mirror of
				https://github.com/qemu/qemu.git
				synced 2025-10-31 12:07:31 +00:00 
			
		
		
		
	 d000b477f2
			
		
	
	
		d000b477f2
		
	
	
	
	
		
			
			In float64_to_uint64_round_to_zero() a typo meant that we were taking the uint64_t return value from float64_to_uint64() and putting it into an int64_t variable before returning it as uint64_t again. Use uint64_t instead of pointlessly casting it back and forth to int64_t. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Laurent Vivier <laurent@vivier.eu> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
		
			
				
	
	
		
			7902 lines
		
	
	
		
			277 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7902 lines
		
	
	
		
			277 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU float support
 | |
|  *
 | |
|  * The code in this source file is derived from release 2a of the SoftFloat
 | |
|  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 | |
|  * some later contributions) are provided under that license, as detailed below.
 | |
|  * It has subsequently been modified by contributors to the QEMU Project,
 | |
|  * so some portions are provided under:
 | |
|  *  the SoftFloat-2a license
 | |
|  *  the BSD license
 | |
|  *  GPL-v2-or-later
 | |
|  *
 | |
|  * Any future contributions to this file after December 1st 2014 will be
 | |
|  * taken to be licensed under the Softfloat-2a license unless specifically
 | |
|  * indicated otherwise.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| ===============================================================================
 | |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point
 | |
| Arithmetic Package, Release 2a.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | |
| TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) they include prominent notice that the work is derivative, and (2) they
 | |
| include prominent notice akin to these four paragraphs for those parts of
 | |
| this code that are retained.
 | |
| 
 | |
| ===============================================================================
 | |
| */
 | |
| 
 | |
| /* BSD licensing:
 | |
|  * Copyright (c) 2006, Fabrice Bellard
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the copyright holder nor the names of its contributors
 | |
|  * may be used to endorse or promote products derived from this software without
 | |
|  * specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | |
|  * THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /* Portions of this work are licensed under the terms of the GNU GPL,
 | |
|  * version 2 or later. See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| /* softfloat (and in particular the code in softfloat-specialize.h) is
 | |
|  * target-dependent and needs the TARGET_* macros.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| 
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| /* We only need stdlib for abort() */
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Primitive arithmetic functions, including multi-word arithmetic, and
 | |
| | division and square root approximations.  (Can be specialized to target if
 | |
| | desired.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-macros.h"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Functions and definitions to determine:  (1) whether tininess for underflow
 | |
| | is detected before or after rounding by default, (2) what (if anything)
 | |
| | happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | |
| | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | |
| | are propagated from function inputs to output.  These details are target-
 | |
| | specific.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-specialize.h"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the half-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint32_t extractFloat16Frac(float16 a)
 | |
| {
 | |
|     return float16_val(a) & 0x3ff;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the half-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat16Exp(float16 a)
 | |
| {
 | |
|     return (float16_val(a) >> 10) & 0x1f;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat16Sign(float16 a)
 | |
| {
 | |
|     return float16_val(a)>>15;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | |
| | and 7, and returns the properly rounded 32-bit integer corresponding to the
 | |
| | input.  If `zSign' is 1, the input is negated before being converted to an
 | |
| | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
 | |
| | is simply rounded to an integer, with the inexact exception raised if the
 | |
| | input cannot be represented exactly as an integer.  However, if the fixed-
 | |
| | point input is too large, the invalid exception is raised and the largest
 | |
| | positive or negative integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8_t roundIncrement, roundBits;
 | |
|     int32_t z;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x40;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x7f;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x7f : 0;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = absZ & 0x7F;
 | |
|     absZ = ( absZ + roundIncrement )>>7;
 | |
|     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     z = absZ;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit integer corresponding to the input.
 | |
| | If `zSign' is 1, the input is negated before being converted to an integer.
 | |
| | Ordinarily, the fixed-point input is simply rounded to an integer, with
 | |
| | the inexact exception raised if the input cannot be represented exactly as
 | |
| | an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest positive or negative integer is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
 | |
|                                float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment;
 | |
|     int64_t z;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t) absZ1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && absZ1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         ++absZ0;
 | |
|         if ( absZ0 == 0 ) goto overflow;
 | |
|         absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     z = absZ0;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( z && ( ( z < 0 ) ^ zSign ) ) {
 | |
|  overflow:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return
 | |
|               zSign ? (int64_t) LIT64( 0x8000000000000000 )
 | |
|             : LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|     }
 | |
|     if (absZ1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit unsigned integer corresponding to the
 | |
| | input.  Ordinarily, the fixed-point input is simply rounded to an integer,
 | |
| | with the inexact exception raised if the input cannot be represented exactly
 | |
| | as an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest unsigned integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
 | |
|                                 uint64_t absZ1, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = (roundingMode == float_round_nearest_even);
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)absZ1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && absZ1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if (increment) {
 | |
|         ++absZ0;
 | |
|         if (absZ0 == 0) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         }
 | |
|         absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
 | |
|     }
 | |
| 
 | |
|     if (zSign && absZ0) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (absZ1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return absZ0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint32_t extractFloat32Frac( float32 a )
 | |
| {
 | |
| 
 | |
|     return float32_val(a) & 0x007FFFFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat32Exp(float32 a)
 | |
| {
 | |
| 
 | |
|     return ( float32_val(a)>>23 ) & 0xFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat32Sign( float32 a )
 | |
| {
 | |
| 
 | |
|     return float32_val(a)>>31;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_squash_input_denormal(float32 a, float_status *status)
 | |
| {
 | |
|     if (status->flush_inputs_to_zero) {
 | |
|         if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             return make_float32(float32_val(a) & 0x80000000);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal single-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( aSig ) - 8;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | single-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
 | |
| {
 | |
| 
 | |
|     return make_float32(
 | |
|           ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the single-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal single-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 30
 | |
| | and 29, which is 7 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
 | |
|                                    float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8_t roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x40;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x7f;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x7f : 0;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|         break;
 | |
|     }
 | |
|     roundBits = zSig & 0x7F;
 | |
|     if ( 0xFD <= (uint16_t) zExp ) {
 | |
|         if (    ( 0xFD < zExp )
 | |
|              || (    ( zExp == 0xFD )
 | |
|                   && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat32(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                 (status->float_detect_tininess
 | |
|                  == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < 0x80000000 );
 | |
|             shift32RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x7F;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig = ( zSig + roundIncrement )>>7;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | |
| | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32
 | |
|  normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( zSig ) - 1;
 | |
|     return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
 | |
|                                status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat64Frac( float64 a )
 | |
| {
 | |
| 
 | |
|     return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat64Exp(float64 a)
 | |
| {
 | |
| 
 | |
|     return ( float64_val(a)>>52 ) & 0x7FF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat64Sign( float64 a )
 | |
| {
 | |
| 
 | |
|     return float64_val(a)>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_squash_input_denormal(float64 a, float_status *status)
 | |
| {
 | |
|     if (status->flush_inputs_to_zero) {
 | |
|         if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             return make_float64(float64_val(a) & (1ULL << 63));
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal double-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( aSig ) - 11;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | double-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
 | |
| {
 | |
| 
 | |
|     return make_float64(
 | |
|         ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the double-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal double-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 62
 | |
| | and 61, which is 10 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
 | |
|                                    float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x200;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x3ff;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x3ff : 0;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = zSig & 0x3FF;
 | |
|     if ( 0x7FD <= (uint16_t) zExp ) {
 | |
|         if (    ( 0x7FD < zExp )
 | |
|              || (    ( zExp == 0x7FD )
 | |
|                   && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             bool overflow_to_inf = roundingMode != float_round_to_odd &&
 | |
|                                    roundIncrement != 0;
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat64(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 | |
|             shift64RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x3FF;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (roundingMode == float_round_to_odd) {
 | |
|                 /*
 | |
|                  * For round-to-odd case, the roundIncrement depends on
 | |
|                  * zSig which just changed.
 | |
|                  */
 | |
|                 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig = ( zSig + roundIncrement )>>10;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
 | |
| | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64
 | |
|  normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( zSig ) - 1;
 | |
|     return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
 | |
|                                status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the extended double-precision floating-point
 | |
| | value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloatx80Frac( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the extended double-precision floating-point
 | |
| | value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int32_t extractFloatx80Exp( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.high & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the extended double-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloatx80Sign( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.high>>15;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal extended double-precision floating-point value
 | |
| | represented by the denormalized significand `aSig'.  The normalized exponent
 | |
| | and significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr )
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( aSig );
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 | |
| | extended double-precision floating-point value, returning the result.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig )
 | |
| {
 | |
|     floatx80 z;
 | |
| 
 | |
|     z.low = zSig;
 | |
|     z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | rounded and packed into the extended double-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal extended
 | |
| | double-precision floating-point number.
 | |
| |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | |
| | number of bits as single or double precision, respectively.  Otherwise, the
 | |
| | result is rounded to the full precision of the extended double-precision
 | |
| | format.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  The
 | |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
 | |
|                                      int32_t zExp, uint64_t zSig0, uint64_t zSig1,
 | |
|                                      float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
|     int64_t roundIncrement, roundMask, roundBits;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     if ( roundingPrecision == 80 ) goto precision80;
 | |
|     if ( roundingPrecision == 64 ) {
 | |
|         roundIncrement = LIT64( 0x0000000000000400 );
 | |
|         roundMask = LIT64( 0x00000000000007FF );
 | |
|     }
 | |
|     else if ( roundingPrecision == 32 ) {
 | |
|         roundIncrement = LIT64( 0x0000008000000000 );
 | |
|         roundMask = LIT64( 0x000000FFFFFFFFFF );
 | |
|     }
 | |
|     else {
 | |
|         goto precision80;
 | |
|     }
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : roundMask;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? roundMask : 0;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = zSig0 & roundMask;
 | |
|     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | |
|            ) {
 | |
|             goto overflow;
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloatx80(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < 0 )
 | |
|                 || ( zSig0 <= zSig0 + roundIncrement );
 | |
|             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig0 & roundMask;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (roundBits) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             zSig0 += roundIncrement;
 | |
|             if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | |
|             roundIncrement = roundMask + 1;
 | |
|             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|                 roundMask |= roundIncrement;
 | |
|             }
 | |
|             zSig0 &= ~ roundMask;
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig0 += roundIncrement;
 | |
|     if ( zSig0 < roundIncrement ) {
 | |
