/* * MIPS emulation helpers for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" #include "internal.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "exec/memop.h" #include "sysemu/kvm.h" #include "fpu/softfloat.h" /*****************************************************************************/ /* Exceptions processing helpers */ void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception, int error_code) { do_raise_exception_err(env, exception, error_code, 0); } void helper_raise_exception(CPUMIPSState *env, uint32_t exception) { do_raise_exception(env, exception, GETPC()); } void helper_raise_exception_debug(CPUMIPSState *env) { do_raise_exception(env, EXCP_DEBUG, 0); } static void raise_exception(CPUMIPSState *env, uint32_t exception) { do_raise_exception(env, exception, 0); } /* 64 bits arithmetic for 32 bits hosts */ static inline uint64_t get_HILO(CPUMIPSState *env) { return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; } static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO) { env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); return env->active_tc.HI[0] = (int32_t)(HILO >> 32); } static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO) { target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); env->active_tc.HI[0] = (int32_t)(HILO >> 32); return tmp; } /* Multiplication variants of the vr54xx. */ target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); } target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, (uint64_t)get_HILO(env) + (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (uint64_t)get_HILO(env) + (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HI_LOT0(env, (uint64_t)get_HILO(env) - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (uint64_t)get_HILO(env) - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); } target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2) { return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); } static inline target_ulong bitswap(target_ulong v) { v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) | ((v & (target_ulong)0x5555555555555555ULL) << 1); v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) | ((v & (target_ulong)0x3333333333333333ULL) << 2); v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) | ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4); return v; } #ifdef TARGET_MIPS64 target_ulong helper_dbitswap(target_ulong rt) { return bitswap(rt); } #endif target_ulong helper_bitswap(target_ulong rt) { return (int32_t)bitswap(rt); } target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx, uint32_t stripe) { int i; uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff); uint64_t tmp1 = tmp0; for (i = 0; i <= 46; i++) { int s; if (i & 0x8) { s = shift; } else { s = shiftx; } if (stripe != 0 && !(i & 0x4)) { s = ~s; } if (s & 0x10) { if (tmp0 & (1LL << (i + 16))) { tmp1 |= 1LL << i; } else { tmp1 &= ~(1LL << i); } } } uint64_t tmp2 = tmp1; for (i = 0; i <= 38; i++) { int s; if (i & 0x4) { s = shift; } else { s = shiftx; } if (s & 0x8) { if (tmp1 & (1LL << (i + 8))) { tmp2 |= 1LL << i; } else { tmp2 &= ~(1LL << i); } } } uint64_t tmp3 = tmp2; for (i = 0; i <= 34; i++) { int s; if (i & 0x2) { s = shift; } else { s = shiftx; } if (s & 0x4) { if (tmp2 & (1LL << (i + 4))) { tmp3 |= 1LL << i; } else { tmp3 &= ~(1LL << i); } } } uint64_t tmp4 = tmp3; for (i = 0; i <= 32; i++) { int s; if (i & 0x1) { s = shift; } else { s = shiftx; } if (s & 0x2) { if (tmp3 & (1LL << (i + 2))) { tmp4 |= 1LL << i; } else { tmp4 &= ~(1LL << i); } } } uint64_t tmp5 = tmp4; for (i = 0; i <= 31; i++) { int s; s = shift; if (s & 0x1) { if (tmp4 & (1LL << (i + 1))) { tmp5 |= 1LL << i; } else { tmp5 &= ~(1LL << i); } } } return (int64_t)(int32_t)(uint32_t)tmp5; } #ifndef CONFIG_USER_ONLY static inline hwaddr do_translate_address(CPUMIPSState *env, target_ulong address, int rw, uintptr_t retaddr) { hwaddr paddr; CPUState *cs = env_cpu(env); paddr = cpu_mips_translate_address(env, address, rw); if (paddr == -1LL) { cpu_loop_exit_restore(cs, retaddr); } else { return paddr; } } #define HELPER_LD_ATOMIC(name, insn, almask, do_cast) \ target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \ { \ if (arg & almask) { \ if (!