         env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
 | |
|     && defined(DEBUG_ASI)
 | |
| static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 | |
|                      uint64_t r1)
 | |
| {
 | |
|     switch (size)
 | |
|     {
 | |
|     case 1:
 | |
|         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 | |
|                     addr, asi, r1 & 0xff);
 | |
|         break;
 | |
|     case 2:
 | |
|         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 | |
|                     addr, asi, r1 & 0xffff);
 | |
|         break;
 | |
|     case 4:
 | |
|         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 | |
|                     addr, asi, r1 & 0xffffffff);
 | |
|         break;
 | |
|     case 8:
 | |
|         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 | |
|                     addr, asi, r1);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 | |
|     uint32_t last_addr = addr;
 | |
| #endif
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         switch (addr) {
 | |
|         case 0x01c00a00: /* MXCC control register */
 | |
|             if (size == 8)
 | |
|                 ret = env->mxccregs[3];
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00a04: /* MXCC control register */
 | |
|             if (size == 4)
 | |
|                 ret = env->mxccregs[3];
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00c00: /* Module reset register */
 | |
|             if (size == 8) {
 | |
|                 ret = env->mxccregs[5];
 | |
|                 // should we do something here?
 | |
|             } else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00f00: /* MBus port address register */
 | |
|             if (size == 8)
 | |
|                 ret = env->mxccregs[7];
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
 | |
|             break;
 | |
|         }
 | |
|         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x,"
 | |
|                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 | |
| #ifdef DEBUG_MXCC
 | |
|         dump_mxcc(env);
 | |
| #endif
 | |
|         break;
 | |
|     case 3: /* MMU probe */
 | |
|         {
 | |
|             int mmulev;
 | |
| 
 | |
|             mmulev = (addr >> 8) & 15;
 | |
|             if (mmulev > 4)
 | |
|                 ret = 0;
 | |
|             else
 | |
|                 ret = mmu_probe(env, addr, mmulev);
 | |
|             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 | |
|                         addr, mmulev, ret);
 | |
|         }
 | |
|         break;
 | |
|     case 4: /* read MMU regs */
 | |
|         {
 | |
|             int reg = (addr >> 8) & 0x1f;
 | |
| 
 | |
|             ret = env->mmuregs[reg];
 | |
|             if (reg == 3) /* Fault status cleared on read */
 | |
|                 env->mmuregs[3] = 0;
 | |
|             else if (reg == 0x13) /* Fault status read */
 | |
|                 ret = env->mmuregs[3];
 | |
|             else if (reg == 0x14) /* Fault address read */
 | |
|                 ret = env->mmuregs[4];
 | |
|             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 | |
|         }
 | |
|         break;
 | |
|     case 5: // Turbosparc ITLB Diagnostic
 | |
|     case 6: // Turbosparc DTLB Diagnostic
 | |
|     case 7: // Turbosparc IOTLB Diagnostic
 | |
|         break;
 | |
|     case 9: /* Supervisor code access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_code(addr);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_code(addr & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_code(addr & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldq_code(addr & ~7);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xa: /* User data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_user(addr);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_user(addr & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_user(addr & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldq_user(addr & ~7);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xb: /* Supervisor data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_kernel(addr);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_kernel(addr & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_kernel(addr & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldq_kernel(addr & ~7);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|         break;
 | |
|     case 0x20: /* MMU passthrough */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys(addr);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys(addr & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys(addr & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldq_phys(addr & ~7);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys((target_phys_addr_t)addr
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys((target_phys_addr_t)(addr & ~1)
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys((target_phys_addr_t)(addr & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldq_phys((target_phys_addr_t)(addr & ~7)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0x30: // Turbosparc secondary cache diagnostic
 | |
|     case 0x31: // Turbosparc RAM snoop
 | |
|     case 0x32: // Turbosparc page table descriptor diagnostic
 | |
|     case 0x39: /* data cache diagnostic register */
 | |
|         ret = 0;
 | |
|         break;
 | |
|     case 8: /* User code access, XXX */
 | |
|     default:
 | |
|         do_unassigned_access(addr, 0, 0, asi);
 | |
|         ret = 0;
 | |
|         break;
 | |
|     }
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = (int16_t) ret;
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = (int32_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("read ", last_addr, asi, size, ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
 | |
| {
 | |
|     switch(asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         switch (addr) {
 | |
|         case 0x01c00000: /* MXCC stream data register 0 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[0] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00008: /* MXCC stream data register 1 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[1] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00010: /* MXCC stream data register 2 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[2] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00018: /* MXCC stream data register 3 */
 | |
|             if (size == 8)
 | |
|                 env->mxccdata[3] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00100: /* MXCC stream source */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[0] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
 | |
|             env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
 | |
|             env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
 | |
|             env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
 | |
|             break;
 | |
|         case 0x01c00200: /* MXCC stream destination */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[1] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
 | |
|             stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
 | |
|             break;
 | |
|         case 0x01c00a00: /* MXCC control register */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[3] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00a04: /* MXCC control register */
 | |
|             if (size == 4)
 | |
|                 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00e00: /* MXCC error register  */
 | |
|             // writing a 1 bit clears the error
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[6] &= ~val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         case 0x01c00f00: /* MBus port address register */
 | |
|             if (size == 8)
 | |
|                 env->mxccregs[7] = val;
 | |
|             else
 | |
|                 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
 | |
|             break;
 | |
|         }
 | |
|         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val);
 | |
| #ifdef DEBUG_MXCC
 | |
|         dump_mxcc(env);
 | |
| #endif
 | |
|         break;
 | |
|     case 3: /* MMU flush */
 | |
|         {
 | |
|             int mmulev;
 | |
| 
 | |
|             mmulev = (addr >> 8) & 15;
 | |
|             DPRINTF_MMU("mmu flush level %d\n", mmulev);
 | |
|             switch (mmulev) {
 | |
|             case 0: // flush page
 | |
|                 tlb_flush_page(env, addr & 0xfffff000);
 | |
|                 break;
 | |
|             case 1: // flush segment (256k)
 | |
|             case 2: // flush region (16M)
 | |
|             case 3: // flush context (4G)
 | |
|             case 4: // flush entire
 | |
|                 tlb_flush(env, 1);
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|         }
 | |
|         break;
 | |
|     case 4: /* write MMU regs */
 | |
|         {
 | |
|             int reg = (addr >> 8) & 0x1f;
 | |
|             uint32_t oldreg;
 | |
| 
 | |
