mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 04:06:46 +00:00 
			
		
		
		
	 1ab95af033
			
		
	
	
		1ab95af033
		
	
	
	
	
		
			
			Guest might select another drive on the bus by setting the DRIVE_SEL bit of the DIGITAL OUTPUT REGISTER (DOR). The current controller model doesn't expect a BlockBackend to be NULL. A simple way to fix CVE-2021-20196 is to create an empty BlockBackend when it is missing. All further accesses will be safely handled, and the controller state machines keep behaving correctly. Cc: qemu-stable@nongnu.org Fixes: CVE-2021-20196 Reported-by: Gaoning Pan (Ant Security Light-Year Lab) <pgn@zju.edu.cn> Reviewed-by: Darren Kenny <darren.kenny@oracle.com> Reviewed-by: Hanna Reitz <hreitz@redhat.com> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-id: 20211124161536.631563-3-philmd@redhat.com BugLink: https://bugs.launchpad.net/qemu/+bug/1912780 Resolves: https://gitlab.com/qemu-project/qemu/-/issues/338 Reviewed-by: Darren Kenny <darren.kenny@oracle.com> Reviewed-by: Hanna Reitz <hreitz@redhat.com> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: John Snow <jsnow@redhat.com>
		
			
				
	
	
		
			2385 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2385 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU Floppy disk emulator (Intel 82078)
 | |
|  *
 | |
|  * Copyright (c) 2003, 2007 Jocelyn Mayer
 | |
|  * Copyright (c) 2008 Hervé Poussineau
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| /*
 | |
|  * The controller is used in Sun4m systems in a slightly different
 | |
|  * way. There are changes in DOR register and DMA is not available.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "hw/block/fdc.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/isa/isa.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "hw/qdev-properties-system.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "hw/block/block.h"
 | |
| #include "sysemu/block-backend.h"
 | |
| #include "sysemu/blockdev.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "qemu/module.h"
 | |
| #include "trace.h"
 | |
| #include "qom/object.h"
 | |
| #include "fdc-internal.h"
 | |
| 
 | |
| /********************************************************/
 | |
| /* debug Floppy devices */
 | |
| 
 | |
| #define DEBUG_FLOPPY 0
 | |
| 
 | |
| #define FLOPPY_DPRINTF(fmt, ...)                                \
 | |
|     do {                                                        \
 | |
|         if (DEBUG_FLOPPY) {                                     \
 | |
|             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
 | |
|         }                                                       \
 | |
|     } while (0)
 | |
| 
 | |
| 
 | |
| /* Anonymous BlockBackend for empty drive */
 | |
| static BlockBackend *blk_create_empty_drive(void)
 | |
| {
 | |
|     return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
 | |
| }
 | |
| 
 | |
| /********************************************************/
 | |
| /* qdev floppy bus                                      */
 | |
| 
 | |
| #define TYPE_FLOPPY_BUS "floppy-bus"
 | |
| OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
 | |
| 
 | |
| static FDrive *get_drv(FDCtrl *fdctrl, int unit);
 | |
| 
 | |
| static const TypeInfo floppy_bus_info = {
 | |
|     .name = TYPE_FLOPPY_BUS,
 | |
|     .parent = TYPE_BUS,
 | |
|     .instance_size = sizeof(FloppyBus),
 | |
| };
 | |
| 
 | |
| static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
 | |
| {
 | |
|     qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
 | |
|     bus->fdc = fdc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************/
 | |
| /* Floppy drive emulation                               */
 | |
| 
 | |
| /* In many cases, the total sector size of a format is enough to uniquely
 | |
|  * identify it. However, there are some total sector collisions between
 | |
|  * formats of different physical size, and these are noted below by
 | |
|  * highlighting the total sector size for entries with collisions. */
 | |
| const FDFormat fd_formats[] = {
 | |
|     /* First entry is default format */
 | |
|     /* 1.44 MB 3"1/2 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
 | |
|     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
 | |
|     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
 | |
|     /* 2.88 MB 3"1/2 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
 | |
|     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
 | |
|     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
 | |
|     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
 | |
|     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
 | |
|     /* 720 kB 3"1/2 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
 | |
|     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
 | |
|     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
 | |
|     /* 1.2 MB 5"1/4 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
 | |
|     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
 | |
|     /* 720 kB 5"1/4 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
 | |
|     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
 | |
|     /* 360 kB 5"1/4 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
 | |
|     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
 | |
|     /* 320 kB 5"1/4 floppy disks */
 | |
|     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
 | |
|     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
 | |
|     /* 360 kB must match 5"1/4 better than 3"1/2... */
 | |
|     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
 | |
|     /* end */
 | |
|     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
 | |
| };
 | |
| 
 | |
| static FDriveSize drive_size(FloppyDriveType drive)
 | |
| {
 | |
|     switch (drive) {
 | |
|     case FLOPPY_DRIVE_TYPE_120:
 | |
|         return FDRIVE_SIZE_525;
 | |
|     case FLOPPY_DRIVE_TYPE_144:
 | |
|     case FLOPPY_DRIVE_TYPE_288:
 | |
|         return FDRIVE_SIZE_350;
 | |
|     default:
 | |
|         return FDRIVE_SIZE_UNKNOWN;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
 | |
| #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
 | |
| 
 | |
| /* Will always be a fixed parameter for us */
 | |
| #define FD_SECTOR_LEN          512
 | |
| #define FD_SECTOR_SC           2   /* Sector size code */
 | |
| #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
 | |
| 
 | |
| 
 | |
| static FloppyDriveType get_fallback_drive_type(FDrive *drv);
 | |
| 
 | |
| /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
 | |
|  * currently goes through some pains to keep seeks within the bounds
 | |
|  * established by last_sect and max_track. Correcting this is difficult,
 | |
|  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
 | |
|  *
 | |
|  * For now: allow empty drives to have large bounds so we can seek around,
 | |
|  * with the understanding that when a diskette is inserted, the bounds will
 | |
|  * properly tighten to match the geometry of that inserted medium.
 | |
|  */
 | |
| static void fd_empty_seek_hack(FDrive *drv)
 | |
| {
 | |
|     drv->last_sect = 0xFF;
 | |
|     drv->max_track = 0xFF;
 | |
| }
 | |
| 
 | |
| static void fd_init(FDrive *drv)
 | |
| {
 | |
|     /* Drive */
 | |
|     drv->perpendicular = 0;
 | |
|     /* Disk */
 | |
|     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 | |
|     drv->last_sect = 0;
 | |
|     drv->max_track = 0;
 | |
|     drv->ro = true;
 | |
|     drv->media_changed = 1;
 | |
| }
 | |
| 
 | |
| #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
 | |
| 
 | |
| static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
 | |
|                           uint8_t last_sect, uint8_t num_sides)
 | |
| {
 | |
|     return (((track * num_sides) + head) * last_sect) + sect - 1;
 | |
| }
 | |
| 
 | |
| /* Returns current position, in sectors, for given drive */
 | |
| static int fd_sector(FDrive *drv)
 | |
| {
 | |
|     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
 | |
|                           NUM_SIDES(drv));
 | |
| }
 | |
| 
 | |
| /* Returns current position, in bytes, for given drive */
 | |
| static int fd_offset(FDrive *drv)
 | |
| {
 | |
|     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
 | |
|     return fd_sector(drv) << BDRV_SECTOR_BITS;
 | |
| }
 | |
| 
 | |
| /* Seek to a new position:
 | |
|  * returns 0 if already on right track
 | |
|  * returns 1 if track changed
 | |
|  * returns 2 if track is invalid
 | |
|  * returns 3 if sector is invalid
 | |
|  * returns 4 if seek is disabled
 | |
|  */
 | |
| static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
 | |
|                    int enable_seek)
 | |
| {
 | |
|     uint32_t sector;
 | |
|     int ret;
 | |
| 
 | |
|     if (track > drv->max_track ||
 | |
|         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
 | |
|         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 | |
|                        head, track, sect, 1,
 | |
|                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 | |
|                        drv->max_track, drv->last_sect);
 | |
|         return 2;
 | |
|     }
 | |
|     if (sect > drv->last_sect) {
 | |
|         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 | |
|                        head, track, sect, 1,
 | |
|                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 | |
|                        drv->max_track, drv->last_sect);
 | |
|         return 3;
 | |
|     }
 | |
|     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
 | |
|     ret = 0;
 | |
|     if (sector != fd_sector(drv)) {
 | |
| #if 0
 | |
|         if (!enable_seek) {
 | |
|             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
 | |
|                            " (max=%d %02x %02x)\n",
 | |
|                            head, track, sect, 1, drv->max_track,
 | |
|                            drv->last_sect);
 | |
|             return 4;
 | |
|         }
 | |
| #endif
 | |
|         drv->head = head;
 | |
|         if (drv->track != track) {
 | |
|             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
 | |
|                 drv->media_changed = 0;
 | |
|             }
 | |
|             ret = 1;
 | |
|         }
 | |
|         drv->track = track;
 | |
|         drv->sect = sect;
 | |
|     }
 | |
| 
 | |
|     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
 | |
|         ret = 2;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Set drive back to track 0 */
 | |
| static void fd_recalibrate(FDrive *drv)
 | |
| {
 | |
|     FLOPPY_DPRINTF("recalibrate\n");
 | |
|     fd_seek(drv, 0, 0, 1, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Determine geometry based on inserted diskette.
 | |
|  * Will not operate on an empty drive.
 | |
|  *
 | |
|  * @return: 0 on success, -1 if the drive is empty.