(env->hflags & MIPS_HFLAG_DM)) { \ env->CP0_BadVAddr = arg; \ } \ do_raise_exception(env, EXCP_AdEL, GETPC()); \ } \ env->CP0_LLAddr = do_translate_address(env, arg, 0, GETPC()); \ env->lladdr = arg; \ env->llval = do_cast cpu_##insn##_mmuidx_ra(env, arg, mem_idx, GETPC()); \ return env->llval; \ } HELPER_LD_ATOMIC(ll, ldl, 0x3, (target_long)(int32_t)) #ifdef TARGET_MIPS64 HELPER_LD_ATOMIC(lld, ldq, 0x7, (target_ulong)) #endif #undef HELPER_LD_ATOMIC #endif #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK(v) ((v) & 3) #define GET_OFFSET(addr, offset) (addr + (offset)) #else #define GET_LMASK(v) (((v) & 3) ^ 3) #define GET_OFFSET(addr, offset) (addr - (offset)) #endif void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, int mem_idx) { cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC()); if (GET_LMASK(arg2) <= 2) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx, GETPC()); } if (GET_LMASK(arg2) <= 1) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx, GETPC()); } if (GET_LMASK(arg2) == 0) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx, GETPC()); } } void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, int mem_idx) { cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC()); if (GET_LMASK(arg2) >= 1) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx, GETPC()); } if (GET_LMASK(arg2) >= 2) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx, GETPC()); } if (GET_LMASK(arg2) == 3) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx, GETPC()); } } #if defined(TARGET_MIPS64) /* * "half" load and stores. We must do the memory access inline, * or fault handling won't work. */ #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK64(v) ((v) & 7) #else #define GET_LMASK64(v) (((v) & 7) ^ 7) #endif void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, int mem_idx) { cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC()); if (GET_LMASK64(arg2) <= 6) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 5) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 4) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 3) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 2) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 1) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx, GETPC()); } if (GET_LMASK64(arg2) <= 0) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx, GETPC()); } } void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, int mem_idx) { cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC()); if (GET_LMASK64(arg2) >= 1) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx, GETPC()); } if (GET_LMASK64(arg2) >= 2) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx, GETPC()); } if (GET_LMASK64(arg2) >= 3) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx, GETPC()); } if (GET_LMASK64(arg2) >= 4) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx, GETPC()); } if (GET_LMASK64(arg2) >= 5) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx, GETPC()); } if (GET_LMASK64(arg2) >= 6) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx, GETPC()); } if (GET_LMASK64(arg2) == 7) { cpu_stb_mmuidx_ra(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx, GETPC()); } } #endif /* TARGET_MIPS64 */ static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 }; void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, uint32_t mem_idx) { target_ulong base_reglist = reglist & 0xf; target_ulong do_r31 = reglist & 0x10; if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) { target_ulong i; for (i = 0; i < base_reglist; i++) { env->active_tc.gpr[multiple_regs[i]] = (target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC()); addr += 4; } } if (do_r31) { env->active_tc.gpr[31] = (target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC()); } } void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, uint32_t mem_idx) { target_ulong base_reglist = reglist & 0xf; target_ulong do_r31 = reglist & 0x10; if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) { target_ulong i; for (i = 0; i < base_reglist; i++) { cpu_stw_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx, GETPC()); addr += 4; } } if (do_r31) { cpu_stw_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC()); } } #if defined(TARGET_MIPS64) void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, uint32_t mem_idx) { target_ulong base_reglist = reglist & 0xf; target_ulong do_r31 = reglist & 0x10; if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) { target_ulong