|             oldreg = env->mmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // Control Register
 | |
|                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
 | |
|                                     (val & 0x00ffffff);
 | |
|                 // Mappings generated during no-fault mode or MMU
 | |
|                 // disabled mode are invalid in normal mode
 | |
|                 if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
 | |
|                     (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
 | |
|                     tlb_flush(env, 1);
 | |
|                 break;
 | |
|             case 1: // Context Table Pointer Register
 | |
|                 env->mmuregs[reg] = val & env->mmu_ctpr_mask;
 | |
|                 break;
 | |
|             case 2: // Context Register
 | |
|                 env->mmuregs[reg] = val & env->mmu_cxr_mask;
 | |
|                 if (oldreg != env->mmuregs[reg]) {
 | |
|                     /* we flush when the MMU context changes because
 | |
|                        QEMU has no MMU context support */
 | |
|                     tlb_flush(env, 1);
 | |
|                 }
 | |
|                 break;
 | |
|             case 3: // Synchronous Fault Status Register with Clear
 | |
|             case 4: // Synchronous Fault Address Register
 | |
|                 break;
 | |
|             case 0x10: // TLB Replacement Control Register
 | |
|                 env->mmuregs[reg] = val & env->mmu_trcr_mask;
 | |
|                 break;
 | |
|             case 0x13: // Synchronous Fault Status Register with Read and Clear
 | |
|                 env->mmuregs[3] = val & env->mmu_sfsr_mask;
 | |
|                 break;
 | |
|             case 0x14: // Synchronous Fault Address Register
 | |
|                 env->mmuregs[4] = val;
 | |
|                 break;
 | |
|             default:
 | |
|                 env->mmuregs[reg] = val;
 | |
|                 break;
 | |
|             }
 | |
|             if (oldreg != env->mmuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|         }
 | |
|         break;
 | |
|     case 5: // Turbosparc ITLB Diagnostic
 | |
|     case 6: // Turbosparc DTLB Diagnostic
 | |
|     case 7: // Turbosparc IOTLB Diagnostic
 | |
|         break;
 | |
|     case 0xa: /* User data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             stb_user(addr, val);
 | |
|             break;
 | |
|         case 2:
 | |
|             stw_user(addr & ~1, val);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             stl_user(addr & ~3, val);
 | |
|             break;
 | |
|         case 8:
 | |
|             stq_user(addr & ~7, val);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xb: /* Supervisor data access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             stb_kernel(addr, val);
 | |
|             break;
 | |
|         case 2:
 | |
|             stw_kernel(addr & ~1, val);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             stl_kernel(addr & ~3, val);
 | |
|             break;
 | |
|         case 8:
 | |
|             stq_kernel(addr & ~7, val);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|     case 0x10: /* I/D-cache flush page */
 | |
|     case 0x11: /* I/D-cache flush segment */
 | |
|     case 0x12: /* I/D-cache flush region */
 | |
|     case 0x13: /* I/D-cache flush context */
 | |
|     case 0x14: /* I/D-cache flush user */
 | |
|         break;
 | |
|     case 0x17: /* Block copy, sta access */
 | |
|         {
 | |
|             // val = src
 | |
|             // addr = dst
 | |
|             // copy 32 bytes
 | |
|             unsigned int i;
 | |
|             uint32_t src = val & ~3, dst = addr & ~3, temp;
 | |
| 
 | |
|             for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
 | |
|                 temp = ldl_kernel(src);
 | |
|                 stl_kernel(dst, temp);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x1f: /* Block fill, stda access */
 | |
|         {
 | |
|             // addr = dst
 | |
|             // fill 32 bytes with val
 | |
|             unsigned int i;
 | |
|             uint32_t dst = addr & 7;
 | |
| 
 | |
|             for (i = 0; i < 32; i += 8, dst += 8)
 | |
|                 stq_kernel(dst, val);
 | |
|         }
 | |
|         break;
 | |
|     case 0x20: /* MMU passthrough */
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(addr, val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(addr & ~1, val);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys(addr & ~3, val);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stq_phys(addr & ~7, val);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys((target_phys_addr_t)addr
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys((target_phys_addr_t)(addr & ~1)
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), val);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys((target_phys_addr_t)(addr & ~3)
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), val);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stq_phys((target_phys_addr_t)(addr & ~7)
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), val);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
 | |
|     case 0x31: // store buffer data, Ross RT620 I-cache flush or
 | |
|                // Turbosparc snoop RAM
 | |
|     case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic
 | |
|     case 0x36: /* I-cache flash clear */
 | |
|     case 0x37: /* D-cache flash clear */
 | |
|     case 0x38: /* breakpoint diagnostics */
 | |
|     case 0x4c: /* breakpoint action */
 | |
|         break;
 | |
|     case 8: /* User code access, XXX */
 | |
|     case 9: /* Supervisor code access, XXX */
 | |
|     default:
 | |
|         do_unassigned_access(addr, 1, 0, asi);
 | |
|         break;
 | |
|     }
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("write", addr, asi, size, val);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| #else /* TARGET_SPARC64 */
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| #if defined(DEBUG_ASI)
 | |
|     target_ulong last_addr = addr;
 | |
| #endif
 | |
| 
 | |
|     if (asi < 0x80)
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0x80: // Primary
 | |
|     case 0x82: // Primary no-fault
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_raw(addr);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_raw(addr & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_raw(addr & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_raw(addr & ~7);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x81: // Secondary
 | |
|     case 0x83: // Secondary no-fault
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         // XXX
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert from little endian */
 | |
|     switch (asi) {
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             ret = bswap16(ret);
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = bswap32(ret);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = bswap64(ret);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert to signed number */
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = (int16_t) ret;
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = (int32_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("read ", last_addr, asi, size, ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
 | |
| {
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("write", addr, asi, size, val);
 | |
| #endif
 | |
|     if (asi < 0x80)
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     /* Convert to little endian */
 | |
|     switch (asi) {
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             addr = bswap16(addr);
 | |
|             break;
 | |
|         case 4:
 | |
|             addr = bswap32(addr);
 | |
|             break;
 | |
|         case 8:
 | |
|             addr = bswap64(addr);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(asi) {
 | |
|     case 0x80: // Primary
 | |
|     case 0x88: // Primary LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_raw(addr, val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_raw(addr & ~1, val);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_raw(addr & ~3, val);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_raw(addr & ~7, val);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x81: // Secondary
 | |
|     case 0x89: // Secondary LE
 | |
|         // XXX
 | |
|         return;
 | |
| 
 | |
|     case 0x82: // Primary no-fault, RO
 | |
|     case 0x83: // Secondary no-fault, RO
 | |
|     case 0x8a: // Primary no-fault LE, RO
 | |
|     case 0x8b: // Secondary no-fault LE, RO
 | |
|     default:
 | |
|         do_unassigned_access(addr, 1, 0, 1);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_USER_ONLY */
 | |
| 
 | |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| #if defined(DEBUG_ASI)
 | |
|     target_ulong last_addr = addr;
 | |
| #endif
 | |
| 
 | |
|     if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