|         ++zExp;
 | |
|         zSig0 = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     roundIncrement = roundMask + 1;
 | |
|     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|         roundMask |= roundIncrement;
 | |
|     }
 | |
|     zSig0 &= ~ roundMask;
 | |
|     if ( zSig0 == 0 ) zExp = 0;
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
|  precision80:
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)zSig1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && zSig1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && zSig1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || (    ( zExp == 0x7FFE )
 | |
|                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             roundMask = 0;
 | |
|  overflow:
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                ) {
 | |
|                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | |
|             }
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < 0 )
 | |
|                 || ! increment
 | |
|                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 | |
|             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | |
|             zExp = 0;
 | |
|             if (isTiny && zSig1) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (zSig1) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             switch (roundingMode) {
 | |
|             case float_round_nearest_even:
 | |
|             case float_round_ties_away:
 | |
|                 increment = ((int64_t)zSig1 < 0);
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 increment = 0;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 increment = !zSign && zSig1;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 increment = zSign && zSig1;
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|             if ( increment ) {
 | |
|                 ++zSig0;
 | |
|                 zSig0 &=
 | |
|                     ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|                 if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | |
|             }
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if (zSig1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         ++zSig0;
 | |
|         if ( zSig0 == 0 ) {
 | |
|             ++zExp;
 | |
|             zSig0 = LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         else {
 | |
|             zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( zSig0 == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent
 | |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloatx80' except that the input significand does not have to be
 | |
| | normalized.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
 | |
|                                               flag zSign, int32_t zExp,
 | |
|                                               uint64_t zSig0, uint64_t zSig1,
 | |
|                                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = countLeadingZeros64( zSig0 );
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
 | |
|                                 zSig0, zSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the least-significant 64 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat128Frac1( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the most-significant 48 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat128Frac0( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high & LIT64( 0x0000FFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the quadruple-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int32_t extractFloat128Exp( float128 a )
 | |
| {
 | |
| 
 | |
|     return ( a.high>>48 ) & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the quadruple-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat128Sign( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal quadruple-precision floating-point value
 | |
| | represented by the denormalized significand formed by the concatenation of
 | |
| | `aSig0' and `aSig1'.  The normalized exponent is stored at the location
 | |
| | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
 | |
| | significand are stored at the location pointed to by `zSig0Ptr', and the
 | |
| | least significant 64 bits of the normalized significand are stored at the
 | |
| | location pointed to by `zSig1Ptr'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat128Subnormal(
 | |
|      uint64_t aSig0,
 | |
|      uint64_t aSig1,
 | |
|      int32_t *zExpPtr,
 | |
|      uint64_t *zSig0Ptr,
 | |
|      uint64_t *zSig1Ptr
 | |
|  )
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( aSig0 == 0 ) {
 | |
|         shiftCount = countLeadingZeros64( aSig1 ) - 15;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             *zSig0Ptr = aSig1>>( - shiftCount );
 | |
|             *zSig1Ptr = aSig1<<( shiftCount & 63 );
 | |
|         }
 | |
|         else {
 | |
|             *zSig0Ptr = aSig1<<shiftCount;
 | |
|             *zSig1Ptr = 0;
 | |
|         }
 | |
|         *zExpPtr = - shiftCount - 63;
 | |
|     }
 | |
|     else {
 | |
|         shiftCount = countLeadingZeros64( aSig0 ) - 15;
 | |
|         shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | |
|         *zExpPtr = 1 - shiftCount;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', the exponent `zExp', and the significand formed
 | |
| | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
 | |
| | floating-point value, returning the result.  After being shifted into the
 | |
| | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
 | |
| | added together to form the most significant 32 bits of the result.  This
 | |
| | means that any integer portion of `zSig0' will be added into the exponent.
 | |
| | Since a properly normalized significand will have an integer portion equal
 | |
| | to 1, the `zExp' input should be 1 less than the desired result exponent
 | |
| | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float128
 | |
|  packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
 | |
| {
 | |
|     float128 z;
 | |
| 
 | |
|     z.low = zSig1;
 | |
|     z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0', `zSig1',
 | |
| | and `zSig2', and returns the proper quadruple-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | simply rounded and packed into the quadruple-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal quadruple-
 | |
| | precision floating-point number.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  In the
 | |
| | usual case that the input significand is normalized, `zExp' must be 1 less
 | |
| | than the ``true'' floating-point exponent.  The handling of underflow and
 | |
| | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
 | |
|                                      uint64_t zSig0, uint64_t zSig1,
 | |
|                                      uint64_t zSig2, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)zSig2 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && zSig2;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && zSig2;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         increment = !(zSig1 & 0x1) && zSig2;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( 0x7FFD <= (uint32_t) zExp ) {
 | |
|         if (    ( 0x7FFD < zExp )
 | |
|              || (    ( zExp == 0x7FFD )
 | |
|                   && eq128(
 | |
|                          LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                          LIT64( 0xFFFFFFFFFFFFFFFF ),
 | |
|                          zSig0,
 | |
|                          zSig1
 | |
|                      )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                  || (roundingMode == float_round_to_odd)
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloat128(
 | |
|                         zSign,
 | |
|                         0x7FFE,
 | |
|                         LIT64( 0x0000FFFFFFFFFFFF ),
 | |
|                         LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                     );
 | |
|             }
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat128(zSign, 0, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ! increment
 | |
|                 || lt128(
 | |
|                        zSig0,
 | |
|                        zSig1,
 | |
|                        LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                        LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                    );
 | |
|             shift128ExtraRightJamming(
 | |
|                 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | |
|             zExp = 0;
 | |
|             if (isTiny && zSig2) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             switch (roundingMode) {
 | |
|             case float_round_nearest_even:
 | |
|             case float_round_ties_away:
 | |
|                 increment = ((int64_t)zSig2 < 0);
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 increment = 0;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 increment = !zSign && zSig2;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 increment = zSign && zSig2;
 | |
|                 break;
 | |
|             case float_round_to_odd:
 | |
|                 increment = !(zSig1 & 0x1) && zSig2;
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (zSig2) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | |
|         zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     else {
 | |
|         if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand formed by the concatenation of `zSig0' and `zSig1', and
 | |
| | returns the proper quadruple-precision floating-point value corresponding
 | |
| | to the abstract input.  This routine is just like `roundAndPackFloat128'
 | |
| | except that the input significand has fewer bits and does not have to be
 | |
| | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | |
| | point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
 | |
|                                               uint64_t zSig0, uint64_t zSig1,
 | |
|                                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig2;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = countLeadingZeros64( zSig0 ) - 15;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         zSig2 = 0;
 | |
|         shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | |
|     }
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int32_to_float32(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
| 
 | |
|     if ( a == 0 ) return float32_zero;
 | |
|     if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int32_to_float64(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32_t absA;
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig;
 | |
| 
 | |
|     if ( a == 0 ) return float64_zero;
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 21;
 | |
|     zSig = absA;
 | |
|     return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int32_to_floatx80(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32_t absA;
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 32;
 | |
|     zSig = absA;
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int32_to_float128(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32_t absA;
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig0;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 17;
 | |
|     zSig0 = absA;
 | |
|     return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int64_to_float32(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64_t absA;
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return float32_zero;
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA ) - 40;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
 | |
|     }
 | |
|     else {
 | |
|         shiftCount += 7;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             shift64RightJamming( absA, - shiftCount, &absA );
 | |
|         }
 | |
|         else {
 | |
|             absA <<= shiftCount;
 | |
|         }
 | |
|         return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int64_to_float64(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
| 
 | |
|     if ( a == 0 ) return float64_zero;
 | |
|     if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
 | |
|         return packFloat64( 1, 0x43E, 0 );
 | |
|     }
 | |
|     zSign = ( a < 0 );
 | |
|     return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int64_to_floatx80(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64_t absA;
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA );
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int64_to_float128(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64_t absA;
 | |
|     int8_t shiftCount;
 | |
|     int32_t zExp;
 | |
|     uint64_t zSig0, zSig1;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA ) + 49;
 | |
|     zExp = 0x406E - shiftCount;
 | |
|     if ( 64 <= shiftCount ) {
 | |
|         zSig1 = 0;
 | |
|         zSig0 = absA;
 | |
|         shiftCount -= 64;
 | |
|     }
 | |
|     else {
 | |
|         zSig1 = absA;
 | |
|         zSig0 = 0;
 | |
|     }
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit unsigned integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 uint64_to_float32(uint64_t a, float_status *status)
 | |
| {
 | |
|     int shiftcount;
 | |
| 
 | |
|     if (a == 0) {
 | |
|         return float32_zero;
 | |
|     }
 | |
| 
 | |
|     /* Determine (left) shift needed to put first set bit into bit posn 23
 | |
|      * (since packFloat32() expects the binary point between bits 23 and 22);
 | |
|      * this is the fast case for smallish numbers.
 | |
|      */
 | |
|     shiftcount = countLeadingZeros64(a) - 40;
 | |
|     if (shiftcount >= 0) {
 | |
|         return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
 | |
|     }
 | |
|     /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
 | |
|      * expects the binary point between bits 30 and 29, hence the + 7.
 | |
|      */
 | |
|     shiftcount += 7;
 | |
|     if (shiftcount < 0) {
 | |
|         shift64RightJamming(a, -shiftcount, &a);
 | |
|     } else {
 | |
|         a <<= shiftcount;
 | |
|     }
 | |
| 
 | |
|     return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit unsigned integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 uint64_to_float64(uint64_t a, float_status *status)
 | |
| {
 | |
|     int exp = 0x43C;
 | |
|     int shiftcount;
 | |
| 
 | |
|     if (a == 0) {
 | |
|         return float64_zero;
 | |
|     }
 | |
| 
 | |
|     shiftcount = countLeadingZeros64(a) - 1;
 | |
|     if (shiftcount < 0) {
 | |
|         shift64RightJamming(a, -shiftcount, &a);
 | |
|     } else {
 | |
|         a <<= shiftcount;
 | |
|     }
 | |
|     return roundAndPackFloat64(0, exp - shiftcount, a, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit unsigned integer `a'
 | |
| | to the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 uint64_to_float128(uint64_t a, float_status *status)
 | |
| {
 | |
|     if (a == 0) {
 | |
|         return float128_zero;
 | |
|     }
 | |
|     return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float32_to_int32(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     uint64_t aSig64;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
 | |
|     if ( aExp ) aSig |= 0x00800000;
 | |
|     shiftCount = 0xAF - aExp;
 | |
|     aSig64 = aSig;
 | |
|     aSig64 <<= 32;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
 | |
|     return roundAndPackInt32(aSign, aSig64, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     int32_t z;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x9E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xCF000000 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 | |
|         }
 | |
|         return (int32_t) 0x80000000;
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if (aExp | aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 16-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     int32_t z;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x8E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xC7000000 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|                 return 0x7FFF;
 | |
|             }
 | |
|         }
 | |
|         return (int32_t) 0xffff8000;
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if ( aExp | aSig ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     shiftCount -= 0x10;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         z = - z;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float32_to_int64(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     uint64_t aSig64, aSigExtra;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = 0xBE - aExp;