i; for (i = 0; i < base_reglist; i++) { env->active_tc.gpr[multiple_regs[i]] = cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC()); addr += 8; } } if (do_r31) { env->active_tc.gpr[31] = cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC()); } } void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist, uint32_t mem_idx) { target_ulong base_reglist = reglist & 0xf; target_ulong do_r31 = reglist & 0x10; if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) { target_ulong i; for (i = 0; i < base_reglist; i++) { cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx, GETPC()); addr += 8; } } if (do_r31) { cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC()); } } #endif void helper_fork(target_ulong arg1, target_ulong arg2) { /* * arg1 = rt, arg2 = rs * TODO: store to TC register */ } target_ulong helper_yield(CPUMIPSState *env, target_ulong arg) { target_long arg1 = arg; if (arg1 < 0) { /* No scheduling policy implemented. */ if (arg1 != -2) { if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; do_raise_exception(env, EXCP_THREAD, GETPC()); } } } else if (arg1 == 0) { if (0) { /* TODO: TC underflow */ env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); do_raise_exception(env, EXCP_THREAD, GETPC()); } else { /* TODO: Deallocate TC */ } } else if (arg1 > 0) { /* Yield qualifier inputs not implemented. */ env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; do_raise_exception(env, EXCP_THREAD, GETPC()); } return env->CP0_YQMask; } #ifndef CONFIG_USER_ONLY /* TLB management */ static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first) { /* Discard entries from env->tlb[first] onwards. */ while (env->tlb->tlb_in_use > first) { r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); } } static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo) { #if defined(TARGET_MIPS64) return extract64(entrylo, 6, 54); #else return extract64(entrylo, 6, 24) | /* PFN */ (extract64(entrylo, 32, 32) << 24); /* PFNX */ #endif } static void r4k_fill_tlb(CPUMIPSState *env, int idx) { r4k_tlb_t *tlb; uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1); /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ tlb = &env->tlb->mmu.r4k.tlb[idx]; if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) { tlb->EHINV = 1; return; } tlb->EHINV = 0; tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) tlb->VPN &= env->SEGMask; #endif tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; tlb->MMID = env->CP0_MemoryMapID; tlb->PageMask = env->CP0_PageMask; tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1; tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1; tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12; tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1; tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1; tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12; } void r4k_helper_tlbinv(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; if (!tlb->G && tlb_mmid == MMID) { tlb->EHINV = 1; } } cpu_mips_tlb_flush(env); } void r4k_helper_tlbinvf(CPUMIPSState *env) { int idx; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { env->tlb->mmu.r4k.tlb[idx].EHINV = 1; } cpu_mips_tlb_flush(env); } void r4k_helper_tlbwi(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); target_ulong VPN; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; tlb = &env->tlb->mmu.r4k.tlb[idx]; VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) VPN &= env->SEGMask; #endif EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0; G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; V0 = (env->CP0_EntryLo0 & 2) != 0; D0 = (env->CP0_EntryLo0 & 4) != 0; XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1; RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1; V1 = (env->CP0_EntryLo1 & 2) != 0; D1 = (env->CP0_EntryLo1 & 4) != 0; XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1; RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* * Discard cached TLB entries, unless tlbwi is just upgrading access * permissions on the current entry. */ if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G || (!tlb->EHINV && EHINV) || (tlb->V0 && !V0) || (tlb->D0 && !D0) || (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) || (tlb->V1 && !V1) || (tlb->D1 && !D1) || (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) { r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); } r4k_invalidate_tlb(env, idx, 0); r4k_fill_tlb(env, idx); } void r4k_helper_tlbwr(CPUMIPSState *env) { int r = cpu_mips_get_random(env); r4k_invalidate_tlb(env, r, 1); r4k_fill_tlb(env, r); } void r4k_helper_tlbp(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); r4k_tlb_t *tlb; target_ulong mask; target_ulong tag; target_ulong VPN; uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; int i; MMID = mi ? MMID : (uint32_t) ASID; for (i = 0; i < env->tlb->nb_tlb; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* Check ASID/MMID, virtual page number & size */ if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) { /* TLB match */ env->CP0_Index = i; break; } } if (i == env->tlb->nb_tlb) { /* No match. Discard any shadow entries, if any of them match. */ for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; #if defined(TARGET_MIPS64) tag &= env->SEGMask; #endif tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* Check ASID/MMID, virtual page number & size */ if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) { r4k_mips_tlb_flush_extra(env, i); break; } } env->CP0_Index |= 0x80000000; } } static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn) { #if defined(TARGET_MIPS64) return tlb_pfn << 6; #else return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */ (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */ #endif } void r4k_helper_tlbr(CPUMIPSState *env) { bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; uint32_t MMID = env->CP0_MemoryMapID; uint32_t tlb_mmid; r4k_tlb_t *tlb; int idx; MMID = mi ? MMID : (uint32_t) ASID; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; /* If this will change the current ASID/MMID, flush qemu's TLB. */ if (MMID != tlb_mmid) { cpu_mips_tlb_flush(env); } r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); if (tlb->EHINV) { env->CP0_EntryHi = 1 << CP0EnHi_EHINV; env->CP0_PageMask = 0; env->CP0_EntryLo0 = 0; env->CP0_EntryLo1 = 0; } else { env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID; env->CP0_MemoryMapID = tlb->MMID; env->CP0_PageMask = tlb->PageMask; env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | ((uint64_t)tlb->RI0 << CP0EnLo_RI) | ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) | get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12); env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | ((uint64_t)tlb->RI1 << CP0EnLo_RI) | ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) | get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12); } } void helper_tlbwi(CPUMIPSState *env) { env->tlb->helper_tlbwi(env); } void helper_tlbwr(CPUMIPSState *env) { env->tlb->helper_tlbwr(env); } void helper_tlbp(CPUMIPSState *env) { env->tlb->helper_tlbp(env); } void helper_tlbr(CPUMIPSState *env) { env->tlb->helper_tlbr(env); } void helper_tlbinv(CPUMIPSState *env) { env->tlb->helper_tlbinv(env); } void helper_tlbinvf(CPUMIPSState *env) { env->tlb->helper_tlbinvf(env); } static void global_invalidate_tlb(CPUMIPSState *env, uint32_t invMsgVPN2, uint8_t invMsgR, uint32_t invMsgMMid, bool invAll, bool invVAMMid, bool invMMid, bool invVA) { int idx; r4k_tlb_t *tlb; bool VAMatch; bool MMidMatch; for (idx = 0; idx < env->tlb->nb_tlb; idx++) { tlb = &env->tlb->mmu.r4k.tlb[idx]; VAMatch = (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask)) #ifdef TARGET_MIPS64 && (extract64(env->CP0_EntryHi, 62, 2) == invMsgR) #endif ); MMidMatch = tlb->MMID == invMsgMMid; if ((invAll && (idx > env->CP0_Wired)) || (VAMatch && invVAMMid && (tlb->G || MMidMatch)) || (VAMatch && invVA) || (MMidMatch && !(tlb->G) && invMMid)) { tlb->EHINV = 1; } } cpu_mips_tlb_flush(env); } void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type) { bool invAll = type == 0; bool invVA = type == 1; bool invMMid = type == 2; bool invVAMMid = type == 3; uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1); uint8_t invMsgR = 0; uint32_t invMsgMMid = env->CP0_MemoryMapID; CPUState *other_cs = first_cpu; #ifdef TARGET_MIPS64 invMsgR = extract64(arg, 62, 2); #endif CPU_FOREACH(other_cs) { MIPSCPU *other_cpu = MIPS_CPU(other_cs); global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid, invAll, invVAMMid, invMMid, invVA); } } /* Specials */ target_ulong helper_di(CPUMIPSState *env) { target_ulong t0 = env->CP0_Status; env->CP0_Status = t0 & ~(1 << CP0St_IE); return t0; } target_ulong helper_ei(CPUMIPSState *env) { target_ulong t0 = env->CP0_Status; env->CP0_Status = t0 | (1 << CP0St_IE); return t0; } static void debug_pre_eret(CPUMIPSState *env) { if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->active_tc.PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) { qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); } if (env->hflags & MIPS_HFLAG_DM) { qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); } qemu_log("\n"); } } static void debug_post_eret(CPUMIPSState *env) { if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->active_tc.PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) { qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); } if (env->hflags & MIPS_HFLAG_DM) { qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); } switch (cpu_mmu_index(env, false)) { case 3: qemu_log(", ERL\n"); break; case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; case MIPS_HFLAG_KM: qemu_log("\n"); break; default: cpu_abort(env_cpu(env), "Invalid MMU mode!\n"); break; } } } static void set_pc(CPUMIPSState *env, target_ulong error_pc) { env->active_tc.PC = error_pc & ~(target_ulong)1; if (error_pc & 1) { env->hflags |= MIPS_HFLAG_M16; } else { env->hflags &= ~(MIPS_HFLAG_M16); } } static inline void exception_return(CPUMIPSState *env) { debug_pre_eret(env); if (env->CP0_Status & (1 << CP0St_ERL)) { set_pc(env, env->CP0_ErrorEPC); env->CP0_Status &= ~(1 << CP0St_ERL); } else { set_pc(env, env->CP0_EPC); env->CP0_Status &= ~(1 << CP0St_EXL); } compute_hflags(env); debug_post_eret(env); } void helper_eret(CPUMIPSState *env) { exception_return(env); env->CP0_LLAddr = 1; env->lladdr = 1; } void helper_eretnc(CPUMIPSState *env) { exception_return(env); } void helper_deret(CPUMIPSState *env) { debug_pre_eret(env); env->hflags &= ~MIPS_HFLAG_DM; compute_hflags(env); set_pc(env, env->CP0_DEPC); debug_post_eret(env); } #endif /* !CONFIG_USER_ONLY */ static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) { return; } do_raise_exception(env, EXCP_RI, pc); } target_ulong helper_rdhwr_cpunum(CPUMIPSState *env) { check_hwrena(env, 0, GETPC()); return env->CP0_EBase & 0x3ff; } target_ulong helper_rdhwr_synci_step(CPUMIPSState *env) { check_hwrena(env, 1, GETPC()); return env->SYNCI_Step; } target_ulong helper_rdhwr_cc(CPUMIPSState *env) { check_hwrena(env, 2, GETPC()); #ifdef CONFIG_USER_ONLY return env->CP0_Count; #else return (int32_t)cpu_mips_get_count(env); #endif } target_ulong helper_rdhwr_ccres(CPUMIPSState *env) { check_hwrena(env, 3, GETPC()); return env->CCRes; } target_ulong helper_rdhwr_performance(CPUMIPSState *env) { check_hwrena(env, 4, GETPC()); return env->CP0_Performance0; } target_ulong helper_rdhwr_xnp(CPUMIPSState *env) { check_hwrena(env, 5, GETPC()); return (env->CP0_Config5 >> CP0C5_XNP) & 1; } void helper_pmon(CPUMIPSState *env, int function) { function /= 2; switch (function) { case 2: /* TODO: char inbyte(int waitflag); */ if (env->active_tc.gpr[4] == 0) { env->active_tc.gpr[2] = -1; } /* Fall through */ case 11: /* TODO: char inbyte (void); */ env->active_tc.gpr[2] = -1; break; case 3: case 12: printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); break; case 17: break; case 158: { unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4]; printf("%s", fmt); } break; } } void helper_wait(CPUMIPSState *env) { CPUState *cs = env_cpu(env); cs->halted = 1; cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE); /* * Last instruction in the block, PC was updated before * - no need to recover PC and icount. */ raise_exception(env, EXCP_HLT); } #if !defined(CONFIG_USER_ONLY) void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int error_code = 0; int excp; if (!