|         || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x80: // Primary
 | |
|     case 0x82: // Primary no-fault
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|         if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
 | |
|             if (env->hpstate & HS_PRIV) {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     ret = ldub_hypv(addr);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     ret = lduw_hypv(addr & ~1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     ret = ldl_hypv(addr & ~3);
 | |
|                     break;
 | |
|                 default:
 | |
|                 case 8:
 | |
|                     ret = ldq_hypv(addr & ~7);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     ret = ldub_kernel(addr);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     ret = lduw_kernel(addr & ~1);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     ret = ldl_kernel(addr & ~3);
 | |
|                     break;
 | |
|                 default:
 | |
|                 case 8:
 | |
|                     ret = ldq_kernel(addr & ~7);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_user(addr);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_user(addr & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_user(addr & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_user(addr & ~7);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_phys(addr);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_phys(addr & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_phys(addr & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_phys(addr & ~7);
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x81: // Secondary
 | |
|     case 0x83: // Secondary no-fault
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x45: // LSU
 | |
|         ret = env->lsu;
 | |
|         break;
 | |
|     case 0x50: // I-MMU regs
 | |
|         {
 | |
|             int reg = (addr >> 3) & 0xf;
 | |
| 
 | |
|             ret = env->immuregs[reg];
 | |
|             break;
 | |
|         }
 | |
|     case 0x51: // I-MMU 8k TSB pointer
 | |
|     case 0x52: // I-MMU 64k TSB pointer
 | |
|     case 0x55: // I-MMU data access
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x56: // I-MMU tag read
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 // Valid, ctx match, vaddr match
 | |
|                 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
|                     env->itlb_tag[i] == addr) {
 | |
|                     ret = env->itlb_tag[i];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x58: // D-MMU regs
 | |
|         {
 | |
|             int reg = (addr >> 3) & 0xf;
 | |
| 
 | |
|             ret = env->dmmuregs[reg];
 | |
|             break;
 | |
|         }
 | |
|     case 0x5e: // D-MMU tag read
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 // Valid, ctx match, vaddr match
 | |
|                 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
|                     env->dtlb_tag[i] == addr) {
 | |
|                     ret = env->dtlb_tag[i];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     case 0x59: // D-MMU 8k TSB pointer
 | |
|     case 0x5a: // D-MMU 64k TSB pointer
 | |
|     case 0x5b: // D-MMU data pointer
 | |
|     case 0x5d: // D-MMU data access
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x49: // Interrupt data receive
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
|         // XXX
 | |
|         break;
 | |
|     case 0x54: // I-MMU data in, WO
 | |
|     case 0x57: // I-MMU demap, WO
 | |
|     case 0x5c: // D-MMU data in, WO
 | |
|     case 0x5f: // D-MMU demap, WO
 | |
|     case 0x77: // Interrupt vector, WO
 | |
|     default:
 | |
|         do_unassigned_access(addr, 0, 0, 1);
 | |
|         ret = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert from little endian */
 | |
|     switch (asi) {
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             ret = bswap16(ret);
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = bswap32(ret);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = bswap64(ret);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Convert to signed number */
 | |
|     if (sign) {
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = (int8_t) ret;
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = (int16_t) ret;
 | |
|             break;
 | |
|         case 4:
 | |
|             ret = (int32_t) ret;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("read ", last_addr, asi, size, ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
 | |
| {
 | |
| #ifdef DEBUG_ASI
 | |
|     dump_asi("write", addr, asi, size, val);
 | |
| #endif
 | |
|     if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
|         || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
 | |
|         raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     /* Convert to little endian */
 | |
|     switch (asi) {
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|         switch(size) {
 | |
|         case 2:
 | |
|             addr = bswap16(addr);
 | |
|             break;
 | |
|         case 4:
 | |
|             addr = bswap32(addr);
 | |
|             break;
 | |
|         case 8:
 | |
|             addr = bswap64(addr);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(asi) {
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x80: // Primary
 | |
|     case 0x88: // Primary LE
 | |
|         if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
 | |
|             if (env->hpstate & HS_PRIV) {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     stb_hypv(addr, val);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     stw_hypv(addr & ~1, val);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     stl_hypv(addr & ~3, val);
 | |
|                     break;
 | |
|                 case 8:
 | |
|                 default:
 | |
|                     stq_hypv(addr & ~7, val);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 switch(size) {
 | |
|                 case 1:
 | |
|                     stb_kernel(addr, val);
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     stw_kernel(addr & ~1, val);
 | |
|                     break;
 | |
|                 case 4:
 | |
|                     stl_kernel(addr & ~3, val);
 | |
|                     break;
 | |
|                 case 8:
 | |
|                 default:
 | |
|                     stq_kernel(addr & ~7, val);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_user(addr, val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_user(addr & ~1, val);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_user(addr & ~3, val);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_user(addr & ~7, val);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|         {
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(addr, val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(addr & ~1, val);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_phys(addr & ~3, val);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_phys(addr & ~7, val);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x81: // Secondary
 | |
|     case 0x89: // Secondary LE
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x45: // LSU
 | |
|         {
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->lsu;
 | |
|             env->lsu = val & (DMMU_E | IMMU_E);
 | |
|             // Mappings generated during D/I MMU disabled mode are
 | |
|             // invalid in normal mode
 | |
|             if (oldreg != env->lsu) {
 | |
|                 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
 | |
| #ifdef DEBUG_MMU
 | |
|                 dump_mmu(env);
 | |
| #endif
 | |
|                 tlb_flush(env, 1);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     case 0x50: // I-MMU regs
 | |
|         {
 | |
|             int reg = (addr >> 3) & 0xf;
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->immuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 1: // Not in I-MMU
 | |
|             case 2:
 | |
|             case 7:
 | |
|             case 8:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
|                 if ((val & 1) == 0)
 | |
|                     val = 0; // Clear SFSR
 | |
|                 break;
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|             env->immuregs[reg] = val;
 | |
|             if (oldreg != env->immuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 0x54: // I-MMU data in
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             // Try finding an invalid entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
|                     env->itlb_tag[i] = env->immuregs[6];
 | |
|                     env->itlb_tte[i] = val;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // Try finding an unlocked entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->itlb_tte[i] & 0x40) == 0) {
 | |
|                     env->itlb_tag[i] = env->immuregs[6];
 | |
|                     env->itlb_tte[i] = val;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // error state?