 | |
|  */
 | |
| static int pick_geometry(FDrive *drv)
 | |
| {
 | |
|     BlockBackend *blk = drv->blk;
 | |
|     const FDFormat *parse;
 | |
|     uint64_t nb_sectors, size;
 | |
|     int i;
 | |
|     int match, size_match, type_match;
 | |
|     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
 | |
| 
 | |
|     /* We can only pick a geometry if we have a diskette. */
 | |
|     if (!drv->blk || !blk_is_inserted(drv->blk) ||
 | |
|         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
 | |
|     {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* We need to determine the likely geometry of the inserted medium.
 | |
|      * In order of preference, we look for:
 | |
|      * (1) The same drive type and number of sectors,
 | |
|      * (2) The same diskette size and number of sectors,
 | |
|      * (3) The same drive type.
 | |
|      *
 | |
|      * In all cases, matches that occur higher in the drive table will take
 | |
|      * precedence over matches that occur later in the table.
 | |
|      */
 | |
|     blk_get_geometry(blk, &nb_sectors);
 | |
|     match = size_match = type_match = -1;
 | |
|     for (i = 0; ; i++) {
 | |
|         parse = &fd_formats[i];
 | |
|         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
 | |
|             break;
 | |
|         }
 | |
|         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
 | |
|         if (nb_sectors == size) {
 | |
|             if (magic || parse->drive == drv->drive) {
 | |
|                 /* (1) perfect match -- nb_sectors and drive type */
 | |
|                 goto out;
 | |
|             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
 | |
|                 /* (2) size match -- nb_sectors and physical medium size */
 | |
|                 match = (match == -1) ? i : match;
 | |
|             } else {
 | |
|                 /* This is suspicious -- Did the user misconfigure? */
 | |
|                 size_match = (size_match == -1) ? i : size_match;
 | |
|             }
 | |
|         } else if (type_match == -1) {
 | |
|             if ((parse->drive == drv->drive) ||
 | |
|                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
 | |
|                 /* (3) type match -- nb_sectors mismatch, but matches the type
 | |
|                  *     specified explicitly by the user, or matches the fallback
 | |
|                  *     default type when using the drive autodetect mechanism */
 | |
|                 type_match = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No exact match found */
 | |
|     if (match == -1) {
 | |
|         if (size_match != -1) {
 | |
|             parse = &fd_formats[size_match];
 | |
|             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
 | |
|                            "but inserted medium appears to be a "
 | |
|                            "%"PRId64" sector '%s' type\n",
 | |
|                            FloppyDriveType_str(drv->drive),
 | |
|                            nb_sectors,
 | |
|                            FloppyDriveType_str(parse->drive));
 | |
|         }
 | |
|         assert(type_match != -1 && "misconfigured fd_format");
 | |
|         match = type_match;
 | |
|     }
 | |
|     parse = &(fd_formats[match]);
 | |
| 
 | |
|  out:
 | |
|     if (parse->max_head == 0) {
 | |
|         drv->flags &= ~FDISK_DBL_SIDES;
 | |
|     } else {
 | |
|         drv->flags |= FDISK_DBL_SIDES;
 | |
|     }
 | |
|     drv->max_track = parse->max_track;
 | |
|     drv->last_sect = parse->last_sect;
 | |
|     drv->disk = parse->drive;
 | |
|     drv->media_rate = parse->rate;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void pick_drive_type(FDrive *drv)
 | |
| {
 | |
|     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (pick_geometry(drv) == 0) {
 | |
|         drv->drive = drv->disk;
 | |
|     } else {
 | |
|         drv->drive = get_fallback_drive_type(drv);
 | |
|     }
 | |
| 
 | |
|     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
 | |
| }
 | |
| 
 | |
| /* Revalidate a disk drive after a disk change */
 | |
| static void fd_revalidate(FDrive *drv)
 | |
| {
 | |
|     int rc;
 | |
| 
 | |
|     FLOPPY_DPRINTF("revalidate\n");
 | |
|     if (drv->blk != NULL) {
 | |
|         drv->ro = !blk_is_writable(drv->blk);
 | |
|         if (!blk_is_inserted(drv->blk)) {
 | |
|             FLOPPY_DPRINTF("No disk in drive\n");
 | |
|             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 | |
|             fd_empty_seek_hack(drv);
 | |
|         } else if (!drv->media_validated) {
 | |
|             rc = pick_geometry(drv);
 | |
|             if (rc) {
 | |
|                 FLOPPY_DPRINTF("Could not validate floppy drive media");
 | |
|             } else {
 | |
|                 drv->media_validated = true;
 | |
|                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
 | |
|                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
 | |
|                                drv->max_track, drv->last_sect,
 | |
|                                drv->ro ? "ro" : "rw");
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         FLOPPY_DPRINTF("No drive connected\n");
 | |
|         drv->last_sect = 0;
 | |
|         drv->max_track = 0;
 | |
|         drv->flags &= ~FDISK_DBL_SIDES;
 | |
|         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
 | |
|         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fd_change_cb(void *opaque, bool load, Error **errp)
 | |
| {
 | |
|     FDrive *drive = opaque;
 | |
| 
 | |
|     if (!load) {
 | |
|         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
 | |
|     } else {
 | |
|         if (!blkconf_apply_backend_options(drive->conf,
 | |
|                                            !blk_supports_write_perm(drive->blk),
 | |
|                                            false, errp)) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     drive->media_changed = 1;
 | |
|     drive->media_validated = false;
 | |
|     fd_revalidate(drive);
 | |
| }
 | |
| 
 | |
| static const BlockDevOps fd_block_ops = {
 | |
|     .change_media_cb = fd_change_cb,
 | |
| };
 | |
| 
 | |
| 
 | |
| #define TYPE_FLOPPY_DRIVE "floppy"
 | |
| OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
 | |
| 
 | |
| struct FloppyDrive {
 | |
|     DeviceState     qdev;
 | |
|     uint32_t        unit;
 | |
|     BlockConf       conf;
 | |
|     FloppyDriveType type;
 | |
| };
 | |
| 
 | |
| static Property floppy_drive_properties[] = {
 | |
|     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
 | |
|     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
 | |
|     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
 | |
|                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
 | |
|                         FloppyDriveType),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void floppy_drive_realize(DeviceState *qdev, Error **errp)
 | |
| {
 | |
|     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
 | |
|     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
 | |
|     FDrive *drive;
 | |
|     bool read_only;
 | |
|     int ret;
 | |
| 
 | |
|     if (dev->unit == -1) {
 | |
|         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
 | |
|             drive = get_drv(bus->fdc, dev->unit);
 | |
|             if (!drive->blk) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dev->unit >= MAX_FD) {
 | |
|         error_setg(errp, "Can't create floppy unit %d, bus supports "
 | |
|                    "only %d units", dev->unit, MAX_FD);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     drive = get_drv(bus->fdc, dev->unit);
 | |
|     if (drive->blk) {
 | |
|         error_setg(errp, "Floppy unit %d is in use", dev->unit);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!dev->conf.blk) {
 | |
|         dev->conf.blk = blk_create_empty_drive();
 | |
|         ret = blk_attach_dev(dev->conf.blk, qdev);
 | |
|         assert(ret == 0);
 | |
| 
 | |
|         /* Don't take write permissions on an empty drive to allow attaching a
 | |
|          * read-only node later */
 | |
|         read_only = true;
 | |
|     } else {
 | |
|         read_only = !blk_bs(dev->conf.blk) ||
 | |
|                     !blk_supports_write_perm(dev->conf.blk);
 | |
|     }
 | |
| 
 | |
|     if (!blkconf_blocksizes(&dev->conf, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (dev->conf.logical_block_size != 512 ||
 | |
|         dev->conf.physical_block_size != 512)
 | |
|     {
 | |
|         error_setg(errp, "Physical and logical block size must "
 | |
|                    "be 512 for floppy");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* rerror/werror aren't supported by fdc and therefore not even registered
 | |
|      * with qdev. So set the defaults manually before they are used in
 | |
|      * blkconf_apply_backend_options(). */
 | |
|     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
 | |
|     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
 | |
| 
 | |
|     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
 | |
|      * for empty drives. */
 | |
|     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
 | |
|         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
 | |
|         error_setg(errp, "fdc doesn't support drive option werror");
 | |
|         return;
 | |
|     }
 | |
|     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
 | |
|         error_setg(errp, "fdc doesn't support drive option rerror");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     drive->conf = &dev->conf;
 | |
|     drive->blk = dev->conf.blk;
 | |
|     drive->fdctrl = bus->fdc;
 | |
| 
 | |
|     fd_init(drive);
 | |
|     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
 | |
| 
 | |
|     /* Keep 'type' qdev property and FDrive->drive in sync */
 | |
|     drive->drive = dev->type;
 | |
|     pick_drive_type(drive);
 | |
|     dev->type = drive->drive;
 | |
| 
 | |
|     fd_revalidate(drive);
 | |
| }
 | |
| 
 | |
| static void floppy_drive_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *k = DEVICE_CLASS(klass);
 | |
|     k->realize = floppy_drive_realize;
 | |
|     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
 | |
|     k->bus_type = TYPE_FLOPPY_BUS;
 | |
|     device_class_set_props(k, floppy_drive_properties);
 | |
|     k->desc = "virtual floppy drive";
 | |
| }
 | |
| 
 | |
| static const TypeInfo floppy_drive_info = {
 | |
|     .name = TYPE_FLOPPY_DRIVE,
 | |
|     .parent = TYPE_DEVICE,
 | |
|     .instance_size = sizeof(FloppyDrive),
 | |
|     .class_init = floppy_drive_class_init,
 | |
| };
 | |
| 
 | |
| /********************************************************/