(env->hflags & MIPS_HFLAG_DM)) { env->CP0_BadVAddr = addr; } if (access_type == MMU_DATA_STORE) { excp = EXCP_AdES; } else { excp = EXCP_AdEL; if (access_type == MMU_INST_FETCH) { error_code |= EXCP_INST_NOTAVAIL; } } do_raise_exception_err(env, excp, error_code, retaddr); } void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; if (access_type == MMU_INST_FETCH) { do_raise_exception(env, EXCP_IBE, retaddr); } else { do_raise_exception(env, EXCP_DBE, retaddr); } } #endif /* !CONFIG_USER_ONLY */ /* Complex FPU operations which may need stack space. */ #define FLOAT_TWO32 make_float32(1 << 30) #define FLOAT_TWO64 make_float64(1ULL << 62) #define FP_TO_INT32_OVERFLOW 0x7fffffff #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg) { target_ulong arg1 = 0; switch (reg) { case 0: arg1 = (int32_t)env->active_fpu.fcr0; break; case 1: /* UFR Support - Read Status FR */ if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) { if (env->CP0_Config5 & (1 << CP0C5_UFR)) { arg1 = (int32_t) ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR); } else { do_raise_exception(env, EXCP_RI, GETPC()); } } break; case 5: /* FRE Support - read Config5.FRE bit */ if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { if (env->CP0_Config5 & (1 << CP0C5_UFE)) { arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1; } else { helper_raise_exception(env, EXCP_RI); } } break; case 25: arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); break; case 26: arg1 = env->active_fpu.fcr31 & 0x0003f07c; break; case 28: arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); break; default: arg1 = (int32_t)env->active_fpu.fcr31; break; } return arg1; } void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt) { switch (fs) { case 1: /* UFR Alias - Reset Status FR */ if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFR)) { env->CP0_Status &= ~(1 << CP0St_FR); compute_hflags(env); } else { do_raise_exception(env, EXCP_RI, GETPC()); } break; case 4: /* UNFR Alias - Set Status FR */ if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFR)) { env->CP0_Status |= (1 << CP0St_FR); compute_hflags(env); } else { do_raise_exception(env, EXCP_RI, GETPC()); } break; case 5: /* FRE Support - clear Config5.FRE bit */ if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFE)) { env->CP0_Config5 &= ~(1 << CP0C5_FRE); compute_hflags(env); } else { helper_raise_exception(env, EXCP_RI); } break; case 6: /* FRE Support - set Config5.FRE bit */ if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { return; } if (env->CP0_Config5 & (1 << CP0C5_UFE)) { env->CP0_Config5 |= (1 << CP0C5_FRE); compute_hflags(env); } else { helper_raise_exception(env, EXCP_RI); } break; case 25: if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) | ((arg1 & 0x1) << 23); break; case 26: if (arg1 & 0x007c0000) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c); break; case 28: if (arg1 & 0x007c0000) { return; } env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) | ((arg1 & 0x4) << 22); break; case 31: env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) | (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask)); break; default: if (env->insn_flags & ISA_MIPS32R6) { do_raise_exception(env, EXCP_RI, GETPC()); } return; } restore_fp_status(env); set_float_exception_flags(0, &env->active_fpu.fp_status); if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) { do_raise_exception(env, EXCP_FPE, GETPC()); } } int ieee_ex_to_mips(int xcpt) { int ret = 0; if (xcpt) { if (xcpt & float_flag_invalid) { ret |= FP_INVALID; } if (xcpt & float_flag_overflow) { ret |= FP_OVERFLOW; } if (xcpt & float_flag_underflow) { ret |= FP_UNDERFLOW; } if (xcpt & float_flag_divbyzero) { ret |= FP_DIV0; } if (xcpt & float_flag_inexact) { ret |= FP_INEXACT; } } return ret; } static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc) { int tmp = ieee_ex_to_mips(get_float_exception_flags( &env->active_fpu.fp_status)); SET_FP_CAUSE(env->active_fpu.fcr31, tmp); if (tmp) { set_float_exception_flags(0, &env->active_fpu.fp_status); if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) { do_raise_exception(env, EXCP_FPE, pc); } else { UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); } } } /* * Float support. * Single precition routines have a "s" suffix, double precision a * "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", * paired single lower "pl", paired single upper "pu". */ /* unary operations, modifying fp status */ uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0) { fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt0; } uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0) { fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst0; } uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0) { uint64_t fdt2; fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0) { uint64_t fdt2; fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0) { uint64_t