 | |
|             return;
 | |
|         }
 | |
|     case 0x55: // I-MMU data access
 | |
|         {
 | |
|             unsigned int i = (addr >> 3) & 0x3f;
 | |
| 
 | |
|             env->itlb_tag[i] = env->immuregs[6];
 | |
|             env->itlb_tte[i] = val;
 | |
|             return;
 | |
|         }
 | |
|     case 0x57: // I-MMU demap
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x58: // D-MMU regs
 | |
|         {
 | |
|             int reg = (addr >> 3) & 0xf;
 | |
|             uint64_t oldreg;
 | |
| 
 | |
|             oldreg = env->dmmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
|                 if ((val & 1) == 0) {
 | |
|                     val = 0; // Clear SFSR, Fault address
 | |
|                     env->dmmuregs[4] = 0;
 | |
|                 }
 | |
|                 env->dmmuregs[reg] = val;
 | |
|                 break;
 | |
|             case 1: // Primary context
 | |
|             case 2: // Secondary context
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             case 7: // Virtual Watchpoint
 | |
|             case 8: // Physical Watchpoint
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
|             env->dmmuregs[reg] = val;
 | |
|             if (oldreg != env->dmmuregs[reg]) {
 | |
|                 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             dump_mmu(env);
 | |
| #endif
 | |
|             return;
 | |
|         }
 | |
|     case 0x5c: // D-MMU data in
 | |
|         {
 | |
|             unsigned int i;
 | |
| 
 | |
|             // Try finding an invalid entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
|                     env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|                     env->dtlb_tte[i] = val;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // Try finding an unlocked entry
 | |
|             for (i = 0; i < 64; i++) {
 | |
|                 if ((env->dtlb_tte[i] & 0x40) == 0) {
 | |
|                     env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|                     env->dtlb_tte[i] = val;
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             // error state?
 | |
|             return;
 | |
|         }
 | |
|     case 0x5d: // D-MMU data access
 | |
|         {
 | |
|             unsigned int i = (addr >> 3) & 0x3f;
 | |
| 
 | |
|             env->dtlb_tag[i] = env->dmmuregs[6];
 | |
|             env->dtlb_tte[i] = val;
 | |
|             return;
 | |
|         }
 | |
|     case 0x5f: // D-MMU demap
 | |
|     case 0x49: // Interrupt data receive
 | |
|         // XXX
 | |
|         return;
 | |
|     case 0x51: // I-MMU 8k TSB pointer, RO
 | |
|     case 0x52: // I-MMU 64k TSB pointer, RO
 | |
|     case 0x56: // I-MMU tag read, RO
 | |
|     case 0x59: // D-MMU 8k TSB pointer, RO
 | |
|     case 0x5a: // D-MMU 64k TSB pointer, RO
 | |
|     case 0x5b: // D-MMU data pointer, RO
 | |
|     case 0x5e: // D-MMU tag read, RO
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
|     case 0x82: // Primary no-fault, RO
 | |
|     case 0x83: // Secondary no-fault, RO
 | |
|     case 0x8a: // Primary no-fault LE, RO
 | |
|     case 0x8b: // Secondary no-fault LE, RO
 | |
|     default:
 | |
|         do_unassigned_access(addr, 1, 0, 1);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
 | |
| {
 | |
|     unsigned int i;
 | |
|     target_ulong val;
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0xf0: // Block load primary
 | |
|     case 0xf1: // Block load secondary
 | |
|     case 0xf8: // Block load primary LE
 | |
|     case 0xf9: // Block load secondary LE
 | |
|         if (rd & 7) {
 | |
|             raise_exception(TT_ILL_INSN);
 | |
|             return;
 | |
|         }
 | |
|         if (addr & 0x3f) {
 | |
|             raise_exception(TT_UNALIGNED);
 | |
|             return;
 | |
|         }
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0);
 | |
|             addr += 4;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     val = helper_ld_asi(addr, asi, size, 0);
 | |
|     switch(size) {
 | |
|     default:
 | |
|     case 4:
 | |
|         *((uint32_t *)&FT0) = val;
 | |
|         break;
 | |
|     case 8:
 | |
|         *((int64_t *)&DT0) = val;
 | |
|         break;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     case 16:
 | |
|         // XXX
 | |
|         break;
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
 | |
| {
 | |
|     unsigned int i;
 | |
|     target_ulong val = 0;
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0xf0: // Block store primary
 | |
|     case 0xf1: // Block store secondary
 | |
|     case 0xf8: // Block store primary LE
 | |
|     case 0xf9: // Block store secondary LE
 | |
|         if (rd & 7) {
 | |
|             raise_exception(TT_ILL_INSN);
 | |
|             return;
 | |
|         }
 | |
|         if (addr & 0x3f) {
 | |
|             raise_exception(TT_UNALIGNED);
 | |
|             return;
 | |
|         }
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             val = *(uint32_t *)&env->fpr[rd++];
 | |