 | |
|     if ( shiftCount < 0 ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|             return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|         }
 | |
|         return (int64_t) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     if ( aExp ) aSig |= 0x00800000;
 | |
|     aSig64 = aSig;
 | |
|     aSig64 <<= 40;
 | |
|     shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
 | |
|     return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | unsigned integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest unsigned integer is returned.  If the 'a' is negative, the result
 | |
| | is rounded and zero is returned; values that do not round to zero will
 | |
| | raise the inexact exception flag.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint64_t float32_to_uint64(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     uint64_t aSig64, aSigExtra;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac(a);
 | |
|     aExp = extractFloat32Exp(a);
 | |
|     aSign = extractFloat32Sign(a);
 | |
|     if ((aSign) && (aExp > 126)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         if (float32_is_any_nan(a)) {
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     shiftCount = 0xBE - aExp;
 | |
|     if (aExp) {
 | |
|         aSig |= 0x00800000;
 | |
|     }
 | |
|     if (shiftCount < 0) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|     }
 | |
| 
 | |
|     aSig64 = aSig;
 | |
|     aSig64 <<= 40;
 | |
|     shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
 | |
|     return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest unsigned integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest unsigned integer is returned.  If the
 | |
| | 'a' is negative, the result is rounded and zero is returned; values that do
 | |
| | not round to zero will raise the inexact flag.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     signed char current_rounding_mode = status->float_rounding_mode;
 | |
|     set_float_rounding_mode(float_round_to_zero, status);
 | |
|     int64_t v = float32_to_uint64(a, status);
 | |
|     set_float_rounding_mode(current_rounding_mode, status);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint32_t aSig;
 | |
|     uint64_t aSig64;
 | |
|     int64_t z;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0xBE;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xDF000000 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|         }
 | |
|         return (int64_t) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if (aExp | aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig64 = aSig | 0x00800000;
 | |
|     aSig64 <<= 40;
 | |
|     z = aSig64>>( - shiftCount );
 | |
|     if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float32_to_float64(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float32_to_floatx80(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     aSig |= 0x00800000;
 | |
|     return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float32_to_float128(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the single-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a single-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_round_to_int(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t lastBitMask, roundBitsMask;
 | |
|     uint32_t z;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     if ( 0x96 <= aExp ) {
 | |
|         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 | |
|             return propagateFloat32NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp <= 0x7E ) {
 | |
|         if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|         aSign = extractFloat32Sign( a );
 | |
|         switch (status->float_rounding_mode) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 | |
|                 return packFloat32( aSign, 0x7F, 0 );
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (aExp == 0x7E) {
 | |
|                 return packFloat32(aSign, 0x7F, 0);
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return make_float32(aSign ? 0xBF800000 : 0);
 | |
|          case float_round_up:
 | |
|             return make_float32(aSign ? 0x80000000 : 0x3F800000);
 | |
|         }
 | |
|         return packFloat32( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x96 - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = float32_val(a);
 | |
|     switch (status->float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         z += lastBitMask>>1;
 | |
|         if ((z & roundBitsMask) == 0) {
 | |
|             z &= ~lastBitMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_ties_away:
 | |
|         z += lastBitMask >> 1;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         if (!extractFloat32Sign(make_float32(z))) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         if (extractFloat32Sign(make_float32(z))) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     z &= ~ roundBitsMask;
 | |
|     if (z != float32_val(a)) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return make_float32(z);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the single-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int aExp, bExp, zExp;
 | |
|     uint32_t aSig, bSig, zSig;
 | |
|     int expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 6;
 | |
|     bSig <<= 6;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if (aSig) {
 | |
|                 return propagateFloat32NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( bSig, expDiff, &bSig );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if (bSig) {
 | |
|                 return propagateFloat32NaN(a, b, status);
 | |
|             }
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if (aSig | bSig) {
 | |
|                 return propagateFloat32NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 if (aSig | bSig) {
 | |
|                     float_raise(float_flag_output_denormal, status);
 | |
|                 }
 | |
|                 return packFloat32(zSign, 0, 0);
 | |
|             }
 | |
|             return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 | |
|         }
 | |
|         zSig = 0x40000000 + aSig + bSig;
 | |
|         zExp = aExp;
 | |
|         goto roundAndPack;
 | |
|     }
 | |
|     aSig |= 0x20000000;
 | |
|     zSig = ( aSig + bSig )<<1;
 | |
|     --zExp;
 | |
|     if ( (int32_t) zSig < 0 ) {
 | |
|         zSig = aSig + bSig;
 | |
|         ++zExp;
 | |
|     }
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the single-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int aExp, bExp, zExp;
 | |
|     uint32_t aSig, bSig, zSig;
 | |
|     int expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 7;
 | |
|     bSig <<= 7;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig | bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat32( zSign ^ 1, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|     bSig |= 0x40000000;
 | |
|  bBigger:
 | |
|     zSig = bSig - aSig;
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( bSig, expDiff, &bSig );
 | |
|     aSig |= 0x40000000;
 | |
|  aBigger:
 | |
|     zSig = aSig - bSig;
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the single-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_add(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat32Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloat32Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sub(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat32Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloat32Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_mul(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int aExp, bExp, zExp;
 | |
|     uint32_t aSig, bSig;
 | |
|     uint64_t zSig64;
 | |
|     uint32_t zSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x7F;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
 | |
|     zSig = zSig64;
 | |
|     if ( 0 <= (int32_t) ( zSig<<1 ) ) {
 | |
|         zSig <<= 1;
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloat32(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the single-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_div(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int aExp, bExp, zExp;
 | |
|     uint32_t aSig, bSig, zSig;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if (bSig) {
 | |
|                 return propagateFloat32NaN(a, b, status);
 | |
|             }
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat32( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return float32_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x7D;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     if ( bSig <= ( aSig + aSig ) ) {
 | |
|         aSig >>= 1;
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
 | |
|     if ( ( zSig & 0x3F ) == 0 ) {
 | |
|         zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
 | |
|     }
 | |
|     return roundAndPackFloat32(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the single-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_rem(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp, bExp, expDiff;
 | |
|     uint32_t aSig, bSig;
 | |
|     uint32_t q;
 | |
|     uint64_t aSig64, bSig64, q64;
 | |
|     uint32_t alternateASig;
 | |
|     int32_t sigMean;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig |= 0x00800000;
 | |
|     bSig |= 0x00800000;
 | |
|     if ( expDiff < 32 ) {
 | |
|         aSig <<= 8;
 | |
|         bSig <<= 8;
 | |
|         if ( expDiff < 0 ) {
 | |
|             if ( expDiff < -1 ) return a;
 | |
|             aSig >>= 1;
 | |
|         }
 | |
|         q = ( bSig <= aSig );
 | |
|         if ( q ) aSig -= bSig;
 | |
|         if ( 0 < expDiff ) {
 | |
|             q = ( ( (uint64_t) aSig )<<32 ) / bSig;
 | |
|             q >>= 32 - expDiff;
 | |
|             bSig >>= 2;
 | |
|             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|         }
 | |
|         else {
 | |
|             aSig >>= 2;
 | |
|             bSig >>= 2;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( bSig <= aSig ) aSig -= bSig;
 | |
|         aSig64 = ( (uint64_t) aSig )<<40;
 | |
|         bSig64 = ( (uint64_t) bSig )<<40;
 | |
|         expDiff -= 64;
 | |
|         while ( 0 < expDiff ) {
 | |
|             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|             aSig64 = - ( ( bSig * q64 )<<38 );
 | |
|             expDiff -= 62;
 | |
|         }
 | |
|         expDiff += 64;
 | |
|         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|         q = q64>>( 64 - expDiff );
 | |
|         bSig <<= 6;
 | |
|         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (int32_t) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (int32_t) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the single-precision floating-point values
 | |
| | `a' and `b' then adding 'c', with no intermediate rounding step after the
 | |
| | multiplication.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic 754-2008.
 | |
| | The flags argument allows the caller to select negation of the
 | |
| | addend, the intermediate product, or the final result. (The difference
 | |
| | between this and having the caller do a separate negation is that negating
 | |
| | externally will flip the sign bit on NaNs.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
 | |
|                        float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, cSign, zSign;
 | |
|     int aExp, bExp, cExp, pExp, zExp, expDiff;
 | |
|     uint32_t aSig, bSig, cSig;
 | |
|     flag pInf, pZero, pSign;
 | |
|     uint64_t pSig64, cSig64, zSig64;
 | |
|     uint32_t pSig;
 | |
|     int shiftcount;
 | |
|     flag signflip, infzero;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
|     c = float32_squash_input_denormal(c, status);
 | |
|     aSig = extractFloat32Frac(a);
 | |
|     aExp = extractFloat32Exp(a);
 | |
|     aSign = extractFloat32Sign(a);
 | |
|     bSig = extractFloat32Frac(b);
 | |
|     bExp = extractFloat32Exp(b);
 | |
|     bSign = extractFloat32Sign(b);
 | |
|     cSig = extractFloat32Frac(c);
 | |
|     cExp = extractFloat32Exp(c);
 | |
|     cSign = extractFloat32Sign(c);
 | |
| 
 | |
|     infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
 | |
|                (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
 | |
| 
 | |
|     /* It is implementation-defined whether the cases of (0,inf,qnan)
 | |
|      * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
 | |
|      * they return if they do), so we have to hand this information
 | |
|      * off to the target-specific pick-a-NaN routine.
 | |
|      */
 | |
|     if (((aExp == 0xff) && aSig) ||
 | |
|         ((bExp == 0xff) && bSig) ||
 | |
|         ((cExp == 0xff) && cSig)) {
 | |
|         return propagateFloat32MulAddNaN(a, b, c, infzero, status);
 | |
|     }
 | |
| 
 | |
|     if (infzero) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (flags & float_muladd_negate_c) {
 | |
|         cSign ^= 1;
 | |
|     }
 | |
| 
 | |
|     signflip = (flags & float_muladd_negate_result) ? 1 : 0;
 | |
| 
 | |
|     /* Work out the sign and type of the product */
 | |
|     pSign = aSign ^ bSign;
 | |
|     if (flags & float_muladd_negate_product) {
 | |
|         pSign ^= 1;
 | |
|     }
 | |
|     pInf = (aExp == 0xff) || (bExp == 0xff);
 | |
|     pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
 | |
| 
 | |
|     if (cExp == 0xff) {
 | |
|         if (pInf && (pSign ^ cSign)) {
 | |
|             /* addition of opposite-signed infinities => InvalidOperation */
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         /* Otherwise generate an infinity of the same sign */
 | |
|         return packFloat32(cSign ^ signflip, 0xff, 0);
 | |
|     }
 | |
| 
 | |
|     if (pInf) {
 | |
|         return packFloat32(pSign ^ signflip, 0xff, 0);
 | |
|     }
 | |
| 
 | |
|     if (pZero) {
 | |
|         if (cExp == 0) {
 | |
|             if (cSig == 0) {
 | |
|                 /* Adding two exact zeroes */
 | |
|                 if (pSign == cSign) {
 | |
|                     zSign = pSign;
 | |
|                 } else if (status->float_rounding_mode == float_round_down) {
 | |
|                     zSign = 1;
 | |
|                 } else {
 | |
|                     zSign = 0;
 | |
|                 }
 | |
|                 return packFloat32(zSign ^ signflip, 0, 0);
 | |
|             }
 | |
|             /* Exact zero plus a denorm */
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat32(cSign ^ signflip, 0, 0);
 | |
|             }
 | |
|         }
 | |
|         /* Zero plus something non-zero : just return the something */
 | |
|         if (flags & float_muladd_halve_result) {
 | |
|             if (cExp == 0) {
 | |
|                 normalizeFloat32Subnormal(cSig, &cExp, &cSig);
 | |
|             }
 | |
|             /* Subtract one to halve, and one again because roundAndPackFloat32
 | |
|              * wants one less than the true exponent.
 | |
|              */
 | |
|             cExp -= 2;
 | |
|             cSig = (cSig | 0x00800000) << 7;
 | |
|             return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
 | |
|         }
 | |
|         return packFloat32(cSign ^ signflip, cExp, cSig);
 | |
|     }
 | |
| 
 | |
|     if (aExp == 0) {
 | |
|         normalizeFloat32Subnormal(aSig, &aExp, &aSig);
 | |
|     }
 | |
|     if (bExp == 0) {
 | |
|         normalizeFloat32Subnormal(bSig, &bExp, &bSig);
 | |
|     }
 | |
| 
 | |
|     /* Calculate the actual result a * b + c */
 | |
| 
 | |
|     /* Multiply first; this is easy. */
 | |
|     /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
 | |
|      * because we want the true exponent, not the "one-less-than"
 | |
|      * flavour that roundAndPackFloat32() takes.
 | |
|      */
 | |
|     pExp = aExp + bExp - 0x7e;
 | |
|     aSig = (aSig | 0x00800000) << 7;
 | |
|     bSig = (bSig | 0x00800000) << 8;
 | |
|     pSig64 = (uint64_t)aSig * bSig;
 | |
|     if ((int64_t)(pSig64 << 1) >= 0) {
 | |
|         pSig64 <<= 1;
 | |
|         pExp--;
 | |
|     }
 | |
| 
 | |
|     zSign = pSign ^ signflip;
 | |
| 
 | |
|     /* Now pSig64 is the significand of the multiply, with the explicit bit in
 | |
|      * position 62.
 | |
|      */
 | |
|     if (cExp == 0) {
 | |
|         if (!cSig) {
 | |
|             /* Throw out the special case of c being an exact zero now */
 | |
|             shift64RightJamming(pSig64, 32, &pSig64);
 | |
|             pSig = pSig64;
 | |
|             if (flags & float_muladd_halve_result) {
 | |
|                 pExp--;
 | |
|             }
 | |
|             return roundAndPackFloat32(zSign, pExp - 1,
 | |
|                                        pSig, status);