fdt2; fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0) { uint32_t fst2; uint32_t fsth2; fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; uint32_t wth2; int excp, excph; wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); excp = get_float_exception_flags(&env->active_fpu.fp_status); if (excp & (float_flag_overflow | float_flag_invalid)) { wt2 = FP_TO_INT32_OVERFLOW; } set_float_exception_flags(0, &env->active_fpu.fp_status); wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); excph = get_float_exception_flags(&env->active_fpu.fp_status); if (excph & (float_flag_overflow | float_flag_invalid)) { wth2 = FP_TO_INT32_OVERFLOW; } set_float_exception_flags(excp | excph, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)wth2 << 32) | wt2; } uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t fst2; fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0) { uint32_t fst2; fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0) { uint32_t fst2; fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0) { uint32_t wt2; wt2 = wt0; update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0) { uint32_t wt2; wt2 = wth0; update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { dt2 = FP_TO_INT64_OVERFLOW; } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & (float_flag_invalid | float_flag_overflow)) { wt2 = FP_TO_INT32_OVERFLOW; } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { dt2 = 0; } } update_fcr31(env, GETPC()); return dt2; } uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float64_is_any_nan(fdt0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); restore_rounding_mode(env); if (get_float_exception_flags(&env->active_fpu.fp_status) & float_flag_invalid) { if (float32_is_any_nan(fst0)) { wt2 = 0; } } update_fcr31(env, GETPC()); return wt2; } /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \ { \ return float64_ ## name(fdt0); \ } \ uint32_t helper_float_ ## name ## _s(uint32_t fst0) \ { \ return float32_ ## name(fst0); \ } \ uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \ { \ uint32_t wt0; \ uint32_t wth0; \ \ wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ wth0 = float32_ ## name(fdt0 >> 32); \ return ((uint64_t)wth0 << 32) | wt0; \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP /* MIPS specific unary operations */ uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t fst2; uint32_t fsth2; fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0) { uint64_t fdt2; fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0) { uint32_t fst2; fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0) { uint32_t fst2; uint32_t fsth2; fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } #define FLOAT_RINT(name, bits) \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t fs) \ { \ uint ## bits ## _t fdret; \ \ fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return fdret; \ } FLOAT_RINT(rint_s, 32) FLOAT_RINT(rint_d, 64) #undef FLOAT_RINT #define FLOAT_CLASS_SIGNALING_NAN 0x001 #define FLOAT_CLASS_QUIET_NAN 0x002 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100 #define FLOAT_CLASS_POSITIVE_ZERO 0x200 #define FLOAT_CLASS(name, bits) \ uint ## bits ## _t float_ ## name(uint ## bits ## _t arg, \ float_status *status) \ { \ if (float ## bits ## _is_signaling_nan(arg, status)) { \ return FLOAT_CLASS_SIGNALING_NAN; \ } else if (float ## bits ## _is_quiet_nan(arg, status)) { \ return FLOAT_CLASS_QUIET_NAN; \ } else if (float ## bits ## _is_neg(arg)) { \ if (float ## bits ## _is_infinity(arg)) { \ return FLOAT_CLASS_NEGATIVE_INFINITY; \ } else if (float ## bits ## _is_zero(arg)) { \ return FLOAT_CLASS_NEGATIVE_ZERO; \ } else if (float ## bits ## _is_zero_or_denormal(arg)) { \ return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \ } else { \ return FLOAT_CLASS_NEGATIVE_NORMAL; \ } \ } else { \ if (float ## bits ## _is_infinity(arg)) { \ return FLOAT_CLASS_POSITIVE_INFINITY; \ } else if (float ## bits ## _is_zero(arg)) { \ return FLOAT_CLASS_POSITIVE_ZERO; \ } else if (float ## bits ## _is_zero_or_denormal(arg)) { \ return FLOAT_CLASS_POSITIVE_SUBNORMAL; \ } else { \ return FLOAT_CLASS_POSITIVE_NORMAL; \ } \ } \ } \ \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t arg) \ { \ return float_ ## name(arg, &env->active_fpu.fp_status); \ } FLOAT_CLASS(class_s, 32) FLOAT_CLASS(class_d, 64) #undef