|             helper_st_asi(addr, val, asi & 0x8f, 4);
 | |
|             addr += 4;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch(size) {
 | |
|     default:
 | |
|     case 4:
 | |
|         val = *((uint32_t *)&FT0);
 | |
|         break;
 | |
|     case 8:
 | |
|         val = *((int64_t *)&DT0);
 | |
|         break;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     case 16:
 | |
|         // XXX
 | |
|         break;
 | |
| #endif
 | |
|     }
 | |
|     helper_st_asi(addr, val, asi, size);
 | |
| }
 | |
| 
 | |
| target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
 | |
|                             target_ulong val2, uint32_t asi)
 | |
| {
 | |
|     target_ulong ret;
 | |
| 
 | |
|     val1 &= 0xffffffffUL;
 | |
|     ret = helper_ld_asi(addr, asi, 4, 0);
 | |
|     ret &= 0xffffffffUL;
 | |
|     if (val1 == ret)
 | |
|         helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
 | |
|                              target_ulong val2, uint32_t asi)
 | |
| {
 | |
|     target_ulong ret;
 | |
| 
 | |
|     ret = helper_ld_asi(addr, asi, 8, 0);
 | |
|     if (val1 == ret)
 | |
|         helper_st_asi(addr, val2, asi, 8);
 | |
|     return ret;
 | |
| }
 | |
| #endif /* TARGET_SPARC64 */
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void helper_rett(void)
 | |
| {
 | |
|     unsigned int cwp;
 | |
| 
 | |
|     if (env->psret == 1)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
| 
 | |
|     env->psret = 1;
 | |
|     cwp = (env->cwp + 1) & (NWINDOWS - 1);
 | |
|     if (env->wim & (1 << cwp)) {
 | |
|         raise_exception(TT_WIN_UNF);
 | |
|     }
 | |
|     set_cwp(cwp);
 | |
|     env->psrs = env->psrps;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| target_ulong helper_udiv(target_ulong a, target_ulong b)
 | |
| {
 | |
|     uint64_t x0;
 | |
|     uint32_t x1;
 | |
| 
 | |
|     x0 = a | ((uint64_t) (env->y) << 32);
 | |
|     x1 = b;
 | |
| 
 | |
|     if (x1 == 0) {
 | |
|         raise_exception(TT_DIV_ZERO);
 | |
|     }
 | |
| 
 | |
|     x0 = x0 / x1;
 | |
|     if (x0 > 0xffffffff) {
 | |
|         env->cc_src2 = 1;
 | |
|         return 0xffffffff;
 | |
|     } else {
 | |
|         env->cc_src2 = 0;
 | |
|         return x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_sdiv(target_ulong a, target_ulong b)
 | |
| {
 | |
|     int64_t x0;
 | |
|     int32_t x1;
 | |
| 
 | |
|     x0 = a | ((int64_t) (env->y) << 32);
 | |
|     x1 = b;
 | |
| 
 | |
|     if (x1 == 0) {
 | |
|         raise_exception(TT_DIV_ZERO);
 | |
|     }
 | |
| 
 | |
|     x0 = x0 / x1;
 | |
|     if ((int32_t) x0 != x0) {
 | |
|         env->cc_src2 = 1;
 | |
|         return x0 < 0? 0x80000000: 0x7fffffff;
 | |
|     } else {
 | |
|         env->cc_src2 = 0;
 | |
|         return x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t helper_pack64(target_ulong high, target_ulong low)
 | |
| {
 | |
|     return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
 | |
| }
 | |
| 
 | |
| void helper_ldfsr(void)
 | |
| {
 | |
|     int rnd_mode;
 | |
| 
 | |
|     PUT_FSR32(env, *((uint32_t *) &FT0));
 | |
|     switch (env->fsr & FSR_RD_MASK) {
 | |
|     case FSR_RD_NEAREST:
 | |
|         rnd_mode = float_round_nearest_even;
 | |
|         break;
 | |
|     default:
 | |
|     case FSR_RD_ZERO:
 | |
|         rnd_mode = float_round_to_zero;
 | |
|         break;
 | |
|     case FSR_RD_POS:
 | |
|         rnd_mode = float_round_up;
 | |
|         break;
 | |
|     case FSR_RD_NEG:
 | |
|         rnd_mode = float_round_down;
 | |
|         break;
 | |
|     }
 | |
|     set_float_rounding_mode(rnd_mode, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_stfsr(void)
 | |
| {
 | |
|     *((uint32_t *) &FT0) = GET_FSR32(env);
 | |
| }
 | |
| 
 | |
| void helper_debug(void)
 | |
| {
 | |
|     env->exception_index = EXCP_DEBUG;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping
 | |
|    handling ? */
 | |
| void helper_save(void)
 | |
| {
 | |
|     uint32_t cwp;
 | |
| 
 | |
|     cwp = (env->cwp - 1) & (NWINDOWS - 1);
 | |
|     if (env->wim & (1 << cwp)) {
 | |
|         raise_exception(TT_WIN_OVF);
 | |
|     }
 | |
|     set_cwp(cwp);
 | |
| }
 | |
| 
 | |
| void helper_restore(void)
 | |
| {
 | |
|     uint32_t cwp;
 | |
| 
 | |
|     cwp = (env->cwp + 1) & (NWINDOWS - 1);
 | |
|     if (env->wim & (1 << cwp)) {
 | |
|         raise_exception(TT_WIN_UNF);
 | |
|     }
 | |
|     set_cwp(cwp);
 | |
| }
 | |
| 
 | |
| void helper_wrpsr(target_ulong new_psr)
 | |
| {
 | |
|     if ((new_psr & PSR_CWP) >= NWINDOWS)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
|     else
 | |
|         PUT_PSR(env, new_psr);
 | |
| }
 | |
| 
 | |
| target_ulong helper_rdpsr(void)
 | |
| {
 | |
|     return GET_PSR(env);
 | |
| }
 | |
| 
 | |
| #else
 | |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping
 | |
|    handling ? */
 | |
| void helper_save(void)
 | |
| {
 | |
|     uint32_t cwp;
 | |
| 
 | |
|     cwp = (env->cwp - 1) & (NWINDOWS - 1);
 | |
|     if (env->cansave == 0) {
 | |
|         raise_exception(TT_SPILL | (env->otherwin != 0 ?