 | |
|         }
 | |
|         normalizeFloat32Subnormal(cSig, &cExp, &cSig);
 | |
|     }
 | |
| 
 | |
|     cSig64 = (uint64_t)cSig << (62 - 23);
 | |
|     cSig64 |= LIT64(0x4000000000000000);
 | |
|     expDiff = pExp - cExp;
 | |
| 
 | |
|     if (pSign == cSign) {
 | |
|         /* Addition */
 | |
|         if (expDiff > 0) {
 | |
|             /* scale c to match p */
 | |
|             shift64RightJamming(cSig64, expDiff, &cSig64);
 | |
|             zExp = pExp;
 | |
|         } else if (expDiff < 0) {
 | |
|             /* scale p to match c */
 | |
|             shift64RightJamming(pSig64, -expDiff, &pSig64);
 | |
|             zExp = cExp;
 | |
|         } else {
 | |
|             /* no scaling needed */
 | |
|             zExp = cExp;
 | |
|         }
 | |
|         /* Add significands and make sure explicit bit ends up in posn 62 */
 | |
|         zSig64 = pSig64 + cSig64;
 | |
|         if ((int64_t)zSig64 < 0) {
 | |
|             shift64RightJamming(zSig64, 1, &zSig64);
 | |
|         } else {
 | |
|             zExp--;
 | |
|         }
 | |
|     } else {
 | |
|         /* Subtraction */
 | |
|         if (expDiff > 0) {
 | |
|             shift64RightJamming(cSig64, expDiff, &cSig64);
 | |
|             zSig64 = pSig64 - cSig64;
 | |
|             zExp = pExp;
 | |
|         } else if (expDiff < 0) {
 | |
|             shift64RightJamming(pSig64, -expDiff, &pSig64);
 | |
|             zSig64 = cSig64 - pSig64;
 | |
|             zExp = cExp;
 | |
|             zSign ^= 1;
 | |
|         } else {
 | |
|             zExp = pExp;
 | |
|             if (cSig64 < pSig64) {
 | |
|                 zSig64 = pSig64 - cSig64;
 | |
|             } else if (pSig64 < cSig64) {
 | |
|                 zSig64 = cSig64 - pSig64;
 | |
|                 zSign ^= 1;
 | |
|             } else {
 | |
|                 /* Exact zero */
 | |
|                 zSign = signflip;
 | |
|                 if (status->float_rounding_mode == float_round_down) {
 | |
|                     zSign ^= 1;
 | |
|                 }
 | |
|                 return packFloat32(zSign, 0, 0);
 | |
|             }
 | |
|         }
 | |
|         --zExp;
 | |
|         /* Normalize to put the explicit bit back into bit 62. */
 | |
|         shiftcount = countLeadingZeros64(zSig64) - 1;
 | |
|         zSig64 <<= shiftcount;
 | |
|         zExp -= shiftcount;
 | |
|     }
 | |
|     if (flags & float_muladd_halve_result) {
 | |
|         zExp--;
 | |
|     }
 | |
| 
 | |
|     shift64RightJamming(zSig64, 32, &zSig64);
 | |
|     return roundAndPackFloat32(zSign, zExp, zSig64, status);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sqrt(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp, zExp;
 | |
|     uint32_t aSig, zSig;
 | |
|     uint64_t rem, term;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, float32_zero, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig ) == 0 ) return a;
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return float32_zero;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     zSig = estimateSqrt32( aExp, aSig ) + 2;
 | |
|     if ( ( zSig & 0x7F ) <= 5 ) {
 | |
|         if ( zSig < 2 ) {
 | |
|             zSig = 0x7FFFFFFF;
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         aSig >>= aExp & 1;
 | |
|         term = ( (uint64_t) zSig ) * zSig;
 | |
|         rem = ( ( (uint64_t) aSig )<<32 ) - term;
 | |
|         while ( (int64_t) rem < 0 ) {
 | |
|             --zSig;
 | |
|             rem += ( ( (uint64_t) zSig )<<1 ) | 1;
 | |
|         }
 | |
|         zSig |= ( rem != 0 );
 | |
|     }
 | |
|     shift32RightJamming( zSig, 1, &zSig );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32(0, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary exponential of the single-precision floating-point value
 | |
| | `a'. The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| |
 | |
| | Uses the following identities:
 | |
| |
 | |
| | 1. -------------------------------------------------------------------------
 | |
| |      x    x*ln(2)
 | |
| |     2  = e
 | |
| |
 | |
| | 2. -------------------------------------------------------------------------
 | |
| |                      2     3     4     5           n
 | |
| |      x        x     x     x     x     x           x
 | |
| |     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
 | |
| |               1!    2!    3!    4!    5!          n!
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static const float64 float32_exp2_coefficients[15] =
 | |
| {
 | |
|     const_float64( 0x3ff0000000000000ll ), /*  1 */
 | |
|     const_float64( 0x3fe0000000000000ll ), /*  2 */
 | |
|     const_float64( 0x3fc5555555555555ll ), /*  3 */
 | |
|     const_float64( 0x3fa5555555555555ll ), /*  4 */
 | |
|     const_float64( 0x3f81111111111111ll ), /*  5 */
 | |
|     const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
 | |
|     const_float64( 0x3f2a01a01a01a01all ), /*  7 */
 | |
|     const_float64( 0x3efa01a01a01a01all ), /*  8 */
 | |
|     const_float64( 0x3ec71de3a556c734ll ), /*  9 */
 | |
|     const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
 | |
|     const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
 | |
|     const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
 | |
|     const_float64( 0x3de6124613a86d09ll ), /* 13 */
 | |
|     const_float64( 0x3da93974a8c07c9dll ), /* 14 */
 | |
|     const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
 | |
| };
 | |
| 
 | |
| float32 float32_exp2(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
|     float64 r, x, xn;
 | |
|     int i;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0xFF) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, float32_zero, status);
 | |
|         }
 | |
|         return (aSign) ? float32_zero : a;
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) return float32_one;
 | |
|     }
 | |
| 
 | |
|     float_raise(float_flag_inexact, status);
 | |
| 
 | |
|     /* ******************************* */
 | |
|     /* using float64 for approximation */
 | |
|     /* ******************************* */
 | |
|     x = float32_to_float64(a, status);
 | |
|     x = float64_mul(x, float64_ln2, status);
 | |
| 
 | |
|     xn = x;
 | |
|     r = float64_one;
 | |
|     for (i = 0 ; i < 15 ; i++) {
 | |
|         float64 f;
 | |
| 
 | |
|         f = float64_mul(xn, float32_exp2_coefficients[i], status);
 | |
|         r = float64_add(r, f, status);
 | |
| 
 | |
|         xn = float64_mul(xn, x, status);
 | |
|     }
 | |
| 
 | |
|     return float64_to_float32(r, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_log2(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig, zSig, i;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, float32_zero, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x7F;
 | |
|     aSig |= 0x00800000;
 | |
|     zSign = aExp < 0;
 | |
|     zSig = aExp << 23;
 | |
| 
 | |
|     for (i = 1 << 22; i > 0; i >>= 1) {
 | |
|         aSig = ( (uint64_t)aSig * aSig ) >> 23;
 | |
|         if ( aSig & 0x01000000 ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
| 
 | |
|     return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_unordered(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return ( float32_val(a) == float32_val(b) ) ||
 | |
|             ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_unordered_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float64_to_int32(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x42C - aExp;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 | |
|     return roundAndPackInt32(aSign, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig, savedASig;
 | |
|     int32_t z;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( 0x41E < aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FF ) {
 | |
|         if (aExp || aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 16-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig, savedASig;
 | |
|     int32_t z;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( 0x40E < aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && aSig ) {
 | |
|             aSign = 0;
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FF ) {
 | |
|         if ( aExp || aSig ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) {
 | |
|         z = - z;
 | |
|     }
 | |
|     if ( ( (int16_t)z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float64_to_int64(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig, aSigExtra;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( 0x43E < aExp ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FF )
 | |
|                       && ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|         aSig <<= - shiftCount;
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
|     }
 | |
|     return roundAndPackInt64(aSign, aSig, aSigExtra, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig;
 | |
|     int64_t z;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = aExp - 0x433;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( 0x43E <= aExp ) {
 | |
|             if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 if (    ! aSign
 | |
|                      || (    ( aExp == 0x7FF )
 | |
|                           && ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
|                    ) {
 | |
|                     return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|                 }
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         z = aSig<<shiftCount;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FE ) {
 | |
|             if (aExp | aSig) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|         z = aSig>>( - shiftCount );
 | |
|         if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the single-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float64_to_float32(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig;
 | |
|     uint32_t zSig;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 22, &aSig );
 | |
|     zSig = aSig;
 | |
|     if ( aExp || zSig ) {
 | |
|         zSig |= 0x40000000;
 | |
|         aExp -= 0x381;
 | |
|     }
 | |
|     return roundAndPackFloat32(aSign, aExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | half-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
 | |
| {
 | |
|     return make_float16(
 | |
|         (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper half-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the half-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal half-
 | |
| | precision floating-point number.
 | |
| | The `ieee' flag indicates whether to use IEEE standard half precision, or
 | |
| | ARM-style "alternative representation", which omits the NaN and Inf
 | |
| | encodings in order to raise the maximum representable exponent by one.
 | |
| |     The input significand `zSig' has its binary point between bits 22
 | |
| | and 23, which is 13 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | Note the slightly odd position of the binary point in zSig compared with the
 | |
| | other roundAndPackFloat functions. This should probably be fixed if we
 | |
| | need to implement more float16 routines than just conversion.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float16 roundAndPackFloat16(flag zSign, int zExp,
 | |
|                                    uint32_t zSig, flag ieee,
 | |
|                                    float_status *status)
 | |
| {
 | |
|     int maxexp = ieee ? 29 : 30;
 | |
|     uint32_t mask;
 | |
|     uint32_t increment;
 | |
|     bool rounding_bumps_exp;
 | |
|     bool is_tiny = false;
 | |
| 
 | |
|     /* Calculate the mask of bits of the mantissa which are not
 | |
|      * representable in half-precision and will be lost.
 | |
|      */
 | |
|     if (zExp < 1) {
 | |
|         /* Will be denormal in halfprec */
 | |
|         mask = 0x00ffffff;
 | |
|         if (zExp >= -11) {
 | |
|             mask >>= 11 + zExp;
 | |
|         }
 | |
|     } else {
 | |
|         /* Normal number in halfprec */
 | |
|         mask = 0x00001fff;
 | |
|     }
 | |
| 
 | |
|     switch (status->float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         increment = (mask + 1) >> 1;
 | |
|         if ((zSig & mask) == increment) {
 | |
|             increment = zSig & (increment << 1);
 | |
|         }
 | |
|         break;
 | |
|     case float_round_ties_away:
 | |
|         increment = (mask + 1) >> 1;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = zSign ? 0 : mask;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign ? mask : 0;
 | |
|         break;
 | |
|     default: /* round_to_zero */
 | |
|         increment = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     rounding_bumps_exp = (zSig + increment >= 0x01000000);
 | |
| 
 | |
|     if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
 | |
|         if (ieee) {
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             return packFloat16(zSign, 0x1f, 0);
 | |
|         } else {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return packFloat16(zSign, 0x1f, 0x3ff);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (zExp < 0) {
 | |
|         /* Note that flush-to-zero does not affect half-precision results */
 | |
|         is_tiny =
 | |
|             (status->float_detect_tininess == float_tininess_before_rounding)
 | |
|             || (zExp < -1)
 | |
|             || (!rounding_bumps_exp);
 | |
|     }
 | |
|     if (zSig & mask) {
 | |
|         float_raise(float_flag_inexact, status);
 | |
|         if (is_tiny) {
 | |
|             float_raise(float_flag_underflow, status);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     zSig += increment;
 | |
|     if (rounding_bumps_exp) {
 | |
|         zSig >>= 1;
 | |
|         zExp++;
 | |
|     }
 | |
| 
 | |
|     if (zExp < -10) {
 | |
|         return packFloat16(zSign, 0, 0);
 | |
|     }
 | |
|     if (zExp < 0) {
 | |
|         zSig >>= -zExp;
 | |
|         zExp = 0;
 | |
|     }
 | |
|     return packFloat16(zSign, zExp, zSig >> 13);
 | |
| }
 | |
| 
 | |
| static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
 | |
|                                       uint32_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount = countLeadingZeros32(aSig) - 21;
 | |
|     *zSigPtr = aSig << shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| }
 | |
| 
 | |
| /* Half precision floats come in two formats: standard IEEE and "ARM" format.
 | |
|    The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
 | |
| 
 | |
| float32 float16_to_float32(float16 a, flag ieee, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     aSign = extractFloat16Sign(a);
 | |
|     aExp = extractFloat16Exp(a);
 | |
|     aSig = extractFloat16Frac(a);
 | |
| 
 | |
|     if (aExp == 0x1f && ieee) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32(aSign, 0xff, 0);
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) {
 | |
|             return packFloat32(aSign, 0, 0);
 | |
|         }
 | |
| 
 | |
|         normalizeFloat16Subnormal(aSig, &aExp, &aSig);
 | |
|         aExp--;
 | |
|     }
 | |
|     return packFloat32( aSign, aExp + 0x70, aSig << 13);
 | |
| }
 | |
| 
 | |
| float16 float32_to_float16(float32 a, flag ieee, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             /* Input is a NaN */
 | |
|             if (!ieee) {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return packFloat16(aSign, 0, 0);
 | |
|             }
 | |
|             return commonNaNToFloat16(
 | |
|                 float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         /* Infinity */
 | |
|         if (!ieee) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return packFloat16(aSign, 0x1f, 0x3ff);
 | |
|         }
 | |
|         return packFloat16(aSign, 0x1f, 0);
 | |
|     }
 | |
|     if (aExp == 0 && aSig == 0) {
 | |
|         return packFloat16(aSign, 0, 0);
 | |
|     }
 | |
|     /* Decimal point between bits 22 and 23. Note that we add the 1 bit
 | |
|      * even if the input is denormal; however this is harmless because
 | |
|      * the largest possible single-precision denormal is still smaller
 | |
|      * than the smallest representable half-precision denormal, and so we
 | |
|      * will end up ignoring aSig and returning via the "always return zero"
 | |
|      * codepath.
 | |
|      */
 | |
|     aSig |= 0x00800000;
 | |
|     aExp -= 0x71;
 | |
| 
 | |
|     return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
 | |
| }
 | |
| 
 | |
| float64 float16_to_float64(float16 a, flag ieee, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     aSign = extractFloat16Sign(a);
 | |
|     aExp = extractFloat16Exp(a);