 | |
| /* Intel 82078 floppy disk controller emulation          */
 | |
| 
 | |
| static void fdctrl_to_command_phase(FDCtrl *fdctrl);
 | |
| static void fdctrl_raise_irq(FDCtrl *fdctrl);
 | |
| static FDrive *get_cur_drv(FDCtrl *fdctrl);
 | |
| 
 | |
| static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
 | |
| static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
 | |
| static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
 | |
| static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
 | |
| static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
 | |
| static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
 | |
| static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
 | |
| static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
 | |
| static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
 | |
| static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
 | |
| static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
 | |
| static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
 | |
| 
 | |
| enum {
 | |
|     FD_DIR_WRITE   = 0,
 | |
|     FD_DIR_READ    = 1,
 | |
|     FD_DIR_SCANE   = 2,
 | |
|     FD_DIR_SCANL   = 3,
 | |
|     FD_DIR_SCANH   = 4,
 | |
|     FD_DIR_VERIFY  = 5,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_STATE_MULTI  = 0x01,	/* multi track flag */
 | |
|     FD_STATE_FORMAT = 0x02,	/* format flag */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_REG_SRA = 0x00,
 | |
|     FD_REG_SRB = 0x01,
 | |
|     FD_REG_DOR = 0x02,
 | |
|     FD_REG_TDR = 0x03,
 | |
|     FD_REG_MSR = 0x04,
 | |
|     FD_REG_DSR = 0x04,
 | |
|     FD_REG_FIFO = 0x05,
 | |
|     FD_REG_DIR = 0x07,
 | |
|     FD_REG_CCR = 0x07,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_CMD_READ_TRACK = 0x02,
 | |
|     FD_CMD_SPECIFY = 0x03,
 | |
|     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
 | |
|     FD_CMD_WRITE = 0x05,
 | |
|     FD_CMD_READ = 0x06,
 | |
|     FD_CMD_RECALIBRATE = 0x07,
 | |
|     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
 | |
|     FD_CMD_WRITE_DELETED = 0x09,
 | |
|     FD_CMD_READ_ID = 0x0a,
 | |
|     FD_CMD_READ_DELETED = 0x0c,
 | |
|     FD_CMD_FORMAT_TRACK = 0x0d,
 | |
|     FD_CMD_DUMPREG = 0x0e,
 | |
|     FD_CMD_SEEK = 0x0f,
 | |
|     FD_CMD_VERSION = 0x10,
 | |
|     FD_CMD_SCAN_EQUAL = 0x11,
 | |
|     FD_CMD_PERPENDICULAR_MODE = 0x12,
 | |
|     FD_CMD_CONFIGURE = 0x13,
 | |
|     FD_CMD_LOCK = 0x14,
 | |
|     FD_CMD_VERIFY = 0x16,
 | |
|     FD_CMD_POWERDOWN_MODE = 0x17,
 | |
|     FD_CMD_PART_ID = 0x18,
 | |
|     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
 | |
|     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
 | |
|     FD_CMD_SAVE = 0x2e,
 | |
|     FD_CMD_OPTION = 0x33,
 | |
|     FD_CMD_RESTORE = 0x4e,
 | |
|     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
 | |
|     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
 | |
|     FD_CMD_FORMAT_AND_WRITE = 0xcd,
 | |
|     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
 | |
|     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
 | |
|     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
 | |
|     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
 | |
|     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_SR0_DS0      = 0x01,
 | |
|     FD_SR0_DS1      = 0x02,
 | |
|     FD_SR0_HEAD     = 0x04,
 | |
|     FD_SR0_EQPMT    = 0x10,
 | |
|     FD_SR0_SEEK     = 0x20,
 | |
|     FD_SR0_ABNTERM  = 0x40,
 | |
|     FD_SR0_INVCMD   = 0x80,
 | |
|     FD_SR0_RDYCHG   = 0xc0,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_SR1_MA       = 0x01, /* Missing address mark */
 | |
|     FD_SR1_NW       = 0x02, /* Not writable */
 | |
|     FD_SR1_EC       = 0x80, /* End of cylinder */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
 | |
|     FD_SR2_SEH      = 0x08, /* Scan equal hit */
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_SRA_DIR      = 0x01,
 | |
|     FD_SRA_nWP      = 0x02,
 | |
|     FD_SRA_nINDX    = 0x04,
 | |
|     FD_SRA_HDSEL    = 0x08,
 | |
|     FD_SRA_nTRK0    = 0x10,
 | |
|     FD_SRA_STEP     = 0x20,
 | |
|     FD_SRA_nDRV2    = 0x40,
 | |
|     FD_SRA_INTPEND  = 0x80,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_SRB_MTR0     = 0x01,
 | |
|     FD_SRB_MTR1     = 0x02,
 | |
|     FD_SRB_WGATE    = 0x04,
 | |
|     FD_SRB_RDATA    = 0x08,
 | |
|     FD_SRB_WDATA    = 0x10,
 | |
|     FD_SRB_DR0      = 0x20,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| #if MAX_FD == 4
 | |
|     FD_DOR_SELMASK  = 0x03,
 | |
| #else
 | |
|     FD_DOR_SELMASK  = 0x01,
 | |
| #endif
 | |
|     FD_DOR_nRESET   = 0x04,
 | |
|     FD_DOR_DMAEN    = 0x08,
 | |
|     FD_DOR_MOTEN0   = 0x10,
 | |
|     FD_DOR_MOTEN1   = 0x20,
 | |
|     FD_DOR_MOTEN2   = 0x40,
 | |
|     FD_DOR_MOTEN3   = 0x80,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| #if MAX_FD == 4
 | |
|     FD_TDR_BOOTSEL  = 0x0c,
 | |
| #else
 | |
|     FD_TDR_BOOTSEL  = 0x04,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_DSR_DRATEMASK= 0x03,
 | |
|     FD_DSR_PWRDOWN  = 0x40,
 | |
|     FD_DSR_SWRESET  = 0x80,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_MSR_DRV0BUSY = 0x01,
 | |
|     FD_MSR_DRV1BUSY = 0x02,
 | |
|     FD_MSR_DRV2BUSY = 0x04,
 | |
|     FD_MSR_DRV3BUSY = 0x08,
 | |
|     FD_MSR_CMDBUSY  = 0x10,
 | |
|     FD_MSR_NONDMA   = 0x20,
 | |
|     FD_MSR_DIO      = 0x40,
 | |
|     FD_MSR_RQM      = 0x80,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     FD_DIR_DSKCHG   = 0x80,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * See chapter 5.0 "Controller phases" of the spec:
 | |
|  *
 | |
|  * Command phase:
 | |
|  * The host writes a command and its parameters into the FIFO. The command
 | |
|  * phase is completed when all parameters for the command have been supplied,
 | |
|  * and execution phase is entered.
 | |
|  *
 | |
|  * Execution phase:
 | |
|  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
 | |
|  * contains the payload now, otherwise it's unused. When all bytes of the
 | |
|  * required data have been transferred, the state is switched to either result
 | |
|  * phase (if the command produces status bytes) or directly back into the
 | |
|  * command phase for the next command.
 | |
|  *
 | |
|  * Result phase:
 | |
|  * The host reads out the FIFO, which contains one or more result bytes now.
 | |
|  */
 | |
| enum {
 | |
|     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
 | |
|     FD_PHASE_RECONSTRUCT    = 0,
 | |
| 
 | |
|     FD_PHASE_COMMAND        = 1,
 | |
|     FD_PHASE_EXECUTION      = 2,
 | |
|     FD_PHASE_RESULT         = 3,
 | |
| };
 | |
| 
 | |
| #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
 | |
| #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
 | |
| 
 | |
| static FloppyDriveType get_fallback_drive_type(FDrive *drv)
 | |
| {
 | |
|     return drv->fdctrl->fallback;
 | |
| }
 | |
| 
 | |
| uint32_t fdctrl_read(void *opaque, uint32_t reg)
 | |
| {
 | |
|     FDCtrl *fdctrl = opaque;
 | |
|     uint32_t retval;
 | |
| 
 | |
|     reg &= 7;
 | |
|     switch (reg) {
 | |
|     case FD_REG_SRA:
 | |
|         retval = fdctrl_read_statusA(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_SRB:
 | |
|         retval = fdctrl_read_statusB(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_DOR:
 | |
|         retval = fdctrl_read_dor(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_TDR:
 | |
|         retval = fdctrl_read_tape(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_MSR:
 | |
|         retval = fdctrl_read_main_status(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_FIFO:
 | |
|         retval = fdctrl_read_data(fdctrl);
 | |
|         break;
 | |
|     case FD_REG_DIR:
 | |
|         retval = fdctrl_read_dir(fdctrl);
 | |
|         break;
 | |
|     default:
 | |
|         retval = (uint32_t)(-1);
 | |
|         break;
 | |
|     }
 | |
|     trace_fdc_ioport_read(reg, retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
 | |
| {
 | |
|     FDCtrl *fdctrl = opaque;
 | |
| 
 | |
|     reg &= 7;
 | |
|     trace_fdc_ioport_write(reg, value);
 | |
|     switch (reg) {
 | |
|     case FD_REG_DOR:
 | |
|         fdctrl_write_dor(fdctrl, value);
 | |
|         break;
 | |
|     case FD_REG_TDR:
 | |
|         fdctrl_write_tape(fdctrl, value);
 | |
|         break;
 | |
|     case FD_REG_DSR:
 | |
|         fdctrl_write_rate(fdctrl, value);
 | |
|         break;
 | |
|     case FD_REG_FIFO:
 | |
|         fdctrl_write_data(fdctrl, value);
 | |
|         break;
 | |
|     case FD_REG_CCR:
 | |
|         fdctrl_write_ccr(fdctrl, value);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool fdrive_media_changed_needed(void *opaque)
 | |
| {
 | |
|     FDrive *drive = opaque;
 | |
| 
 | |
|     return (drive->blk != NULL && drive->media_changed != 1);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdrive_media_changed = {
 | |
|     .name = "fdrive/media_changed",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = fdrive_media_changed_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(media_changed, FDrive),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_fdrive_media_rate = {
 | |
|     .name = "fdrive/media_rate",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(media_rate, FDrive),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool fdrive_perpendicular_needed(void *opaque)
 | |
| {
 | |
|     FDrive *drive = opaque;
 | |
| 
 | |
|     return drive->perpendicular != 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdrive_perpendicular = {
 | |
|     .name = "fdrive/perpendicular",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = fdrive_perpendicular_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(perpendicular, FDrive),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int fdrive_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     fd_revalidate(opaque);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdrive = {
 | |
|     .name = "fdrive",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .post_load = fdrive_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(head, FDrive),
 | |
|         VMSTATE_UINT8(track, FDrive),
 | |
|         VMSTATE_UINT8(sect, FDrive),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription*[]) {
 | |
|         &vmstate_fdrive_media_changed,
 | |
|         &vmstate_fdrive_media_rate,
 | |
|         &vmstate_fdrive_perpendicular,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Reconstructs the phase from register values according to the logic that was
 | |
|  * implemented in qemu 2.3. This is the default value that is used if the phase
 | |
|  * subsection is not present on migration.