 | |
|                                     (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
 | |
|                                     ((env->wstate & 0x7) << 2)));
 | |
|     } else {
 | |
|         if (env->cleanwin - env->canrestore == 0) {
 | |
|             // XXX Clean windows without trap
 | |
|             raise_exception(TT_CLRWIN);
 | |
|         } else {
 | |
|             env->cansave--;
 | |
|             env->canrestore++;
 | |
|             set_cwp(cwp);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_restore(void)
 | |
| {
 | |
|     uint32_t cwp;
 | |
| 
 | |
|     cwp = (env->cwp + 1) & (NWINDOWS - 1);
 | |
|     if (env->canrestore == 0) {
 | |
|         raise_exception(TT_FILL | (env->otherwin != 0 ?
 | |
|                                    (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
 | |
|                                    ((env->wstate & 0x7) << 2)));
 | |
|     } else {
 | |
|         env->cansave++;
 | |
|         env->canrestore--;
 | |
|         set_cwp(cwp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_flushw(void)
 | |
| {
 | |
|     if (env->cansave != NWINDOWS - 2) {
 | |
|         raise_exception(TT_SPILL | (env->otherwin != 0 ?
 | |
|                                     (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
 | |
|                                     ((env->wstate & 0x7) << 2)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_saved(void)
 | |
| {
 | |
|     env->cansave++;
 | |
|     if (env->otherwin == 0)
 | |
|         env->canrestore--;
 | |
|     else
 | |
|         env->otherwin--;
 | |
| }
 | |
| 
 | |
| void helper_restored(void)
 | |
| {
 | |
|     env->canrestore++;
 | |
|     if (env->cleanwin < NWINDOWS - 1)
 | |
|         env->cleanwin++;
 | |
|     if (env->otherwin == 0)
 | |
|         env->cansave--;
 | |
|     else
 | |
|         env->otherwin--;
 | |
| }
 | |
| 
 | |
| target_ulong helper_rdccr(void)
 | |
| {
 | |
|     return GET_CCR(env);
 | |
| }
 | |
| 
 | |
| void helper_wrccr(target_ulong new_ccr)
 | |
| {
 | |
|     PUT_CCR(env, new_ccr);
 | |
| }
 | |
| 
 | |
| // CWP handling is reversed in V9, but we still use the V8 register
 | |
| // order.
 | |
| target_ulong helper_rdcwp(void)
 | |
| {
 | |
|     return GET_CWP64(env);
 | |
| }
 | |
| 
 | |
| void helper_wrcwp(target_ulong new_cwp)
 | |
| {
 | |
|     PUT_CWP64(env, new_cwp);
 | |
| }
 | |
| 
 | |
| // This function uses non-native bit order
 | |
| #define GET_FIELD(X, FROM, TO)                                  \
 | |
|     ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
 | |
| 
 | |
| // This function uses the order in the manuals, i.e. bit 0 is 2^0
 | |
| #define GET_FIELD_SP(X, FROM, TO)               \
 | |
|     GET_FIELD(X, 63 - (TO), 63 - (FROM))
 | |
| 
 | |
| target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
 | |
| {
 | |
|     return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
 | |
|         (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
 | |
|         (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
 | |
|         (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
 | |
|         (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
 | |
|         (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
 | |
|         (((pixel_addr >> 55) & 1) << 4) |
 | |
|         (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
 | |
|         GET_FIELD_SP(pixel_addr, 11, 12);
 | |
| }
 | |
| 
 | |
| target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = addr + offset;
 | |
|     env->gsr &= ~7ULL;
 | |
|     env->gsr |= tmp & 7ULL;
 | |
|     return tmp & ~7ULL;
 | |
| }
 | |
| 
 | |
| target_ulong helper_popc(target_ulong val)
 | |
| {
 | |
|     return ctpop64(val);
 | |
| }
 | |
| 
 | |
| static inline uint64_t *get_gregset(uint64_t pstate)
 | |
| {
 | |
|     switch (pstate) {
 | |
|     default:
 | |
|     case 0:
 | |
|         return env->bgregs;
 | |
|     case PS_AG:
 | |
|         return env->agregs;
 | |
|     case PS_MG:
 | |
|         return env->mgregs;
 | |
|     case PS_IG:
 | |
|         return env->igregs;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void change_pstate(uint64_t new_pstate)
 | |
| {
 | |
|     uint64_t pstate_regs, new_pstate_regs;
 | |
|     uint64_t *src, *dst;
 | |
| 
 | |
|     pstate_regs = env->pstate & 0xc01;
 | |
|     new_pstate_regs = new_pstate & 0xc01;
 | |
|     if (new_pstate_regs != pstate_regs) {
 | |
|         // Switch global register bank
 | |
|         src = get_gregset(new_pstate_regs);
 | |
|         dst = get_gregset(pstate_regs);
 | |
|         memcpy32(dst, env->gregs);
 | |
|         memcpy32(env->gregs, src);
 | |
|     }
 | |
|     env->pstate = new_pstate;
 | |
| }
 | |
| 
 | |
| void helper_wrpstate(target_ulong new_state)
 | |
| {
 | |
|     change_pstate(new_state & 0xf3f);
 | |
| }
 | |
| 
 | |
| void helper_done(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->tsptr = &env->ts[env->tl];
 | |
|     env->pc = env->tsptr->tpc;
 | |
|     env->npc = env->tsptr->tnpc + 4;
 | |
|     PUT_CCR(env, env->tsptr->tstate >> 32);
 | |
|     env->asi = (env->tsptr->tstate >> 24) & 0xff;
 | |
|     change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
 | |
|     PUT_CWP64(env, env->tsptr->tstate & 0xff);
 | |
| }
 | |
| 
 | |
| void helper_retry(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->tsptr = &env->ts[env->tl];
 | |
|     env->pc = env->tsptr->tpc;
 | |
|     env->npc = env->tsptr->tnpc;
 | |