 | |
|     aSig = extractFloat16Frac(a);
 | |
| 
 | |
|     if (aExp == 0x1f && ieee) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat64(
 | |
|                 float16ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64(aSign, 0x7ff, 0);
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) {
 | |
|             return packFloat64(aSign, 0, 0);
 | |
|         }
 | |
| 
 | |
|         normalizeFloat16Subnormal(aSig, &aExp, &aSig);
 | |
|         aExp--;
 | |
|     }
 | |
|     return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
 | |
| }
 | |
| 
 | |
| float16 float64_to_float16(float64 a, flag ieee, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig;
 | |
|     uint32_t zSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac(a);
 | |
|     aExp = extractFloat64Exp(a);
 | |
|     aSign = extractFloat64Sign(a);
 | |
|     if (aExp == 0x7FF) {
 | |
|         if (aSig) {
 | |
|             /* Input is a NaN */
 | |
|             if (!ieee) {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return packFloat16(aSign, 0, 0);
 | |
|             }
 | |
|             return commonNaNToFloat16(
 | |
|                 float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         /* Infinity */
 | |
|         if (!ieee) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return packFloat16(aSign, 0x1f, 0x3ff);
 | |
|         }
 | |
|         return packFloat16(aSign, 0x1f, 0);
 | |
|     }
 | |
|     shift64RightJamming(aSig, 29, &aSig);
 | |
|     zSig = aSig;
 | |
|     if (aExp == 0 && zSig == 0) {
 | |
|         return packFloat16(aSign, 0, 0);
 | |
|     }
 | |
|     /* Decimal point between bits 22 and 23. Note that we add the 1 bit
 | |
|      * even if the input is denormal; however this is harmless because
 | |
|      * the largest possible single-precision denormal is still smaller
 | |
|      * than the smallest representable half-precision denormal, and so we
 | |
|      * will end up ignoring aSig and returning via the "always return zero"
 | |
|      * codepath.
 | |
|      */
 | |
|     zSig |= 0x00800000;
 | |
|     aExp -= 0x3F1;
 | |
| 
 | |
|     return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float64_to_floatx80(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     return
 | |
|         packFloatx80(
 | |
|             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the quadruple-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float64_to_float128(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, zSig0, zSig1;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the double-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a double-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_round_to_int(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t lastBitMask, roundBitsMask;
 | |
|     uint64_t z;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     if ( 0x433 <= aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
 | |
|             return propagateFloat64NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp < 0x3FF ) {
 | |
|         if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|         aSign = extractFloat64Sign( a );
 | |
|         switch (status->float_rounding_mode) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
 | |
|                 return packFloat64( aSign, 0x3FF, 0 );
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (aExp == 0x3FE) {
 | |
|                 return packFloat64(aSign, 0x3ff, 0);
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
 | |
|          case float_round_up:
 | |
|             return make_float64(
 | |
|             aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
 | |
|         }
 | |
|         return packFloat64( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x433 - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = float64_val(a);
 | |
|     switch (status->float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         z += lastBitMask >> 1;
 | |
|         if ((z & roundBitsMask) == 0) {
 | |
|             z &= ~lastBitMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_ties_away:
 | |
|         z += lastBitMask >> 1;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         if (!extractFloat64Sign(make_float64(z))) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         if (extractFloat64Sign(make_float64(z))) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     z &= ~ roundBitsMask;
 | |
|     if (z != float64_val(a)) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return make_float64(z);
 | |
| 
 | |
| }
 | |
| 
 | |
| float64 float64_trunc_to_int(float64 a, float_status *status)
 | |
| {
 | |
|     int oldmode;
 | |
|     float64 res;
 | |
|     oldmode = status->float_rounding_mode;
 | |
|     status->float_rounding_mode = float_round_to_zero;
 | |
|     res = float64_round_to_int(a, status);
 | |
|     status->float_rounding_mode = oldmode;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the double-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig;
 | |
|     int expDiff;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 9;
 | |
|     bSig <<= 9;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if (aSig) {
 | |
|                 return propagateFloat64NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig |= LIT64( 0x2000000000000000 );
 | |
|         }
 | |
|         shift64RightJamming( bSig, expDiff, &bSig );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if (bSig) {
 | |
|                 return propagateFloat64NaN(a, b, status);
 | |
|             }
 | |
|             return packFloat64( zSign, 0x7FF, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= LIT64( 0x2000000000000000 );
 | |
|         }
 | |
|         shift64RightJamming( aSig, - expDiff, &aSig );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if (aSig | bSig) {
 | |
|                 return propagateFloat64NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 if (aSig | bSig) {
 | |
|                     float_raise(float_flag_output_denormal, status);
 | |
|                 }
 | |
|                 return packFloat64(zSign, 0, 0);
 | |
|             }
 | |
|             return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
 | |
|         }
 | |
|         zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
 | |
|         zExp = aExp;
 | |
|         goto roundAndPack;
 | |
|     }
 | |
|     aSig |= LIT64( 0x2000000000000000 );
 | |
|     zSig = ( aSig + bSig )<<1;
 | |
|     --zExp;
 | |
|     if ( (int64_t) zSig < 0 ) {
 | |
|         zSig = aSig + bSig;
 | |
|         ++zExp;
 | |
|     }
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat64(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig;
 | |
|     int expDiff;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 10;
 | |
|     bSig <<= 10;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig | bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat64( zSign ^ 1, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, - expDiff, &aSig );
 | |
|     bSig |= LIT64( 0x4000000000000000 );
 | |
|  bBigger:
 | |
|     zSig = bSig - aSig;
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift64RightJamming( bSig, expDiff, &bSig );
 | |
|     aSig |= LIT64( 0x4000000000000000 );
 | |
|  aBigger:
 | |
|     zSig = aSig - bSig;
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the double-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_add(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat64Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloat64Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sub(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat64Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloat64Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_mul(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x3FF;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
 | |
|         zSig0 <<= 1;
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloat64(zSign, zExp, zSig0, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the double-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_div(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig;
 | |
|     uint64_t rem0, rem1;
 | |
|     uint64_t term0, term1;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if (bSig) {
 | |
|                 return propagateFloat64NaN(a, b, status);
 | |
|             }
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat64( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return float64_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloat64( zSign, 0x7FF, 0 );
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FD;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     if ( bSig <= ( aSig + aSig ) ) {
 | |
|         aSig >>= 1;
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig = estimateDiv128To64( aSig, 0, bSig );
 | |
|     if ( ( zSig & 0x1FF ) <= 2 ) {
 | |
|         mul64To128( bSig, zSig, &term0, &term1 );
 | |
|         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|         while ( (int64_t) rem0 < 0 ) {
 | |
|             --zSig;
 | |
|             add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|         }
 | |
|         zSig |= ( rem1 != 0 );
 | |
|     }
 | |
|     return roundAndPackFloat64(zSign, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the double-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_rem(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp, bExp, expDiff;
 | |
|     uint64_t aSig, bSig;
 | |
|     uint64_t q, alternateASig;
 | |
|     int64_t sigMean;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         aSig >>= 1;
 | |
|     }
 | |
|     q = ( bSig <= aSig );
 | |
|     if ( q ) aSig -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         aSig = - ( ( bSig>>2 ) * q );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         bSig >>= 2;
 | |
|         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     else {
 | |
|         aSig >>= 2;
 | |
|         bSig >>= 2;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (int64_t) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (int64_t) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the double-precision floating-point values
 | |
| | `a' and `b' then adding 'c', with no intermediate rounding step after the
 | |
| | multiplication.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic 754-2008.
 | |
| | The flags argument allows the caller to select negation of the
 | |
| | addend, the intermediate product, or the final result. (The difference
 | |
| | between this and having the caller do a separate negation is that negating
 | |
| | externally will flip the sign bit on NaNs.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
 | |
|                        float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, cSign, zSign;
 | |
|     int aExp, bExp, cExp, pExp, zExp, expDiff;
 | |
|     uint64_t aSig, bSig, cSig;
 | |
|     flag pInf, pZero, pSign;
 | |
|     uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
 | |
|     int shiftcount;
 | |
|     flag signflip, infzero;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
|     c = float64_squash_input_denormal(c, status);
 | |
|     aSig = extractFloat64Frac(a);
 | |
|     aExp = extractFloat64Exp(a);
 | |
|     aSign = extractFloat64Sign(a);
 | |
|     bSig = extractFloat64Frac(b);
 | |
|     bExp = extractFloat64Exp(b);
 | |
|     bSign = extractFloat64Sign(b);
 | |
|     cSig = extractFloat64Frac(c);
 | |
|     cExp = extractFloat64Exp(c);
 | |
|     cSign = extractFloat64Sign(c);
 | |
| 
 | |
|     infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
 | |
|                (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
 | |
| 
 | |
|     /* It is implementation-defined whether the cases of (0,inf,qnan)
 | |
|      * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
 | |
|      * they return if they do), so we have to hand this information
 | |
|      * off to the target-specific pick-a-NaN routine.
 | |
|      */
 | |
|     if (((aExp == 0x7ff) && aSig) ||
 | |
|         ((bExp == 0x7ff) && bSig) ||
 | |
|         ((cExp == 0x7ff) && cSig)) {
 | |
|         return propagateFloat64MulAddNaN(a, b, c, infzero, status);
 | |
|     }
 | |
| 
 | |
|     if (infzero) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (flags & float_muladd_negate_c) {
 | |
|         cSign ^= 1;
 | |
|     }
 | |
| 
 | |
|     signflip = (flags & float_muladd_negate_result) ? 1 : 0;
 | |
| 
 | |
|     /* Work out the sign and type of the product */
 | |
|     pSign = aSign ^ bSign;
 | |
|     if (flags & float_muladd_negate_product) {
 | |
|         pSign ^= 1;
 | |
|     }
 | |
|     pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
 | |
|     pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
 | |
| 
 | |
|     if (cExp == 0x7ff) {
 | |
|         if (pInf && (pSign ^ cSign)) {
 | |
|             /* addition of opposite-signed infinities => InvalidOperation */
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         /* Otherwise generate an infinity of the same sign */
 | |
|         return packFloat64(cSign ^ signflip, 0x7ff, 0);
 | |
|     }
 | |
| 
 | |
|     if (pInf) {
 | |
|         return packFloat64(pSign ^ signflip, 0x7ff, 0);
 | |
|     }
 | |
| 
 | |
|     if (pZero) {
 | |
|         if (cExp == 0) {
 | |
|             if (cSig == 0) {
 | |
|                 /* Adding two exact zeroes */
 | |
|                 if (pSign == cSign) {
 | |
|                     zSign = pSign;
 | |
|                 } else if (status->float_rounding_mode == float_round_down) {
 | |
|                     zSign = 1;
 | |
|                 } else {
 | |
|                     zSign = 0;
 | |
|                 }
 | |
|                 return packFloat64(zSign ^ signflip, 0, 0);
 | |
|             }
 | |
|             /* Exact zero plus a denorm */
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat64(cSign ^ signflip, 0, 0);
 | |
|             }
 | |
|         }
 | |
|         /* Zero plus something non-zero : just return the something */
 | |
|         if (flags & float_muladd_halve_result) {
 | |
|             if (cExp == 0) {
 | |
|                 normalizeFloat64Subnormal(cSig, &cExp, &cSig);
 | |
|             }
 | |
|             /* Subtract one to halve, and one again because roundAndPackFloat64
 | |
|              * wants one less than the true exponent.
 | |
|              */
 | |
|             cExp -= 2;
 | |
|             cSig = (cSig | 0x0010000000000000ULL) << 10;
 | |
|             return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
 | |
|         }
 | |
|         return packFloat64(cSign ^ signflip, cExp, cSig);
 | |
|     }
 | |
| 
 | |
|     if (aExp == 0) {
 | |
|         normalizeFloat64Subnormal(aSig, &aExp, &aSig);
 | |
|     }
 | |
|     if (bExp == 0) {
 | |
|         normalizeFloat64Subnormal(bSig, &bExp, &bSig);
 | |
|     }
 | |
| 
 | |
|     /* Calculate the actual result a * b + c */
 | |
| 
 | |
|     /* Multiply first; this is easy. */
 | |
|     /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
 | |
|      * because we want the true exponent, not the "one-less-than"
 | |
|      * flavour that roundAndPackFloat64() takes.
 | |
|      */
 | |
|     pExp = aExp + bExp - 0x3fe;
 | |
|     aSig = (aSig | LIT64(0x0010000000000000))<<10;
 | |
|     bSig = (bSig | LIT64(0x0010000000000000))<<11;
 | |
|     mul64To128(aSig, bSig, &pSig0, &pSig1);
 | |
|     if ((int64_t)(pSig0 << 1) >= 0) {
 | |
|         shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
 | |
|         pExp--;
 | |
|     }
 | |
| 
 | |
|     zSign = pSign ^ signflip;
 | |
| 
 | |
|     /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
 | |
|      * bit in position 126.
 | |
|      */
 | |
|     if (cExp == 0) {
 | |
|         if (!cSig) {
 | |
|             /* Throw out the special case of c being an exact zero now */
 | |
|             shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
 | |
|             if (flags & float_muladd_halve_result) {
 | |
|                 pExp--;
 | |
|             }
 | |
|             return roundAndPackFloat64(zSign, pExp - 1,
 | |
|                                        pSig1, status);
 | |
|         }
 | |
|         normalizeFloat64Subnormal(cSig, &cExp, &cSig);
 | |
|     }
 | |
| 
 | |
|     /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
 | |
|      * significand of the addend, with the explicit bit in position 126.
 | |
|      */
 | |
|     cSig0 = cSig << (126 - 64 - 52);
 | |
|     cSig1 = 0;
 | |
|     cSig0 |= LIT64(0x4000000000000000);
 | |
|     expDiff = pExp - cExp;
 | |
| 
 | |
|     if (pSign == cSign) {
 | |
|         /* Addition */
 | |
|         if (expDiff > 0) {
 | |