 | |
|  *
 | |
|  * Don't change this function to reflect newer qemu versions, it is part of
 | |
|  * the migration ABI.
 | |
|  */
 | |
| static int reconstruct_phase(FDCtrl *fdctrl)
 | |
| {
 | |
|     if (fdctrl->msr & FD_MSR_NONDMA) {
 | |
|         return FD_PHASE_EXECUTION;
 | |
|     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
 | |
|         /* qemu 2.3 disabled RQM only during DMA transfers */
 | |
|         return FD_PHASE_EXECUTION;
 | |
|     } else if (fdctrl->msr & FD_MSR_DIO) {
 | |
|         return FD_PHASE_RESULT;
 | |
|     } else {
 | |
|         return FD_PHASE_COMMAND;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int fdc_pre_save(void *opaque)
 | |
| {
 | |
|     FDCtrl *s = opaque;
 | |
| 
 | |
|     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int fdc_pre_load(void *opaque)
 | |
| {
 | |
|     FDCtrl *s = opaque;
 | |
|     s->phase = FD_PHASE_RECONSTRUCT;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int fdc_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     FDCtrl *s = opaque;
 | |
| 
 | |
|     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
 | |
|     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
 | |
| 
 | |
|     if (s->phase == FD_PHASE_RECONSTRUCT) {
 | |
|         s->phase = reconstruct_phase(s);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool fdc_reset_sensei_needed(void *opaque)
 | |
| {
 | |
|     FDCtrl *s = opaque;
 | |
| 
 | |
|     return s->reset_sensei != 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdc_reset_sensei = {
 | |
|     .name = "fdc/reset_sensei",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = fdc_reset_sensei_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_INT32(reset_sensei, FDCtrl),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool fdc_result_timer_needed(void *opaque)
 | |
| {
 | |
|     FDCtrl *s = opaque;
 | |
| 
 | |
|     return timer_pending(s->result_timer);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdc_result_timer = {
 | |
|     .name = "fdc/result_timer",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = fdc_result_timer_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool fdc_phase_needed(void *opaque)
 | |
| {
 | |
|     FDCtrl *fdctrl = opaque;
 | |
| 
 | |
|     return reconstruct_phase(fdctrl) != fdctrl->phase;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_fdc_phase = {
 | |
|     .name = "fdc/phase",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = fdc_phase_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(phase, FDCtrl),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| const VMStateDescription vmstate_fdc = {
 | |
|     .name = "fdc",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .pre_save = fdc_pre_save,
 | |
|     .pre_load = fdc_pre_load,
 | |
|     .post_load = fdc_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         /* Controller State */
 | |
|         VMSTATE_UINT8(sra, FDCtrl),
 | |
|         VMSTATE_UINT8(srb, FDCtrl),
 | |
|         VMSTATE_UINT8(dor_vmstate, FDCtrl),
 | |
|         VMSTATE_UINT8(tdr, FDCtrl),
 | |
|         VMSTATE_UINT8(dsr, FDCtrl),
 | |
|         VMSTATE_UINT8(msr, FDCtrl),
 | |
|         VMSTATE_UINT8(status0, FDCtrl),
 | |
|         VMSTATE_UINT8(status1, FDCtrl),
 | |
|         VMSTATE_UINT8(status2, FDCtrl),
 | |
|         /* Command FIFO */
 | |
|         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
 | |
|                              uint8_t),
 | |
|         VMSTATE_UINT32(data_pos, FDCtrl),
 | |
|         VMSTATE_UINT32(data_len, FDCtrl),
 | |
|         VMSTATE_UINT8(data_state, FDCtrl),
 | |
|         VMSTATE_UINT8(data_dir, FDCtrl),
 | |
|         VMSTATE_UINT8(eot, FDCtrl),
 | |
|         /* States kept only to be returned back */
 | |
|         VMSTATE_UINT8(timer0, FDCtrl),
 | |
|         VMSTATE_UINT8(timer1, FDCtrl),
 | |
|         VMSTATE_UINT8(precomp_trk, FDCtrl),
 | |
|         VMSTATE_UINT8(config, FDCtrl),
 | |
|         VMSTATE_UINT8(lock, FDCtrl),
 | |
|         VMSTATE_UINT8(pwrd, FDCtrl),
 | |
|         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
 | |
|         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
 | |
|                              vmstate_fdrive, FDrive),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription*[]) {
 | |
|         &vmstate_fdc_reset_sensei,
 | |
|         &vmstate_fdc_result_timer,
 | |
|         &vmstate_fdc_phase,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| /* Change IRQ state */
 | |
| static void fdctrl_reset_irq(FDCtrl *fdctrl)
 | |
| {
 | |
|     fdctrl->status0 = 0;
 | |
|     if (!(fdctrl->sra & FD_SRA_INTPEND))
 | |
|         return;
 | |
|     FLOPPY_DPRINTF("Reset interrupt\n");
 | |
|     qemu_set_irq(fdctrl->irq, 0);
 | |
|     fdctrl->sra &= ~FD_SRA_INTPEND;
 | |
| }
 | |
| 
 | |
| static void fdctrl_raise_irq(FDCtrl *fdctrl)
 | |
| {
 | |
|     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
 | |
|         qemu_set_irq(fdctrl->irq, 1);
 | |
|         fdctrl->sra |= FD_SRA_INTPEND;
 | |
|     }
 | |
| 
 | |
|     fdctrl->reset_sensei = 0;
 | |
|     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
 | |
| }
 | |
| 
 | |
| /* Reset controller */
 | |
| void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     FLOPPY_DPRINTF("reset controller\n");
 | |
|     fdctrl_reset_irq(fdctrl);
 | |
|     /* Initialise controller */
 | |
|     fdctrl->sra = 0;
 | |
|     fdctrl->srb = 0xc0;
 | |
|     if (!fdctrl->drives[1].blk) {
 | |
|         fdctrl->sra |= FD_SRA_nDRV2;
 | |
|     }
 | |
|     fdctrl->cur_drv = 0;
 | |
|     fdctrl->dor = FD_DOR_nRESET;
 | |
|     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
 | |
|     fdctrl->msr = FD_MSR_RQM;
 | |
|     fdctrl->reset_sensei = 0;
 | |
|     timer_del(fdctrl->result_timer);
 | |
|     /* FIFO state */
 | |
|     fdctrl->data_pos = 0;
 | |
|     fdctrl->data_len = 0;
 | |
|     fdctrl->data_state = 0;
 | |
|     fdctrl->data_dir = FD_DIR_WRITE;
 | |
|     for (i = 0; i < MAX_FD; i++)
 | |
|         fd_recalibrate(&fdctrl->drives[i]);
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
|     if (do_irq) {
 | |
|         fdctrl->status0 |= FD_SR0_RDYCHG;
 | |
|         fdctrl_raise_irq(fdctrl);
 | |
|         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline FDrive *drv0(FDCtrl *fdctrl)
 | |
| {
 | |
|     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
 | |
| }
 | |
| 
 | |
| static inline FDrive *drv1(FDCtrl *fdctrl)
 | |
| {
 | |
|     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
 | |
|         return &fdctrl->drives[1];
 | |
|     else
 | |
|         return &fdctrl->drives[0];
 | |
| }
 | |
| 
 | |
| #if MAX_FD == 4
 | |
| static inline FDrive *drv2(FDCtrl *fdctrl)
 | |
| {
 | |
|     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
 | |
|         return &fdctrl->drives[2];
 | |
|     else
 | |
|         return &fdctrl->drives[1];
 | |
| }
 | |
| 
 | |
| static inline FDrive *drv3(FDCtrl *fdctrl)
 | |
| {
 | |
|     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
 | |
|         return &fdctrl->drives[3];
 | |
|     else
 | |
|         return &fdctrl->drives[2];
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static FDrive *get_drv(FDCtrl *fdctrl, int unit)
 | |
| {
 | |
|     switch (unit) {
 | |
|         case 0: return drv0(fdctrl);
 | |
|         case 1: return drv1(fdctrl);
 | |
| #if MAX_FD == 4
 | |
|         case 2: return drv2(fdctrl);
 | |
|         case 3: return drv3(fdctrl);
 | |
| #endif
 | |
|         default: return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static FDrive *get_cur_drv(FDCtrl *fdctrl)
 | |
| {
 | |
|     FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv);
 | |
| 
 | |
|     if (!cur_drv->blk) {
 | |
|         /*
 | |
|          * Kludge: empty drive line selected. Create an anonymous
 | |
|          * BlockBackend to avoid NULL deref with various BlockBackend
 | |
|          * API calls within this model (CVE-2021-20196).