|     PUT_CCR(env, env->tsptr->tstate >> 32);
 | |
|     env->asi = (env->tsptr->tstate >> 24) & 0xff;
 | |
|     change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
 | |
|     PUT_CWP64(env, env->tsptr->tstate & 0xff);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void set_cwp(int new_cwp)
 | |
| {
 | |
|     /* put the modified wrap registers at their proper location */
 | |
|     if (env->cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
 | |
|     env->cwp = new_cwp;
 | |
|     /* put the wrap registers at their temporary location */
 | |
|     if (new_cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
 | |
|     env->regwptr = env->regbase + (new_cwp * 16);
 | |
|     REGWPTR = env->regwptr;
 | |
| }
 | |
| 
 | |
| void cpu_set_cwp(CPUState *env1, int new_cwp)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     target_ulong *saved_regwptr;
 | |
| #endif
 | |
| 
 | |
|     saved_env = env;
 | |
| #ifdef reg_REGWPTR
 | |
|     saved_regwptr = REGWPTR;
 | |
| #endif
 | |
|     env = env1;
 | |
|     set_cwp(new_cwp);
 | |
|     env = saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     REGWPTR = saved_regwptr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| #ifdef DEBUG_PCALL
 | |
| static const char * const excp_names[0x50] = {
 | |
|     [TT_TFAULT] = "Instruction Access Fault",
 | |
|     [TT_TMISS] = "Instruction Access MMU Miss",
 | |
|     [TT_CODE_ACCESS] = "Instruction Access Error",
 | |
|     [TT_ILL_INSN] = "Illegal Instruction",
 | |
|     [TT_PRIV_INSN] = "Privileged Instruction",
 | |
|     [TT_NFPU_INSN] = "FPU Disabled",
 | |
|     [TT_FP_EXCP] = "FPU Exception",
 | |
|     [TT_TOVF] = "Tag Overflow",
 | |
|     [TT_CLRWIN] = "Clean Windows",
 | |
|     [TT_DIV_ZERO] = "Division By Zero",
 | |
|     [TT_DFAULT] = "Data Access Fault",
 | |
|     [TT_DMISS] = "Data Access MMU Miss",
 | |
|     [TT_DATA_ACCESS] = "Data Access Error",
 | |
|     [TT_DPROT] = "Data Protection Error",
 | |
|     [TT_UNALIGNED] = "Unaligned Memory Access",
 | |
|     [TT_PRIV_ACT] = "Privileged Action",
 | |
|     [TT_EXTINT | 0x1] = "External Interrupt 1",
 | |
|     [TT_EXTINT | 0x2] = "External Interrupt 2",
 | |
|     [TT_EXTINT | 0x3] = "External Interrupt 3",
 | |
|     [TT_EXTINT | 0x4] = "External Interrupt 4",
 | |
|     [TT_EXTINT | 0x5] = "External Interrupt 5",
 | |
|     [TT_EXTINT | 0x6] = "External Interrupt 6",
 | |
|     [TT_EXTINT | 0x7] = "External Interrupt 7",
 | |
|     [TT_EXTINT | 0x8] = "External Interrupt 8",
 | |
|     [TT_EXTINT | 0x9] = "External Interrupt 9",
 | |
|     [TT_EXTINT | 0xa] = "External Interrupt 10",
 | |
|     [TT_EXTINT | 0xb] = "External Interrupt 11",
 | |
|     [TT_EXTINT | 0xc] = "External Interrupt 12",
 | |
|     [TT_EXTINT | 0xd] = "External Interrupt 13",
 | |
|     [TT_EXTINT | 0xe] = "External Interrupt 14",
 | |
|     [TT_EXTINT | 0xf] = "External Interrupt 15",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         static int count;
 | |
|         const char *name;
 | |
| 
 | |
|         if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
 | |
|             name = "Unknown";
 | |
|         else if (intno >= 0x100)
 | |
|             name = "Trap Instruction";
 | |
|         else if (intno >= 0xc0)
 | |
|             name = "Window Fill";
 | |
|         else if (intno >= 0x80)
 | |
|             name = "Window Spill";
 | |
|         else {
 | |
|             name = excp_names[intno];
 | |
|             if (!name)
 | |
|                 name = "Unknown";
 | |
|         }
 | |
| 
 | |
|         fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
 | |
|                 " SP=%016" PRIx64 "\n",
 | |
|                 count, name, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
|         {
 | |
|             int i;
 | |
|             uint8_t *ptr;
 | |
| 
 | |
|             fprintf(logfile, "       code=");
 | |
|             ptr = (uint8_t *)env->pc;
 | |
|             for(i = 0; i < 16; i++) {
 | |
|                 fprintf(logfile, " %02x", ldub(ptr + i));
 | |
|             }
 | |
|             fprintf(logfile, "\n");
 | |
|         }
 | |
| #endif
 | |
|         count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     if (env->tl == MAXTL) {
 | |
|         cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
 | |
|         ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
 | |
|         GET_CWP64(env);
 | |
|     env->tsptr->tpc = env->pc;
 | |
|     env->tsptr->tnpc = env->npc;
 | |
|     env->tsptr->tt = intno;
 | |
|     change_pstate(PS_PEF | PS_PRIV | PS_AG);
 | |
| 
 | |
|     if (intno == TT_CLRWIN)
 | |
|         set_cwp((env->cwp - 1) & (NWINDOWS - 1));
 | |
|     else if ((intno & 0x1c0) == TT_SPILL)
 | |
|         set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
 | |
|     else if ((intno & 0x1c0) == TT_FILL)
 | |
|         set_cwp((env->cwp + 1) & (NWINDOWS - 1));
 | |
|     env->tbr &= ~0x7fffULL;
 | |
|     env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
 | |
|     if (env->tl < MAXTL - 1) {
 | |
|         env->tl++;
 | |
|     } else {
 | |
|         env->pstate |= PS_RED;
 | |
|         if (env->tl != MAXTL)
 | |
|             env->tl++;
 | |
|     }
 | |
|     env->tsptr = &env->ts[env->tl];
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #else
 | |
| #ifdef DEBUG_PCALL
 | |
| static const char * const excp_names[0x80] = {
 | |
|     [TT_TFAULT] = "Instruction Access Fault",
 | |
|     [TT_ILL_INSN] = "Illegal Instruction",
 | |
|     [TT_PRIV_INSN] = "Privileged Instruction",