|             /* scale c to match p */
 | |
|             shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
 | |
|             zExp = pExp;
 | |
|         } else if (expDiff < 0) {
 | |
|             /* scale p to match c */
 | |
|             shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
 | |
|             zExp = cExp;
 | |
|         } else {
 | |
|             /* no scaling needed */
 | |
|             zExp = cExp;
 | |
|         }
 | |
|         /* Add significands and make sure explicit bit ends up in posn 126 */
 | |
|         add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
 | |
|         if ((int64_t)zSig0 < 0) {
 | |
|             shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
 | |
|         } else {
 | |
|             zExp--;
 | |
|         }
 | |
|         shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
 | |
|         if (flags & float_muladd_halve_result) {
 | |
|             zExp--;
 | |
|         }
 | |
|         return roundAndPackFloat64(zSign, zExp, zSig1, status);
 | |
|     } else {
 | |
|         /* Subtraction */
 | |
|         if (expDiff > 0) {
 | |
|             shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
 | |
|             sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
 | |
|             zExp = pExp;
 | |
|         } else if (expDiff < 0) {
 | |
|             shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
 | |
|             sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
 | |
|             zExp = cExp;
 | |
|             zSign ^= 1;
 | |
|         } else {
 | |
|             zExp = pExp;
 | |
|             if (lt128(cSig0, cSig1, pSig0, pSig1)) {
 | |
|                 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
 | |
|             } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
 | |
|                 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
 | |
|                 zSign ^= 1;
 | |
|             } else {
 | |
|                 /* Exact zero */
 | |
|                 zSign = signflip;
 | |
|                 if (status->float_rounding_mode == float_round_down) {
 | |
|                     zSign ^= 1;
 | |
|                 }
 | |
|                 return packFloat64(zSign, 0, 0);
 | |
|             }
 | |
|         }
 | |
|         --zExp;
 | |
|         /* Do the equivalent of normalizeRoundAndPackFloat64() but
 | |
|          * starting with the significand in a pair of uint64_t.
 | |
|          */
 | |
|         if (zSig0) {
 | |
|             shiftcount = countLeadingZeros64(zSig0) - 1;
 | |
|             shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
 | |
|             if (zSig1) {
 | |
|                 zSig0 |= 1;
 | |
|             }
 | |
|             zExp -= shiftcount;
 | |
|         } else {
 | |
|             shiftcount = countLeadingZeros64(zSig1);
 | |
|             if (shiftcount == 0) {
 | |
|                 zSig0 = (zSig1 >> 1) | (zSig1 & 1);
 | |
|                 zExp -= 63;
 | |
|             } else {
 | |
|                 shiftcount--;
 | |
|                 zSig0 = zSig1 << shiftcount;
 | |
|                 zExp -= (shiftcount + 64);
 | |
|             }
 | |
|         }
 | |
|         if (flags & float_muladd_halve_result) {
 | |
|             zExp--;
 | |
|         }
 | |
|         return roundAndPackFloat64(zSign, zExp, zSig0, status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sqrt(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp, zExp;
 | |
|     uint64_t aSig, zSig, doubleZSig;
 | |
|     uint64_t rem0, rem1, term0, term1;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat64NaN(a, a, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig ) == 0 ) return a;
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return float64_zero;
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     zSig = estimateSqrt32( aExp, aSig>>21 );
 | |
|     aSig <<= 9 - ( aExp & 1 );
 | |
|     zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
 | |
|     if ( ( zSig & 0x1FF ) <= 5 ) {
 | |
|         doubleZSig = zSig<<1;
 | |
|         mul64To128( zSig, zSig, &term0, &term1 );
 | |
|         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|         while ( (int64_t) rem0 < 0 ) {
 | |
|             --zSig;
 | |
|             doubleZSig -= 2;
 | |
|             add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
 | |
|         }
 | |
|         zSig |= ( ( rem0 | rem1 ) != 0 );
 | |
|     }
 | |
|     return roundAndPackFloat64(0, zExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_log2(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, aSig0, aSig1, zSig, i;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat64NaN(a, float64_zero, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x3FF;
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     zSign = aExp < 0;
 | |
|     zSig = (uint64_t)aExp << 52;
 | |
|     for (i = 1LL << 51; i > 0; i >>= 1) {
 | |
|         mul64To128( aSig, aSig, &aSig0, &aSig1 );
 | |
|         aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
 | |
|         if ( aSig & LIT64( 0x0020000000000000 ) ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
|     return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | |
| | if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_unordered(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_unordered_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN, the
 | |
| | largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t floatx80_to_int32(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1 << 31;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | |
|     shiftCount = 0x4037 - aExp;
 | |
|     if ( shiftCount <= 0 ) shiftCount = 1;
 | |
|     shift64RightJamming( aSig, shiftCount, &aSig );
 | |
|     return roundAndPackInt32(aSign, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig, savedASig;
 | |
|     int32_t z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1 << 31;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp || aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN,
 | |
| | the largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t floatx80_to_int64(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig, aSigExtra;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1ULL << 63;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( shiftCount ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FFF )
 | |
|                       && ( aSig != LIT64( 0x8000000000000000 ) ) )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
|     }
 | |
|     return roundAndPackInt64(aSign, aSig, aSigExtra, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig;
 | |
|     int64_t z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1ULL << 63;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = aExp - 0x403E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|         if ( ( a.high != 0xC03E ) || aSig ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|         }
 | |
|         return (int64_t) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp | aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the single-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 floatx80_to_float32(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 33, &aSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3F81;
 | |
|     return roundAndPackFloat32(aSign, aExp, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 floatx80_to_float64(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig, zSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 1, &zSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3C01;
 | |
|     return roundAndPackFloat64(aSign, aExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the quadruple-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 floatx80_to_float128(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, zSig0, zSig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
 | |
|         return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
 | |
|     }
 | |
|     shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the extended double-precision floating-point value `a' to an integer,
 | |
| | and returns the result as an extended quadruple-precision floating-point
 | |
| | value.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t lastBitMask, roundBitsMask;
 | |
|     floatx80 z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     if ( 0x403E <= aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp < 0x3FFF ) {
 | |
|         if (    ( aExp == 0 )
 | |
|              && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 | |
|             return a;
 | |
|         }
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|         aSign = extractFloatx80Sign( a );
 | |
|         switch (status->float_rounding_mode) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (aExp == 0x3FFE) {
 | |
|                 return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return
 | |
|                   aSign ?
 | |
|                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 | |
|                 : packFloatx80( 0, 0, 0 );
 | |
|          case float_round_up:
 | |
|             return
 | |
|                   aSign ? packFloatx80( 1, 0, 0 )
 | |
|                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         return packFloatx80( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x403E - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = a;
 | |
|     switch (status->float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         z.low += lastBitMask>>1;
 | |
|         if ((z.low & roundBitsMask) == 0) {
 | |
|             z.low &= ~lastBitMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_ties_away:
 | |
|         z.low += lastBitMask >> 1;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         if (!extractFloatx80Sign(z)) {
 | |
|             z.low += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         if (extractFloatx80Sign(z)) {
 | |
|             z.low += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     z.low &= ~ roundBitsMask;
 | |
|     if ( z.low == 0 ) {
 | |
|         ++z.high;
 | |
|         z.low = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     if (z.low != a.low) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the extended double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
 | |
| | negated before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(aSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) --expDiff;
 | |
|         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(bSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         if ( aExp == 0 ) ++expDiff;
 | |
|         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         zSig1 = 0;
 | |
|         zSig0 = aSig + bSig;
 | |
|         if ( aExp == 0 ) {
 | |
|             normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     zSig0 = aSig + bSig;
 | |
|     if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
 | |
|  shiftRight1:
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= LIT64( 0x8000000000000000 );
 | |
|     ++zExp;
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the extended
 | |
| | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     zSig1 = 0;
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) ++expDiff;
 | |
|     shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|  bBigger:
 | |
|     sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) --expDiff;
 | |
|     shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|  aBigger:
 | |
|     sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                          zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the extended double-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (uint64_t) ( aSig<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) goto invalid;
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return floatx80_default_nan(status);
 | |
|         }
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x3FFE;
 | |
|     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
|     if ( 0 < (int64_t) zSig0 ) {
 | |
|         shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the extended double-precision floating-point
 | |
| | value `a' by the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     uint64_t rem0, rem1, rem2, term0, term1, term2;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(bSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return packFloatx80( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return floatx80_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFE;
 | |
|     rem1 = 0;
 | |
|     if ( bSig <= aSig ) {
 | |
|         shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | |
|     mul64To128( bSig, zSig0, &term0, &term1 );
 | |
|     sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | |
|     if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
 | |
|         mul64To128( bSig, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | |
|     }
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the extended double-precision floating-point value
 | |
| | `a' with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32_t aExp, bExp, expDiff;
 | |
|     uint64_t aSig0, aSig1, bSig;
 | |
|     uint64_t q, term0, term1, alternateASig0, alternateASig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (uint64_t) ( aSig0<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return floatx80_default_nan(status);
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     bSig |= LIT64( 0x8000000000000000 );
 | |
|     zSign = aSign;
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig1 = 0;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | |
|         expDiff = 0;
 | |
|     }
 | |
|     q = ( bSig <= aSig0 );
 | |
|     if ( q ) aSig0 -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         mul64To128( bSig, q, &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | |
|         while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | |
|             ++q;
 | |
|             sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         term1 = 0;
 | |
|         term0 = bSig;
 | |
|     }
 | |
|     sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | |
|     if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|          || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|               && ( q & 1 ) )
 | |
|        ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|         zSign = ! zSign;
 | |
|     }
 | |
|     return
 | |
|         normalizeRoundAndPackFloatx80(
 | |
|             80, zSign, bExp + expDiff, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the extended double-precision floating-point
 | |
| | value `a'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sqrt(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, zExp;
 | |
|     uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig0 << 1)) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | |
|     shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= doubleZSig0;
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 0, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is equal
 | |
| | to the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than or equal to the corresponding value `b', and 0 otherwise.  The
 | |
| | invalid exception is raised if either operand is a NaN.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point values `a' and `b'
 | |
| | cannot be compared, and 0 otherwise.  The invalid exception is raised if
 | |
| | either operand is a NaN.   The comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 | |
| | do not cause an exception.  Otherwise, the comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 | |
| | an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point values `a' and `b'
 | |
| | cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
 | |
| | The comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float128_to_int32(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shiftCount = 0x4028 - aExp;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 | |
|     return roundAndPackInt32(aSign, aSig0, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1, savedASig;
 | |
|     int32_t z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp || aSig0) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     savedASig = aSig0;
 | |
|     aSig0 >>= shiftCount;
 | |
|     z = aSig0;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig0<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float128_to_int64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( 0x403E < aExp ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FFF )
 | |