 | |
|          * Due to the controller QOM model limitations, we don't
 | |
|          * attach the created to the controller device.
 | |
|          */
 | |
|         cur_drv->blk = blk_create_empty_drive();
 | |
|     }
 | |
|     return cur_drv;
 | |
| }
 | |
| 
 | |
| /* Status A register : 0x00 (read-only) */
 | |
| static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = fdctrl->sra;
 | |
| 
 | |
|     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Status B register : 0x01 (read-only) */
 | |
| static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = fdctrl->srb;
 | |
| 
 | |
|     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Digital output register : 0x02 */
 | |
| static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = fdctrl->dor;
 | |
| 
 | |
|     /* Selected drive */
 | |
|     retval |= fdctrl->cur_drv;
 | |
|     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
 | |
| {
 | |
|     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
 | |
| 
 | |
|     /* Motors */
 | |
|     if (value & FD_DOR_MOTEN0)
 | |
|         fdctrl->srb |= FD_SRB_MTR0;
 | |
|     else
 | |
|         fdctrl->srb &= ~FD_SRB_MTR0;
 | |
|     if (value & FD_DOR_MOTEN1)
 | |
|         fdctrl->srb |= FD_SRB_MTR1;
 | |
|     else
 | |
|         fdctrl->srb &= ~FD_SRB_MTR1;
 | |
| 
 | |
|     /* Drive */
 | |
|     if (value & 1)
 | |
|         fdctrl->srb |= FD_SRB_DR0;
 | |
|     else
 | |
|         fdctrl->srb &= ~FD_SRB_DR0;
 | |
| 
 | |
|     /* Reset */
 | |
|     if (!(value & FD_DOR_nRESET)) {
 | |
|         if (fdctrl->dor & FD_DOR_nRESET) {
 | |
|             FLOPPY_DPRINTF("controller enter RESET state\n");
 | |
|         }
 | |
|     } else {
 | |
|         if (!(fdctrl->dor & FD_DOR_nRESET)) {
 | |
|             FLOPPY_DPRINTF("controller out of RESET state\n");
 | |
|             fdctrl_reset(fdctrl, 1);
 | |
|             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
 | |
|         }
 | |
|     }
 | |
|     /* Selected drive */
 | |
|     fdctrl->cur_drv = value & FD_DOR_SELMASK;
 | |
| 
 | |
|     fdctrl->dor = value;
 | |
| }
 | |
| 
 | |
| /* Tape drive register : 0x03 */
 | |
| static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = fdctrl->tdr;
 | |
| 
 | |
|     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
 | |
| {
 | |
|     /* Reset mode */
 | |
|     if (!(fdctrl->dor & FD_DOR_nRESET)) {
 | |
|         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
 | |
|         return;
 | |
|     }
 | |
|     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
 | |
|     /* Disk boot selection indicator */
 | |
|     fdctrl->tdr = value & FD_TDR_BOOTSEL;
 | |
|     /* Tape indicators: never allow */
 | |
| }
 | |
| 
 | |
| /* Main status register : 0x04 (read) */
 | |
| static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = fdctrl->msr;
 | |
| 
 | |
|     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
 | |
|     fdctrl->dor |= FD_DOR_nRESET;
 | |
| 
 | |
|     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Data select rate register : 0x04 (write) */
 | |
| static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
 | |
| {
 | |
|     /* Reset mode */
 | |
|     if (!(fdctrl->dor & FD_DOR_nRESET)) {
 | |
|         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
 | |
|         return;
 | |
|     }
 | |
|     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
 | |
|     /* Reset: autoclear */
 | |
|     if (value & FD_DSR_SWRESET) {
 | |
|         fdctrl->dor &= ~FD_DOR_nRESET;
 | |
|         fdctrl_reset(fdctrl, 1);
 | |
|         fdctrl->dor |= FD_DOR_nRESET;
 | |
|     }
 | |
|     if (value & FD_DSR_PWRDOWN) {
 | |
|         fdctrl_reset(fdctrl, 1);
 | |
|     }
 | |
|     fdctrl->dsr = value;
 | |
| }
 | |
| 
 | |
| /* Configuration control register: 0x07 (write) */
 | |
| static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
 | |
| {
 | |
|     /* Reset mode */
 | |
|     if (!(fdctrl->dor & FD_DOR_nRESET)) {
 | |
|         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
 | |
|         return;
 | |
|     }
 | |
|     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
 | |
| 
 | |
|     /* Only the rate selection bits used in AT mode, and we
 | |
|      * store those in the DSR.
 | |
|      */
 | |
|     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
 | |
|                   (value & FD_DSR_DRATEMASK);
 | |
| }
 | |
| 
 | |
| static int fdctrl_media_changed(FDrive *drv)
 | |
| {
 | |
|     return drv->media_changed;
 | |
| }
 | |
| 
 | |
| /* Digital input register : 0x07 (read-only) */
 | |
| static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
 | |
| {
 | |
|     uint32_t retval = 0;
 | |
| 
 | |
|     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
 | |
|         retval |= FD_DIR_DSKCHG;
 | |
|     }
 | |
|     if (retval != 0) {
 | |
|         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
 | |
|     }
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Clear the FIFO and update the state for receiving the next command */
 | |
| static void fdctrl_to_command_phase(FDCtrl *fdctrl)
 | |
| {
 | |
|     fdctrl->phase = FD_PHASE_COMMAND;
 | |
|     fdctrl->data_dir = FD_DIR_WRITE;
 | |
|     fdctrl->data_pos = 0;
 | |
|     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
 | |
|     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
 | |
|     fdctrl->msr |= FD_MSR_RQM;
 | |
| }
 | |
| 
 | |
| /* Update the state to allow the guest to read out the command status.
 | |
|  * @fifo_len is the number of result bytes to be read out. */
 | |
| static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
 | |
| {
 | |
|     fdctrl->phase = FD_PHASE_RESULT;
 | |
|     fdctrl->data_dir = FD_DIR_READ;
 | |
|     fdctrl->data_len = fifo_len;
 | |
|     fdctrl->data_pos = 0;
 | |
|     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
 | |
| }
 | |
| 
 | |
| /* Set an error: unimplemented/unknown command */
 | |
| static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
 | |
|                   fdctrl->fifo[0]);
 | |
|     fdctrl->fifo[0] = FD_SR0_INVCMD;
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| /* Seek to next sector
 | |
|  * returns 0 when end of track reached (for DBL_SIDES on head 1)
 | |
|  * otherwise returns 1
 | |
|  */
 | |
| static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
 | |
| {
 | |
|     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
 | |
|                    cur_drv->head, cur_drv->track, cur_drv->sect,
 | |
|                    fd_sector(cur_drv));
 | |
|     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
 | |
|        error in fact */
 | |
|     uint8_t new_head = cur_drv->head;
 | |
|     uint8_t new_track = cur_drv->track;
 | |
|     uint8_t new_sect = cur_drv->sect;
 | |
| 
 | |
|     int ret = 1;
 | |
| 
 | |
|     if (new_sect >= cur_drv->last_sect ||
 | |
|         new_sect == fdctrl->eot) {
 | |
|         new_sect = 1;
 | |
|         if (FD_MULTI_TRACK(fdctrl->data_state)) {
 | |
|             if (new_head == 0 &&
 | |
|                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
 | |
|                 new_head = 1;
 | |
|             } else {
 | |
|                 new_head = 0;
 | |
|                 new_track++;
 | |
|                 fdctrl->status0 |= FD_SR0_SEEK;
 | |
|                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
 | |
|                     ret = 0;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             fdctrl->status0 |= FD_SR0_SEEK;
 | |
|             new_track++;
 | |
|             ret = 0;
 | |
|         }
 | |
|         if (ret == 1) {
 | |
|             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
 | |
|                     new_head, new_track, new_sect, fd_sector(cur_drv));
 | |
|         }
 | |
|     } else {
 | |
|         new_sect++;
 | |
|     }
 | |
|     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Callback for transfer end (stop or abort) */
 | |
| static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
 | |
|                                  uint8_t status1, uint8_t status2)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
 | |
|     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
 | |
|     if (cur_drv->head) {
 | |
|         fdctrl->status0 |= FD_SR0_HEAD;
 | |
|     }
 | |
|     fdctrl->status0 |= status0;
 | |
| 
 | |
|     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
 | |
|                    status0, status1, status2, fdctrl->status0);
 | |
|     fdctrl->fifo[0] = fdctrl->status0;
 | |
|     fdctrl->fifo[1] = status1;
 | |
|     fdctrl->fifo[2] = status2;
 | |
|     fdctrl->fifo[3] = cur_drv->track;
 | |
|     fdctrl->fifo[4] = cur_drv->head;
 | |
|     fdctrl->fifo[5] = cur_drv->sect;
 | |
|     fdctrl->fifo[6] = FD_SECTOR_SC;
 | |
|     fdctrl->data_dir = FD_DIR_READ;
 | |
|     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
 | |
|         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
 | |
|         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
 | |
|     }
 | |
|     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
 | |
|     fdctrl->msr &= ~FD_MSR_NONDMA;
 | |
| 
 | |
|     fdctrl_to_result_phase(fdctrl, 7);
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| /* Prepare a data transfer (either DMA or FIFO) */
 | |
| static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