 | |
|     [TT_NFPU_INSN] = "FPU Disabled",
 | |
|     [TT_WIN_OVF] = "Window Overflow",
 | |
|     [TT_WIN_UNF] = "Window Underflow",
 | |
|     [TT_UNALIGNED] = "Unaligned Memory Access",
 | |
|     [TT_FP_EXCP] = "FPU Exception",
 | |
|     [TT_DFAULT] = "Data Access Fault",
 | |
|     [TT_TOVF] = "Tag Overflow",
 | |
|     [TT_EXTINT | 0x1] = "External Interrupt 1",
 | |
|     [TT_EXTINT | 0x2] = "External Interrupt 2",
 | |
|     [TT_EXTINT | 0x3] = "External Interrupt 3",
 | |
|     [TT_EXTINT | 0x4] = "External Interrupt 4",
 | |
|     [TT_EXTINT | 0x5] = "External Interrupt 5",
 | |
|     [TT_EXTINT | 0x6] = "External Interrupt 6",
 | |
|     [TT_EXTINT | 0x7] = "External Interrupt 7",
 | |
|     [TT_EXTINT | 0x8] = "External Interrupt 8",
 | |
|     [TT_EXTINT | 0x9] = "External Interrupt 9",
 | |
|     [TT_EXTINT | 0xa] = "External Interrupt 10",
 | |
|     [TT_EXTINT | 0xb] = "External Interrupt 11",
 | |
|     [TT_EXTINT | 0xc] = "External Interrupt 12",
 | |
|     [TT_EXTINT | 0xd] = "External Interrupt 13",
 | |
|     [TT_EXTINT | 0xe] = "External Interrupt 14",
 | |
|     [TT_EXTINT | 0xf] = "External Interrupt 15",
 | |
|     [TT_TOVF] = "Tag Overflow",
 | |
|     [TT_CODE_ACCESS] = "Instruction Access Error",
 | |
|     [TT_DATA_ACCESS] = "Data Access Error",
 | |
|     [TT_DIV_ZERO] = "Division By Zero",
 | |
|     [TT_NCP_INSN] = "Coprocessor Disabled",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
|     int cwp;
 | |
| 
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
|         static int count;
 | |
|         const char *name;
 | |
| 
 | |
|         if (intno < 0 || intno >= 0x100)
 | |
|             name = "Unknown";
 | |
|         else if (intno >= 0x80)
 | |
|             name = "Trap Instruction";
 | |
|         else {
 | |
|             name = excp_names[intno];
 | |
|             if (!name)
 | |
|                 name = "Unknown";
 | |
|         }
 | |
| 
 | |
|         fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
 | |
|                 count, name, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
|         cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
|         {
 | |
|             int i;
 | |
|             uint8_t *ptr;
 | |
| 
 | |
|             fprintf(logfile, "       code=");
 | |
|             ptr = (uint8_t *)env->pc;
 | |
|             for(i = 0; i < 16; i++) {
 | |
|                 fprintf(logfile, " %02x", ldub(ptr + i));
 | |
|             }
 | |
|             fprintf(logfile, "\n");
 | |
|         }
 | |
| #endif
 | |
|         count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     if (env->psret == 0) {
 | |
|         cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     env->psret = 0;
 | |
|     cwp = (env->cwp - 1) & (NWINDOWS - 1);
 | |
|     set_cwp(cwp);
 | |
|     env->regwptr[9] = env->pc;
 | |
|     env->regwptr[10] = env->npc;
 | |
|     env->psrps = env->psrs;
 | |
|     env->psrs = 1;
 | |
|     env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr);
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| #define ALIGNED_ONLY
 | |
| #ifdef __s390__
 | |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
 | |
| #else
 | |
| # define GETPC() (__builtin_return_address(0))
 | |
| #endif
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr)
 | |
| {
 | |
| #ifdef DEBUG_UNALIGNED
 | |
|     printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
 | |
| #endif
 | |
|     raise_exception(TT_UNALIGNED);
 | |
| }
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
|     unsigned long pc;
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
| 
 | |
|     ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (ret) {
 | |
|         if (retaddr) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (tb) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, (void *)T2);
 | |
|             }
 | |
|         }
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     if (is_asi)
 | |
|         printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from "
 | |
|                TARGET_FMT_lx "\n",
 | |
|                is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
 | |
|                env->pc);
 | |
|     else
 | |
|         printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
 | |
|                TARGET_FMT_lx "\n",
 | |
|                is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
 | |
| #endif
 | |
|     if (env->mmuregs[3]) /* Fault status register */
 | |
|         env->mmuregs[3] = 1; /* overflow (not read before another fault) */
 | |
|     if (is_asi)
 | |
|         env->mmuregs[3] |= 1 << 16;
 | |
|     if (env->psrs)
 | |
|         env->mmuregs[3] |= 1 << 5;
 | |
|     if (is_exec)
 | |
|         env->mmuregs[3] |= 1 << 6;
 | |
|     if (is_write)
 | |
|         env->mmuregs[3] |= 1 << 7;
 | |
|     env->mmuregs[3] |= (5 << 2) | 2;
 | |
|     env->mmuregs[4] = addr; /* Fault address register */
 | |
|     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 | |
|         if (is_exec)
 | |
|             raise_exception(TT_CODE_ACCESS);
 | |
|         else
 | |
|             raise_exception(TT_DATA_ACCESS);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| #else
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
 | |
|            addr, env->pc);
 | |
|     env = saved_env;
 | |
| #endif
 | |
|     if (is_exec)
 | |
|         raise_exception(TT_CODE_ACCESS);
 | |
|     else
 | |
|         raise_exception(TT_DATA_ACCESS);
 | |
| }
 | |
| #endif
 | |
| 
 |