|                       && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
 | |
|                     )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     return roundAndPackInt64(aSign, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
|     int64_t z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = aExp - 0x402F;
 | |
|     if ( 0 < shiftCount ) {
 | |
|         if ( 0x403E <= aExp ) {
 | |
|             aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
 | |
|             if (    ( a.high == LIT64( 0xC03E000000000000 ) )
 | |
|                  && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
 | |
|                 if (aSig1) {
 | |
|                     status->float_exception_flags |= float_flag_inexact;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 | |
|                     return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|                 }
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 | |
|         if ( (uint64_t) ( aSig1<<shiftCount ) ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( aExp | aSig0 | aSig1 ) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|         z = aSig0>>( - shiftCount );
 | |
|         if (    aSig1
 | |
|              || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point value
 | |
| | `a' to the 64-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  If the conversion overflows, the
 | |
| | largest unsigned integer is returned.  If 'a' is negative, the value is
 | |
| | rounded and zero is returned; negative values that do not round to zero
 | |
| | will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint64_t float128_to_uint64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig0 = extractFloat128Frac0(a);
 | |
|     aSig1 = extractFloat128Frac1(a);
 | |
|     aExp = extractFloat128Exp(a);
 | |
|     aSign = extractFloat128Sign(a);
 | |
|     if (aSign && (aExp > 0x3FFE)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         if (float128_is_any_nan(a)) {
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (aExp) {
 | |
|         aSig0 |= LIT64(0x0001000000000000);
 | |
|     }
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     if (shiftCount <= 0) {
 | |
|         if (0x403E < aExp) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         }
 | |
|         shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
 | |
|     } else {
 | |
|         shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
 | |
|     }
 | |
|     return roundAndPackUint64(aSign, aSig0, aSig1, status);
 | |
| }
 | |
| 
 | |
| uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     signed char current_rounding_mode = status->float_rounding_mode;
 | |
| 
 | |
|     set_float_rounding_mode(float_round_to_zero, status);
 | |
|     v = float128_to_uint64(a, status);
 | |
|     set_float_rounding_mode(current_rounding_mode, status);
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit unsigned integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise,
 | |
| | if the conversion overflows, the largest unsigned integer is returned.
 | |
| | If 'a' is negative, the value is rounded and zero is returned; negative
 | |
| | values that do not round to zero will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float128_to_uint64_round_to_zero(a, status);
 | |
|     if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the single-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float128_to_float32(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
|     uint32_t zSig;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shift64RightJamming( aSig0, 18, &aSig0 );
 | |
|     zSig = aSig0;
 | |
|     if ( aExp || zSig ) {
 | |
|         zSig |= 0x40000000;
 | |
|         aExp -= 0x3F81;
 | |
|     }
 | |
|     return roundAndPackFloat32(aSign, aExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float128_to_float64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( aExp || aSig0 ) {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|         aExp -= 0x3C01;
 | |
|     }
 | |
|     return roundAndPackFloat64(aSign, aExp, aSig0, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the extended double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float128_to_floatx80(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 | |
|     return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the quadruple-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a quadruple-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_round_to_int(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t lastBitMask, roundBitsMask;
 | |
|     float128 z;
 | |
| 
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     if ( 0x402F <= aExp ) {
 | |
|         if ( 0x406F <= aExp ) {
 | |
|             if (    ( aExp == 0x7FFF )
 | |
|                  && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 | |
|                ) {
 | |
|                 return propagateFloat128NaN(a, a, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z = a;
 | |
|         switch (status->float_rounding_mode) {
 | |
|         case float_round_nearest_even:
 | |
|             if ( lastBitMask ) {
 | |
|                 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | |
|                 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
|             }
 | |
|             else {
 | |
|                 if ( (int64_t) z.low < 0 ) {
 | |
|                     ++z.high;
 | |
|                     if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (lastBitMask) {
 | |
|                 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
 | |
|             } else {
 | |
|                 if ((int64_t) z.low < 0) {
 | |
|                     ++z.high;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case float_round_to_zero:
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             if (!extractFloat128Sign(z)) {
 | |
|                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | |
|             }
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             if (extractFloat128Sign(z)) {
 | |
|                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         z.low &= ~ roundBitsMask;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|             aSign = extractFloat128Sign( a );
 | |
|             switch (status->float_rounding_mode) {
 | |
|              case float_round_nearest_even:
 | |
|                 if (    ( aExp == 0x3FFE )
 | |
|                      && (   extractFloat128Frac0( a )
 | |
|                           | extractFloat128Frac1( a ) )
 | |
|                    ) {
 | |
|                     return packFloat128( aSign, 0x3FFF, 0, 0 );
 | |
|                 }
 | |
|                 break;
 | |
|             case float_round_ties_away:
 | |
|                 if (aExp == 0x3FFE) {
 | |
|                     return packFloat128(aSign, 0x3FFF, 0, 0);
 | |
|                 }
 | |
|                 break;
 | |
|              case float_round_down:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 | |
|                     : packFloat128( 0, 0, 0, 0 );
 | |
|              case float_round_up:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0, 0, 0 )
 | |
|                     : packFloat128( 0, 0x3FFF, 0, 0 );
 | |
|             }
 | |
|             return packFloat128( aSign, 0, 0, 0 );
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask <<= 0x402F - aExp;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z.low = 0;
 | |
|         z.high = a.high;
 | |
|         switch (status->float_rounding_mode) {
 | |
|         case float_round_nearest_even:
 | |
|             z.high += lastBitMask>>1;
 | |
|             if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | |
|                 z.high &= ~ lastBitMask;
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             z.high += lastBitMask>>1;
 | |
|             break;
 | |
|         case float_round_to_zero:
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             if (!extractFloat128Sign(z)) {
 | |
|                 z.high |= ( a.low != 0 );
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             if (extractFloat128Sign(z)) {
 | |
|                 z.high |= (a.low != 0);
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         z.high &= ~ roundBitsMask;
 | |
|     }
 | |
|     if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the quadruple-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if (aSig0 | aSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if (bSig0 | bSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|         if ( aExp == 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 if (zSig0 | zSig1) {
 | |
|                     float_raise(float_flag_output_denormal, status);
 | |
|                 }
 | |
|                 return packFloat128(zSign, 0, 0, 0);
 | |
|             }
 | |
|             return packFloat128( zSign, 0, zSig0, zSig1 );
 | |
|         }
 | |
|         zSig2 = 0;
 | |
|         zSig0 |= LIT64( 0x0002000000000000 );
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     --zExp;
 | |
|     if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
 | |
|     ++zExp;
 | |
|  shiftRight1:
 | |
|     shift128ExtraRightJamming(
 | |
|         zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the quadruple-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig0 < aSig0 ) goto aBigger;
 | |
|     if ( aSig0 < bSig0 ) goto bBigger;
 | |
|     if ( bSig1 < aSig1 ) goto aBigger;
 | |
|     if ( aSig1 < bSig1 ) goto bBigger;
 | |
|     return packFloat128(status->float_rounding_mode == float_round_down,
 | |
|                         0, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|     bSig0 |= LIT64( 0x4000000000000000 );
 | |
|  bBigger:
 | |
|     sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | |
|     aSig0 |= LIT64( 0x4000000000000000 );
 | |
|  aBigger:
 | |
|     sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
 | |
|                                          status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the quadruple-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_add(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sub(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_mul(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float128_default_nan(status);
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x4000;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 | |
|     mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | |
|     add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zSig2 |= ( zSig3 != 0 );
 | |
|     if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the quadruple-precision floating-point value
 | |
| | `a' by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_div(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if (bSig0 | bSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat128( zSign, 0, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return float128_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFD;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 | |
|         shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|     mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | |
|     sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 | |
|     if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 | |
|         mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the quadruple-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_rem(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32_t aExp, bExp, expDiff;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | |
|     uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
 | |
|     int64_t sigMean0;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float128_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( expDiff < -1 ) return a;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ),
 | |
|         aSig1,
 | |
|         15 - ( expDiff < 0 ),
 | |
|         &aSig0,
 | |
|         &aSig1
 | |
|     );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     q = le128( bSig0, bSig1, aSig0, aSig1 );
 | |
|     if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 | |
|         shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 | |
|         sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | |
|         expDiff -= 61;
 | |
|     }
 | |
|     if ( -64 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         q >>= - expDiff;
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|         expDiff += 52;
 | |
|         if ( expDiff < 0 ) {
 | |
|             shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         else {
 | |
|             shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|     }
 | |
|     do {
 | |
|         alternateASig0 = aSig0;
 | |
|         alternateASig1 = aSig1;
 | |
|         ++q;
 | |
|         sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     } while ( 0 <= (int64_t) aSig0 );
 | |
|     add128(
 | |
|         aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
 | |
|     if (    ( sigMean0 < 0 )
 | |
|          || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|     }
 | |
|     zSign = ( (int64_t) aSig0 < 0 );
 | |
|     if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | |
|     return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
 | |
|                                          status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the quadruple-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sqrt(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, zExp;
 | |
|     uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, a, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 | |
|     shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq(float128 a, float128 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN. The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_unordered(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_unordered_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* misc functions */
 | |
| float32 uint32_to_float32(uint32_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float32(a, status);
 | |
| }
 | |
| 
 | |
| float64 uint32_to_float64(uint32_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float64(a, status);
 | |
| }
 | |
| 
 | |
| uint32_t float32_to_uint32(float32 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float32_to_int64(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float32_to_int64_round_to_zero(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int16_t float32_to_int16(float32 a, float_status *status)
 | |
| {
 | |
|     int32_t v;
 | |
|     int16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float32_to_int32(a, status);
 | |
|     if (v < -0x8000) {
 | |
|         res = -0x8000;
 | |
|     } else if (v > 0x7fff) {
 | |
|         res = 0x7fff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint16_t float32_to_uint16(float32 a, float_status *status)
 | |
| {
 | |
|     int32_t v;
 | |
|     uint16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float32_to_int32(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     uint16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float32_to_int64_round_to_zero(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t float64_to_uint32(float64 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float64_to_uint64(a, status);
 | |
|     if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float64_to_uint64_round_to_zero(a, status);
 | |
|     if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int16_t float64_to_int16(float64 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     int16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float64_to_int32(a, status);
 | |
|     if (v < -0x8000) {
 | |
|         res = -0x8000;
 | |
|     } else if (v > 0x7fff) {
 | |
|         res = 0x7fff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint16_t float64_to_uint16(float64 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     uint16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float64_to_int32(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     int64_t v;
 | |
|     uint16_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float64_to_int64_round_to_zero(a, status);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  If the conversion overflows, the
 | |
| | largest unsigned integer is returned.  If 'a' is negative, the value is
 | |
| | rounded and zero is returned; negative values that do not round to zero
 | |
| | will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint64_t float64_to_uint64(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig, aSigExtra;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac(a);