|     uint8_t kh, kt, ks;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     kt = fdctrl->fifo[2];
 | |
|     kh = fdctrl->fifo[3];
 | |
|     ks = fdctrl->fifo[4];
 | |
|     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
 | |
|                    GET_CUR_DRV(fdctrl), kh, kt, ks,
 | |
|                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
 | |
|                                   NUM_SIDES(cur_drv)));
 | |
|     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
 | |
|     case 2:
 | |
|         /* sect too big */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 3:
 | |
|         /* track too big */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 4:
 | |
|         /* No seek enabled */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 1:
 | |
|         fdctrl->status0 |= FD_SR0_SEEK;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Check the data rate. If the programmed data rate does not match
 | |
|      * the currently inserted medium, the operation has to fail. */
 | |
|     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
 | |
|         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
 | |
|                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Set the FIFO state */
 | |
|     fdctrl->data_dir = direction;
 | |
|     fdctrl->data_pos = 0;
 | |
|     assert(fdctrl->msr & FD_MSR_CMDBUSY);
 | |
|     if (fdctrl->fifo[0] & 0x80)
 | |
|         fdctrl->data_state |= FD_STATE_MULTI;
 | |
|     else
 | |
|         fdctrl->data_state &= ~FD_STATE_MULTI;
 | |
|     if (fdctrl->fifo[5] == 0) {
 | |
|         fdctrl->data_len = fdctrl->fifo[8];
 | |
|     } else {
 | |
|         int tmp;
 | |
|         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
 | |
|         tmp = (fdctrl->fifo[6] - ks + 1);
 | |
|         if (fdctrl->fifo[0] & 0x80)
 | |
|             tmp += fdctrl->fifo[6];
 | |
|         fdctrl->data_len *= tmp;
 | |
|     }
 | |
|     fdctrl->eot = fdctrl->fifo[6];
 | |
|     if (fdctrl->dor & FD_DOR_DMAEN) {
 | |
|         /* DMA transfer is enabled. */
 | |
|         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
 | |
| 
 | |
|         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
 | |
|                        direction, (128 << fdctrl->fifo[5]) *
 | |
|                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
 | |
| 
 | |
|         /* No access is allowed until DMA transfer has completed */
 | |
|         fdctrl->msr &= ~FD_MSR_RQM;
 | |
|         if (direction != FD_DIR_VERIFY) {
 | |
|             /*
 | |
|              * Now, we just have to wait for the DMA controller to
 | |
|              * recall us...
 | |
|              */
 | |
|             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
 | |
|             k->schedule(fdctrl->dma);
 | |
|         } else {
 | |
|             /* Start transfer */
 | |
|             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
 | |
|                     fdctrl->data_len);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     FLOPPY_DPRINTF("start non-DMA transfer\n");
 | |
|     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
 | |
|     if (direction != FD_DIR_WRITE)
 | |
|         fdctrl->msr |= FD_MSR_DIO;
 | |
|     /* IO based transfer: calculate len */
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| /* Prepare a transfer of deleted data */
 | |
| static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
 | |
| 
 | |
|     /* We don't handle deleted data,
 | |
|      * so we don't return *ANYTHING*
 | |
|      */
 | |
|     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
 | |
| }
 | |
| 
 | |
| /* handlers for DMA transfers */
 | |
| int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
 | |
| {
 | |
|     FDCtrl *fdctrl;
 | |
|     FDrive *cur_drv;
 | |
|     int len, start_pos, rel_pos;
 | |
|     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
 | |
|     IsaDmaClass *k;
 | |
| 
 | |
|     fdctrl = opaque;
 | |
|     if (fdctrl->msr & FD_MSR_RQM) {
 | |
|         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
 | |
|         return 0;
 | |
|     }
 | |
|     k = ISADMA_GET_CLASS(fdctrl->dma);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
 | |
|         fdctrl->data_dir == FD_DIR_SCANH)
 | |
|         status2 = FD_SR2_SNS;
 | |
|     if (dma_len > fdctrl->data_len)
 | |
|         dma_len = fdctrl->data_len;
 | |
|     if (cur_drv->blk == NULL) {
 | |
|         if (fdctrl->data_dir == FD_DIR_WRITE)
 | |
|             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
 | |
|         else
 | |
|             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
 | |
|         len = 0;
 | |
|         goto transfer_error;
 | |
|     }
 | |
|     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
 | |
|     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
 | |
|         len = dma_len - fdctrl->data_pos;
 | |
|         if (len + rel_pos > FD_SECTOR_LEN)
 | |
|             len = FD_SECTOR_LEN - rel_pos;
 | |
|         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
 | |
|                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
 | |
|                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
 | |
|                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
 | |
|                        fd_sector(cur_drv) * FD_SECTOR_LEN);
 | |
|         if (fdctrl->data_dir != FD_DIR_WRITE ||
 | |
|             len < FD_SECTOR_LEN || rel_pos != 0) {
 | |
|             /* READ & SCAN commands and realign to a sector for WRITE */
 | |
|             if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
 | |
|                           fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
 | |
|                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
 | |
|                                fd_sector(cur_drv));
 | |
|                 /* Sure, image size is too small... */
 | |
|                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
 | |
|             }
 | |
|         }
 | |
|         switch (fdctrl->data_dir) {
 | |
|         case FD_DIR_READ:
 | |
|             /* READ commands */
 | |
|             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
 | |
|                             fdctrl->data_pos, len);
 | |
|             break;
 | |
|         case FD_DIR_WRITE:
 | |
|             /* WRITE commands */
 | |
|             if (cur_drv->ro) {
 | |
|                 /* Handle readonly medium early, no need to do DMA, touch the
 | |
|                  * LED or attempt any writes. A real floppy doesn't attempt
 | |
|                  * to write to readonly media either. */
 | |
|                 fdctrl_stop_transfer(fdctrl,
 | |
|                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
 | |
|                                      0x00);
 | |
|                 goto transfer_error;
 | |
|             }
 | |
| 
 | |
|             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
 | |
|                            fdctrl->data_pos, len);
 | |
|             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
 | |
|                            fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
 | |
|                 FLOPPY_DPRINTF("error writing sector %d\n",
 | |
|                                fd_sector(cur_drv));
 | |
|                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
 | |
|                 goto transfer_error;
 | |
|             }
 | |
|             break;
 | |
|         case FD_DIR_VERIFY:
 | |
|             /* VERIFY commands */
 | |
|             break;
 | |
|         default:
 | |
|             /* SCAN commands */
 | |
|             {
 | |
|                 uint8_t tmpbuf[FD_SECTOR_LEN];
 | |
|                 int ret;
 | |
|                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
 | |
|                                len);
 | |
|                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
 | |
|                 if (ret == 0) {
 | |
|                     status2 = FD_SR2_SEH;
 | |
|                     goto end_transfer;
 | |
|                 }
 | |
|                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
 | |
|                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
 | |
|                     status2 = 0x00;
 | |
|                     goto end_transfer;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         fdctrl->data_pos += len;
 | |
|         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
 | |
|         if (rel_pos == 0) {
 | |
|             /* Seek to next sector */
 | |
|             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|  end_transfer:
 | |
|     len = fdctrl->data_pos - start_pos;
 | |
|     FLOPPY_DPRINTF("end transfer %d %d %d\n",
 | |
|                    fdctrl->data_pos, len, fdctrl->data_len);
 | |
|     if (fdctrl->data_dir == FD_DIR_SCANE ||
 | |
|         fdctrl->data_dir == FD_DIR_SCANL ||
 | |
|         fdctrl->data_dir == FD_DIR_SCANH)
 | |
|         status2 = FD_SR2_SEH;
 | |
|     fdctrl->data_len -= len;
 | |
|     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
 | |
|  transfer_error:
 | |
| 
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| /* Data register : 0x05 */
 | |
| static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
|     uint32_t retval = 0;
 | |
|     uint32_t pos;
 | |
| 
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
 | |
|     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
 | |
|         FLOPPY_DPRINTF("error: controller not ready for reading\n");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* If data_len spans multiple sectors, the current position in the FIFO
 | |
|      * wraps around while fdctrl->data_pos is the real position in the whole
 | |
|      * request. */
 | |
|     pos = fdctrl->data_pos;
 | |
|     pos %= FD_SECTOR_LEN;
 | |
| 
 | |
|     switch (fdctrl->phase) {
 | |
|     case FD_PHASE_EXECUTION:
 | |
|         assert(fdctrl->msr & FD_MSR_NONDMA);
 | |
|         if (pos == 0) {
 | |
|             if (fdctrl->data_pos != 0)
 | |
|                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
 | |
|                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
 | |
|                                    fd_sector(cur_drv));
 | |
|                     return 0;
 | |
|                 }
 | |
|             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
 | |
|                           BDRV_SECTOR_SIZE)
 | |
|                 < 0) {
 | |
|                 FLOPPY_DPRINTF("error getting sector %d\n",
 | |
|                                fd_sector(cur_drv));
 | |
|                 /* Sure, image size is too small... */
 | |
|                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (++fdctrl->data_pos == fdctrl->data_len) {
 | |
|             fdctrl->msr &= ~FD_MSR_RQM;
 | |
|             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case FD_PHASE_RESULT:
 | |
|         assert(!(fdctrl->msr & FD_MSR_NONDMA));
 | |
|         if (++fdctrl->data_pos == fdctrl->data_len) {
 | |
|             fdctrl->msr &= ~FD_MSR_RQM;
 | |
|             fdctrl_to_command_phase(fdctrl);
 | |
|             fdctrl_reset_irq(fdctrl);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case FD_PHASE_COMMAND:
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     retval = fdctrl->fifo[pos];
 | |
|     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
 | |
| 
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| static void fdctrl_format_sector(FDCtrl *fdctrl)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
|     uint8_t kh, kt, ks;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     kt = fdctrl->fifo[6];
 | |
|     kh = fdctrl->fifo[7];
 | |
|     ks = fdctrl->fifo[8];
 | |
|     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
 | |
|                    GET_CUR_DRV(fdctrl), kh, kt, ks,
 | |
|                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
 | |
|                                   NUM_SIDES(cur_drv)));
 | |
|     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
 | |
|     case 2:
 | |
|         /* sect too big */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 3:
 | |
|         /* track too big */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 4:
 | |
|         /* No seek enabled */
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
 | |
|         fdctrl->fifo[3] = kt;
 | |
|         fdctrl->fifo[4] = kh;
 | |
|         fdctrl->fifo[5] = ks;
 | |
|         return;
 | |
|     case 1:
 | |
|         fdctrl->status0 |= FD_SR0_SEEK;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
|     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
 | |
|     if (cur_drv->blk == NULL ||
 | |
|         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
 | |
|                    BDRV_SECTOR_SIZE, 0) < 0) {
 | |
|         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
 | |
|     } else {
 | |
|         if (cur_drv->sect == cur_drv->last_sect) {
 | |
|             fdctrl->data_state &= ~FD_STATE_FORMAT;
 | |
|             /* Last sector done */
 | |
|             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
 | |
|         } else {
 | |
|             /* More to do */
 | |
|             fdctrl->data_pos = 0;
 | |
|             fdctrl->data_len = 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
 | |
|     fdctrl->fifo[0] = fdctrl->lock << 4;
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     /* Drives position */
 | |
|     fdctrl->fifo[0] = drv0(fdctrl)->track;
 | |
|     fdctrl->fifo[1] = drv1(fdctrl)->track;
 | |
| #if MAX_FD == 4
 | |
|     fdctrl->fifo[2] = drv2(fdctrl)->track;
 | |
|     fdctrl->fifo[3] = drv3(fdctrl)->track;
 | |
| #else
 | |
|     fdctrl->fifo[2] = 0;
 | |
|     fdctrl->fifo[3] = 0;
 | |
| #endif
 | |
|     /* timers */
 | |
|     fdctrl->fifo[4] = fdctrl->timer0;
 | |
|     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
 | |
|     fdctrl->fifo[6] = cur_drv->last_sect;
 | |
|     fdctrl->fifo[7] = (fdctrl->lock << 7) |
 | |
|         (cur_drv->perpendicular << 2);
 | |
|     fdctrl->fifo[8] = fdctrl->config;
 | |
|     fdctrl->fifo[9] = fdctrl->precomp_trk;
 | |
|     fdctrl_to_result_phase(fdctrl, 10);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     /* Controller's version */
 | |
|     fdctrl->fifo[0] = fdctrl->version;
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     /* Drives position */
 | |
|     drv0(fdctrl)->track = fdctrl->fifo[3];
 | |
|     drv1(fdctrl)->track = fdctrl->fifo[4];
 | |
| #if MAX_FD == 4
 | |
|     drv2(fdctrl)->track = fdctrl->fifo[5];
 | |
|     drv3(fdctrl)->track = fdctrl->fifo[6];
 | |
| #endif
 | |
|     /* timers */
 | |
|     fdctrl->timer0 = fdctrl->fifo[7];
 | |
|     fdctrl->timer1 = fdctrl->fifo[8];
 | |
|     cur_drv->last_sect = fdctrl->fifo[9];
 | |
|     fdctrl->lock = fdctrl->fifo[10] >> 7;
 | |
|     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
 | |
|     fdctrl->config = fdctrl->fifo[11];
 | |
|     fdctrl->precomp_trk = fdctrl->fifo[12];
 | |
|     fdctrl->pwrd = fdctrl->fifo[13];
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     fdctrl->fifo[0] = 0;
 | |
|     fdctrl->fifo[1] = 0;
 | |
|     /* Drives position */
 | |
|     fdctrl->fifo[2] = drv0(fdctrl)->track;
 | |
|     fdctrl->fifo[3] = drv1(fdctrl)->track;
 | |
| #if MAX_FD == 4
 | |
|     fdctrl->fifo[4] = drv2(fdctrl)->track;
 | |
|     fdctrl->fifo[5] = drv3(fdctrl)->track;
 | |
| #else
 | |
|     fdctrl->fifo[4] = 0;
 | |
|     fdctrl->fifo[5] = 0;
 | |
| #endif
 | |
|     /* timers */
 | |
|     fdctrl->fifo[6] = fdctrl->timer0;
 | |
|     fdctrl->fifo[7] = fdctrl->timer1;
 | |
|     fdctrl->fifo[8] = cur_drv->last_sect;
 | |
|     fdctrl->fifo[9] = (fdctrl->lock << 7) |
 | |
|         (cur_drv->perpendicular << 2);
 | |
|     fdctrl->fifo[10] = fdctrl->config;
 | |
|     fdctrl->fifo[11] = fdctrl->precomp_trk;
 | |
|     fdctrl->fifo[12] = fdctrl->pwrd;
 | |
|     fdctrl->fifo[13] = 0;
 | |
|     fdctrl->fifo[14] = 0;
 | |
|     fdctrl_to_result_phase(fdctrl, 15);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
 | |
|     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|              (NANOSECONDS_PER_SECOND / 50));
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     fdctrl->data_state |= FD_STATE_FORMAT;
 | |
|     if (fdctrl->fifo[0] & 0x80)
 | |
|         fdctrl->data_state |= FD_STATE_MULTI;
 | |
|     else
 | |
|         fdctrl->data_state &= ~FD_STATE_MULTI;
 | |
|     cur_drv->bps =
 | |
|         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
 | |
| #if 0
 | |
|     cur_drv->last_sect =
 | |
|         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
 | |
|         fdctrl->fifo[3] / 2;
 | |
| #else
 | |
|     cur_drv->last_sect = fdctrl->fifo[3];
 | |
| #endif
 | |
|     /* TODO: implement format using DMA expected by the Bochs BIOS
 | |
|      * and Linux fdformat (read 3 bytes per sector via DMA and fill
 | |
|      * the sector with the specified fill byte
 | |
|      */
 | |
|     fdctrl->data_state &= ~FD_STATE_FORMAT;
 | |
|     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
 | |
|     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
 | |
|     if (fdctrl->fifo[2] & 1)
 | |
|         fdctrl->dor &= ~FD_DOR_DMAEN;
 | |
|     else
 | |
|         fdctrl->dor |= FD_DOR_DMAEN;
 | |
|     /* No result back */
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
 | |
|     /* 1 Byte status back */
 | |
|     fdctrl->fifo[0] = (cur_drv->ro << 6) |
 | |
|         (cur_drv->track == 0 ? 0x10 : 0x00) |
 | |
|         (cur_drv->head << 2) |
 | |
|         GET_CUR_DRV(fdctrl) |
 | |
|         0x28;
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     fd_recalibrate(cur_drv);
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
|     /* Raise Interrupt */
 | |
|     fdctrl->status0 |= FD_SR0_SEEK;
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     if (fdctrl->reset_sensei > 0) {
 | |
|         fdctrl->fifo[0] =
 | |
|             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
 | |
|         fdctrl->reset_sensei--;
 | |
|     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
 | |
|         fdctrl->fifo[0] = FD_SR0_INVCMD;
 | |
|         fdctrl_to_result_phase(fdctrl, 1);
 | |
|         return;
 | |
|     } else {
 | |
|         fdctrl->fifo[0] =
 | |
|                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
 | |
|                 | GET_CUR_DRV(fdctrl);
 | |
|     }
 | |
| 
 | |
|     fdctrl->fifo[1] = cur_drv->track;
 | |
|     fdctrl_to_result_phase(fdctrl, 2);
 | |
|     fdctrl_reset_irq(fdctrl);
 | |
|     fdctrl->status0 = FD_SR0_RDYCHG;
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
|     /* The seek command just sends step pulses to the drive and doesn't care if
 | |
|      * there is a medium inserted of if it's banging the head against the drive.