 | |
|     aExp = extractFloat64Exp(a);
 | |
|     aSign = extractFloat64Sign(a);
 | |
|     if (aSign && (aExp > 1022)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         if (float64_is_any_nan(a)) {
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (aExp) {
 | |
|         aSig |= LIT64(0x0010000000000000);
 | |
|     }
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     if (shiftCount <= 0) {
 | |
|         if (0x43E < aExp) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|         aSig <<= -shiftCount;
 | |
|     } else {
 | |
|         shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
 | |
|     }
 | |
|     return roundAndPackUint64(aSign, aSig, aSigExtra, status);
 | |
| }
 | |
| 
 | |
| uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
 | |
| {
 | |
|     signed char current_rounding_mode = status->float_rounding_mode;
 | |
|     set_float_rounding_mode(float_round_to_zero, status);
 | |
|     uint64_t v = float64_to_uint64(a, status);
 | |
|     set_float_rounding_mode(current_rounding_mode, status);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| #define COMPARE(s, nan_exp)                                                  \
 | |
| static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
 | |
|                                       int is_quiet, float_status *status)    \
 | |
| {                                                                            \
 | |
|     flag aSign, bSign;                                                       \
 | |
|     uint ## s ## _t av, bv;                                                  \
 | |
|     a = float ## s ## _squash_input_denormal(a, status);                     \
 | |
|     b = float ## s ## _squash_input_denormal(b, status);                     \
 | |
|                                                                              \
 | |
|     if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
 | |
|          extractFloat ## s ## Frac( a ) ) ||                                 \
 | |
|         ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
 | |
|           extractFloat ## s ## Frac( b ) )) {                                \
 | |
|         if (!is_quiet ||                                                     \
 | |
|             float ## s ## _is_signaling_nan(a, status) ||                  \
 | |
|             float ## s ## _is_signaling_nan(b, status)) {                 \
 | |
|             float_raise(float_flag_invalid, status);                         \
 | |
|         }                                                                    \
 | |
|         return float_relation_unordered;                                     \
 | |
|     }                                                                        \
 | |
|     aSign = extractFloat ## s ## Sign( a );                                  \
 | |
|     bSign = extractFloat ## s ## Sign( b );                                  \
 | |
|     av = float ## s ## _val(a);                                              \
 | |
|     bv = float ## s ## _val(b);                                              \
 | |
|     if ( aSign != bSign ) {                                                  \
 | |
|         if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
 | |
|             /* zero case */                                                  \
 | |
|             return float_relation_equal;                                     \
 | |
|         } else {                                                             \
 | |
|             return 1 - (2 * aSign);                                          \
 | |
|         }                                                                    \
 | |
|     } else {                                                                 \
 | |
|         if (av == bv) {                                                      \
 | |
|             return float_relation_equal;                                     \
 | |
|         } else {                                                             \
 | |
|             return 1 - 2 * (aSign ^ ( av < bv ));                            \
 | |
|         }                                                                    \
 | |
|     }                                                                        \
 | |
| }                                                                            \
 | |
|                                                                              \
 | |
| int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
 | |
| {                                                                            \
 | |
|     return float ## s ## _compare_internal(a, b, 0, status);                 \
 | |
| }                                                                            \
 | |
|                                                                              \
 | |
| int float ## s ## _compare_quiet(float ## s a, float ## s b,                 \
 | |
|                                  float_status *status)                       \
 | |
| {                                                                            \
 | |
|     return float ## s ## _compare_internal(a, b, 1, status);                 \
 | |
| }
 | |
| 
 | |
| COMPARE(32, 0xff)
 | |
| COMPARE(64, 0x7ff)
 | |
| 
 | |
| static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
 | |
|                                             int is_quiet, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
 | |
|           ( extractFloatx80Frac( a )<<1 ) ) ||
 | |
|         ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
 | |
|           ( extractFloatx80Frac( b )<<1 ) )) {
 | |
|         if (!is_quiet ||
 | |
|             floatx80_is_signaling_nan(a, status) ||
 | |
|             floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
| 
 | |
|         if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
 | |
|              ( ( a.low | b.low ) == 0 ) ) {
 | |
|             /* zero case */
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - (2 * aSign);
 | |
|         }
 | |
|     } else {
 | |
|         if (a.low == b.low && a.high == b.high) {
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     return floatx80_compare_internal(a, b, 0, status);
 | |
| }
 | |
| 
 | |
| int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     return floatx80_compare_internal(a, b, 1, status);
 | |
| }
 | |
| 
 | |
| static inline int float128_compare_internal(float128 a, float128 b,
 | |
|                                             int is_quiet, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
 | |
|         ( ( extractFloat128Exp( b ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
 | |
|         if (!is_quiet ||
 | |
|             float128_is_signaling_nan(a, status) ||
 | |
|             float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
 | |
|             /* zero case */
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - (2 * aSign);
 | |
|         }
 | |
|     } else {
 | |
|         if (a.low == b.low && a.high == b.high) {
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int float128_compare(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     return float128_compare_internal(a, b, 0, status);
 | |
| }
 | |
| 
 | |
| int float128_compare_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     return float128_compare_internal(a, b, 1, status);
 | |
| }
 | |
| 
 | |
| /* min() and max() functions. These can't be implemented as
 | |
|  * 'compare and pick one input' because that would mishandle
 | |
|  * NaNs and +0 vs -0.
 | |
|  *
 | |
|  * minnum() and maxnum() functions. These are similar to the min()
 | |
|  * and max() functions but if one of the arguments is a QNaN and
 | |
|  * the other is numerical then the numerical argument is returned.
 | |
|  * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 | |
|  * and maxNum() operations. min() and max() are the typical min/max
 | |
|  * semantics provided by many CPUs which predate that specification.
 | |
|  *
 | |
|  * minnummag() and maxnummag() functions correspond to minNumMag()
 | |
|  * and minNumMag() from the IEEE-754 2008.
 | |
|  */
 | |
| #define MINMAX(s)                                                       \
 | |
| static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
 | |
|                                                int ismin, int isieee,   \
 | |
|                                                int ismag,               \
 | |
|                                                float_status *status)    \
 | |
| {                                                                       \
 | |
|     flag aSign, bSign;                                                  \
 | |
|     uint ## s ## _t av, bv, aav, abv;                                   \
 | |
|     a = float ## s ## _squash_input_denormal(a, status);                \
 | |
|     b = float ## s ## _squash_input_denormal(b, status);                \
 | |
|     if (float ## s ## _is_any_nan(a) ||                                 \
 | |
|         float ## s ## _is_any_nan(b)) {                                 \
 | |
|         if (isieee) {                                                   \
 | |
|             if (float ## s ## _is_quiet_nan(a, status) &&               \
 | |
|                 !float ## s ##_is_any_nan(b)) {                         \
 | |
|                 return b;                                               \
 | |
|             } else if (float ## s ## _is_quiet_nan(b, status) &&        \
 | |
|                        !float ## s ## _is_any_nan(a)) {                \
 | |
|                 return a;                                               \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         return propagateFloat ## s ## NaN(a, b, status);                \
 | |
|     }                                                                   \
 | |
|     aSign = extractFloat ## s ## Sign(a);                               \
 | |
|     bSign = extractFloat ## s ## Sign(b);                               \
 | |
|     av = float ## s ## _val(a);                                         \
 | |
|     bv = float ## s ## _val(b);                                         \
 | |
|     if (ismag) {                                                        \
 | |
|         aav = float ## s ## _abs(av);                                   \
 | |
|         abv = float ## s ## _abs(bv);                                   \
 | |
|         if (aav != abv) {                                               \
 | |
|             if (ismin) {                                                \
 | |
|                 return (aav < abv) ? a : b;                             \
 | |
|             } else {                                                    \
 | |
|                 return (aav < abv) ? b : a;                             \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }                                                                   \
 | |
|     if (aSign != bSign) {                                               \
 | |
|         if (ismin) {                                                    \
 | |
|             return aSign ? a : b;                                       \
 | |
|         } else {                                                        \
 | |
|             return aSign ? b : a;                                       \
 | |
|         }                                                               \
 | |
|     } else {                                                            \
 | |
|         if (ismin) {                                                    \
 | |
|             return (aSign ^ (av < bv)) ? a : b;                         \
 | |
|         } else {                                                        \
 | |
|             return (aSign ^ (av < bv)) ? b : a;                         \
 | |
|         }                                                               \
 | |
|     }                                                                   \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _min(float ## s a, float ## s b,               \
 | |
|                               float_status *status)                     \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 1, 0, 0, status);                \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _max(float ## s a, float ## s b,               \
 | |
|                               float_status *status)                     \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 0, 0, 0, status);                \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _minnum(float ## s a, float ## s b,            \
 | |
|                                  float_status *status)                  \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 1, 1, 0, status);                \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _maxnum(float ## s a, float ## s b,            \
 | |
|                                  float_status *status)                  \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 0, 1, 0, status);                \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _minnummag(float ## s a, float ## s b,         \
 | |
|                                     float_status *status)               \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 1, 1, 1, status);                \
 | |
| }                                                                       \
 | |
|                                                                         \
 | |
| float ## s float ## s ## _maxnummag(float ## s a, float ## s b,         \
 | |
|                                     float_status *status)               \
 | |
| {                                                                       \
 | |
|     return float ## s ## _minmax(a, b, 0, 1, 1, status);                \
 | |
| }
 | |
| 
 | |
| MINMAX(32)
 | |
| MINMAX(64)
 | |
| 
 | |
| 
 | |
| /* Multiply A by 2 raised to the power N.  */
 | |
| float32 float32_scalbn(float32 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int16_t aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) {
 | |
|             return propagateFloat32NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if (aExp != 0) {
 | |
|         aSig |= 0x00800000;
 | |
|     } else if (aSig == 0) {
 | |
|         return a;
 | |
|     } else {
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x200) {
 | |
|         n = 0x200;
 | |
|     } else if (n < -0x200) {
 | |
|         n = -0x200;
 | |
|     }
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     aSig <<= 7;
 | |
|     return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
 | |
| }
 | |
| 
 | |
| float64 float64_scalbn(float64 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int16_t aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
| 
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) {
 | |
|             return propagateFloat64NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if (aExp != 0) {
 | |
|         aSig |= LIT64( 0x0010000000000000 );
 | |
|     } else if (aSig == 0) {
 | |
|         return a;
 | |
|     } else {
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x1000) {
 | |
|         n = 0x1000;
 | |
|     } else if (n < -0x1000) {
 | |
|         n = -0x1000;
 | |
|     }
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     aSig <<= 10;
 | |
|     return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
 | |
| }
 | |
| 
 | |
| floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
| 
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig<<1 ) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) {
 | |
|             return a;
 | |
|         }
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x10000) {
 | |
|         n = 0x10000;
 | |
|     } else if (n < -0x10000) {
 | |
|         n = -0x10000;
 | |
|     }
 | |
| 
 | |
|     aExp += n;
 | |
|     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                          aSign, aExp, aSig, 0, status);
 | |
| }
 | |
| 
 | |
| float128 float128_scalbn(float128 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return propagateFloat128NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if (aExp != 0) {
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     } else if (aSig0 == 0 && aSig1 == 0) {
 | |
|         return a;
 | |
|     } else {
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x10000) {
 | |
|         n = 0x10000;
 | |
|     } else if (n < -0x10000) {
 | |
|         n = -0x10000;
 | |
|     }
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
 | |
|                                          , status);
 | |
| 
 | |
| }
 |