 | |
|      */
 | |
|     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
 | |
|     /* Raise Interrupt */
 | |
|     fdctrl->status0 |= FD_SR0_SEEK;
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     if (fdctrl->fifo[1] & 0x80)
 | |
|         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
 | |
|     /* No result back */
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     fdctrl->config = fdctrl->fifo[2];
 | |
|     fdctrl->precomp_trk =  fdctrl->fifo[3];
 | |
|     /* No result back */
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     fdctrl->pwrd = fdctrl->fifo[1];
 | |
|     fdctrl->fifo[0] = fdctrl->fifo[1];
 | |
|     fdctrl_to_result_phase(fdctrl, 1);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     /* No result back */
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
|     uint32_t pos;
 | |
| 
 | |
|     pos = fdctrl->data_pos - 1;
 | |
|     pos %= FD_SECTOR_LEN;
 | |
|     if (fdctrl->fifo[pos] & 0x80) {
 | |
|         /* Command parameters done */
 | |
|         if (fdctrl->fifo[pos] & 0x40) {
 | |
|             fdctrl->fifo[0] = fdctrl->fifo[1];
 | |
|             fdctrl->fifo[2] = 0;
 | |
|             fdctrl->fifo[3] = 0;
 | |
|             fdctrl_to_result_phase(fdctrl, 4);
 | |
|         } else {
 | |
|             fdctrl_to_command_phase(fdctrl);
 | |
|         }
 | |
|     } else if (fdctrl->data_len > 7) {
 | |
|         /* ERROR */
 | |
|         fdctrl->fifo[0] = 0x80 |
 | |
|             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
 | |
|         fdctrl_to_result_phase(fdctrl, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
 | |
|         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
 | |
|                 cur_drv->sect, 1);
 | |
|     } else {
 | |
|         fd_seek(cur_drv, cur_drv->head,
 | |
|                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
 | |
|     }
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
|     /* Raise Interrupt */
 | |
|     fdctrl->status0 |= FD_SR0_SEEK;
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
| 
 | |
|     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
 | |
|     cur_drv = get_cur_drv(fdctrl);
 | |
|     if (fdctrl->fifo[2] > cur_drv->track) {
 | |
|         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
 | |
|     } else {
 | |
|         fd_seek(cur_drv, cur_drv->head,
 | |
|                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
 | |
|     }
 | |
|     fdctrl_to_command_phase(fdctrl);
 | |
|     /* Raise Interrupt */
 | |
|     fdctrl->status0 |= FD_SR0_SEEK;
 | |
|     fdctrl_raise_irq(fdctrl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handlers for the execution phase of each command
 | |
|  */
 | |
| typedef struct FDCtrlCommand {
 | |
|     uint8_t value;
 | |
|     uint8_t mask;
 | |
|     const char* name;
 | |
|     int parameters;
 | |
|     void (*handler)(FDCtrl *fdctrl, int direction);
 | |
|     int direction;
 | |
| } FDCtrlCommand;
 | |
| 
 | |
| static const FDCtrlCommand handlers[] = {
 | |
|     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
 | |
|     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
 | |
|     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
 | |
|     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
 | |
|     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
 | |
|     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
 | |
|     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
 | |
|     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
 | |
|     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
 | |
|     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
 | |
|     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
 | |
|     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
 | |
|     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
 | |
|     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
 | |
|     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
 | |
|     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
 | |
|     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
 | |
|     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
 | |
|     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
 | |
|     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
 | |
|     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
 | |
|     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
 | |
|     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
 | |
|     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
 | |
|     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
 | |
|     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
 | |
|     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
 | |
|     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
 | |
|     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
 | |
|     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
 | |
|     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
 | |
|     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
 | |
| };
 | |
| /* Associate command to an index in the 'handlers' array */
 | |
| static uint8_t command_to_handler[256];
 | |
| 
 | |
| static const FDCtrlCommand *get_command(uint8_t cmd)
 | |
| {
 | |
|     int idx;
 | |
| 
 | |
|     idx = command_to_handler[cmd];
 | |
|     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
 | |
|     return &handlers[idx];
 | |
| }
 | |
| 
 | |
| static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
 | |
| {
 | |
|     FDrive *cur_drv;
 | |
|     const FDCtrlCommand *cmd;
 | |
|     uint32_t pos;
 | |
| 
 | |
|     /* Reset mode */
 | |
|     if (!(fdctrl->dor & FD_DOR_nRESET)) {
 | |
|         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
 | |
|         return;
 | |
|     }
 | |
|     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
 | |
|         FLOPPY_DPRINTF("error: controller not ready for writing\n");
 | |
|         return;
 | |
|     }
 | |
|     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
 | |
| 
 | |
|     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
 | |
| 
 | |
|     /* If data_len spans multiple sectors, the current position in the FIFO
 | |
|      * wraps around while fdctrl->data_pos is the real position in the whole
 | |
|      * request. */
 | |
|     pos = fdctrl->data_pos++;
 | |
|     pos %= FD_SECTOR_LEN;
 | |
|     fdctrl->fifo[pos] = value;
 | |
| 
 | |
|     if (fdctrl->data_pos == fdctrl->data_len) {
 | |
|         fdctrl->msr &= ~FD_MSR_RQM;
 | |
|     }
 | |
| 
 | |
|     switch (fdctrl->phase) {
 | |
|     case FD_PHASE_EXECUTION:
 | |
|         /* For DMA requests, RQM should be cleared during execution phase, so
 | |
|          * we would have errored out above. */
 | |
|         assert(fdctrl->msr & FD_MSR_NONDMA);
 | |
| 
 | |
|         /* FIFO data write */
 | |
|         if (pos == FD_SECTOR_LEN - 1 ||
 | |
|             fdctrl->data_pos == fdctrl->data_len) {
 | |
|             cur_drv = get_cur_drv(fdctrl);
 | |
|             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
 | |
|                            BDRV_SECTOR_SIZE, 0) < 0) {
 | |
|                 FLOPPY_DPRINTF("error writing sector %d\n",
 | |
|                                fd_sector(cur_drv));
 | |
|                 break;
 | |
|             }
 | |
|             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
 | |
|                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
 | |
|                                fd_sector(cur_drv));
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Switch to result phase when done with the transfer */
 | |
|         if (fdctrl->data_pos == fdctrl->data_len) {
 | |
|             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case FD_PHASE_COMMAND:
 | |
|         assert(!(fdctrl->msr & FD_MSR_NONDMA));
 | |
|         assert(fdctrl->data_pos < FD_SECTOR_LEN);
 | |
| 
 | |
|         if (pos == 0) {
 | |
|             /* The first byte specifies the command. Now we start reading
 | |
|              * as many parameters as this command requires. */
 | |
|             cmd = get_command(value);
 | |
|             fdctrl->data_len = cmd->parameters + 1;
 | |
|             if (cmd->parameters) {
 | |
|                 fdctrl->msr |= FD_MSR_RQM;
 | |
|             }
 | |
|             fdctrl->msr |= FD_MSR_CMDBUSY;
 | |
|         }
 | |
| 
 | |
|         if (fdctrl->data_pos == fdctrl->data_len) {
 | |
|             /* We have all parameters now, execute the command */
 | |
|             fdctrl->phase = FD_PHASE_EXECUTION;
 | |
| 
 | |
|             if (fdctrl->data_state & FD_STATE_FORMAT) {
 | |
|                 fdctrl_format_sector(fdctrl);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             cmd = get_command(fdctrl->fifo[0]);
 | |
|             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
 | |
|             cmd->handler(fdctrl, cmd->direction);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case FD_PHASE_RESULT:
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdctrl_result_timer(void *opaque)
 | |
| {
 | |
|     FDCtrl *fdctrl = opaque;
 | |
|     FDrive *cur_drv = get_cur_drv(fdctrl);
 | |
| 
 | |
|     /* Pretend we are spinning.
 | |
|      * This is needed for Coherent, which uses READ ID to check for
 | |
|      * sector interleaving.
 | |
|      */
 | |
|     if (cur_drv->last_sect != 0) {
 | |
|         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
 | |
|     }
 | |
|     /* READ_ID can't automatically succeed! */
 | |
|     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
 | |
|         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
 | |
|                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
 | |
|         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
 | |
|     } else {
 | |
|         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Init functions */
 | |
| 
 | |
| void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < MAX_FD; i++) {
 | |
|         if (fds[i]) {
 | |
|             dev = qdev_new("floppy");
 | |
|             qdev_prop_set_uint32(dev, "unit", i);
 | |
|             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
 | |
|             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
 | |
|                                     &error_fatal);
 | |
|             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
 | |
| {
 | |
|     int i, j;
 | |
|     FDrive *drive;
 | |
|     static int command_tables_inited = 0;
 | |
| 
 | |
|     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
 | |
|         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Fill 'command_to_handler' lookup table */
 | |
|     if (!command_tables_inited) {
 | |
|         command_tables_inited = 1;
 | |
|         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
 | |
|             for (j = 0; j < sizeof(command_to_handler); j++) {
 | |
|                 if ((j & handlers[i].mask) == handlers[i].value) {
 | |
|                     command_to_handler[j] = i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     FLOPPY_DPRINTF("init controller\n");
 | |
|     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
 | |
|     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
 | |
|     fdctrl->fifo_size = 512;
 | |
|     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 | |
|                                              fdctrl_result_timer, fdctrl);
 | |
| 
 | |
|     fdctrl->version = 0x90; /* Intel 82078 controller */
 | |
|     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
 | |
|     fdctrl->num_floppies = MAX_FD;
 | |
| 
 | |
|     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
 | |
| 
 | |
|     for (i = 0; i < MAX_FD; i++) {
 | |
|         drive = &fdctrl->drives[i];
 | |
|         drive->fdctrl = fdctrl;
 | |
|         fd_init(drive);
 | |
|         fd_revalidate(drive);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdc_register_types(void)
 | |
| {
 | |
|     type_register_static(&floppy_bus_info);
 | |
|     type_register_static(&floppy_drive_info);
 | |
| }
 | |
| 
 | |
| type_init(fdc_register_types)
 |