FLOAT_CLASS /* binary operations */ #define FLOAT_BINOP(name) \ uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \ uint64_t fdt0, uint64_t fdt1) \ { \ uint64_t dt2; \ \ dt2 = float64_ ## name(fdt0, fdt1, &env->active_fpu.fp_status);\ update_fcr31(env, GETPC()); \ return dt2; \ } \ \ uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \ uint32_t fst0, uint32_t fst1) \ { \ uint32_t wt2; \ \ wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status);\ update_fcr31(env, GETPC()); \ return wt2; \ } \ \ uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \ uint64_t fdt0, \ uint64_t fdt1) \ { \ uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ uint32_t fsth0 = fdt0 >> 32; \ uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ uint32_t fsth1 = fdt1 >> 32; \ uint32_t wt2; \ uint32_t wth2; \ \ wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status); \ wth2 = float32_ ## name(fsth0, fsth1, &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return ((uint64_t)wth2 << 32) | wt2; \ } FLOAT_BINOP(add) FLOAT_BINOP(sub) FLOAT_BINOP(mul) FLOAT_BINOP(div) #undef FLOAT_BINOP /* MIPS specific binary operations */ uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) { fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fdt2; } uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) { fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return fst2; } uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status); fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fst2; uint32_t fsth2; fst2 = float32_add(fst0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_add(fst1, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fst2; uint32_t fsth2; fst2 = float32_mul(fst0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_mul(fst1, fsth1, &env->active_fpu.fp_status); update_fcr31(env, GETPC()); return ((uint64_t)fsth2 << 32) | fst2; } #define FLOAT_MINMAX(name, bits, minmaxfunc) \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t fs, \ uint ## bits ## _t ft) \ { \ uint ## bits ## _t fdret; \ \ fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \ &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return fdret; \ } FLOAT_MINMAX(max_s, 32, maxnum) FLOAT_MINMAX(max_d, 64, maxnum) FLOAT_MINMAX(maxa_s, 32, maxnummag) FLOAT_MINMAX(maxa_d, 64, maxnummag) FLOAT_MINMAX(min_s, 32, minnum) FLOAT_MINMAX(min_d, 64, minnum) FLOAT_MINMAX(mina_s, 32, minnummag) FLOAT_MINMAX(mina_d, 64, minnummag) #undef FLOAT_MINMAX /* ternary operations */ #define UNFUSED_FMA(prefix, a, b, c, flags) \ { \ a = prefix##_mul(a, b, &env->active_fpu.fp_status); \ if ((flags) & float_muladd_negate_c) { \ a = prefix##_sub(a, c, &env->active_fpu.fp_status); \ } else { \ a = prefix##_add(a, c, &env->active_fpu.fp_status); \ } \ if ((flags) & float_muladd_negate_result) { \ a = prefix##_chs(a); \ } \ } /* FMA based operations */ #define FLOAT_FMA(name, type) \ uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \ uint64_t fdt0, uint64_t fdt1, \ uint64_t fdt2) \ { \ UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \ update_fcr31(env, GETPC()); \ return fdt0; \ } \ \ uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \ uint32_t fst0, uint32_t fst1, \ uint32_t fst2) \ { \ UNFUSED_FMA(float32, fst0, fst1, fst2, type); \ update_fcr31(env, GETPC()); \ return fst0; \ } \ \ uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \ uint64_t fdt0, uint64_t fdt1, \ uint64_t fdt2) \ { \ uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ uint32_t fsth0 = fdt0 >> 32; \ uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ uint32_t fsth1 = fdt1 >> 32; \ uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ uint32_t fsth2 = fdt2 >> 32; \ \ UNFUSED_FMA(float32, fst0, fst1, fst2, type); \ UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \ update_fcr31(env, GETPC()); \ return ((uint64_t)fsth0 << 32) | fst0; \ } FLOAT_FMA(madd, 0) FLOAT_FMA(msub, float_muladd_negate_c) FLOAT_FMA(nmadd, float_muladd_negate_result) FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c) #undef FLOAT_FMA #define FLOAT_FMADDSUB(name, bits, muladd_arg) \ uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \ uint ## bits ## _t fs, \ uint ## bits ## _t ft, \ uint ## bits ## _t fd) \ { \ uint ## bits ## _t fdret; \ \ fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \ &env->active_fpu.fp_status); \ update_fcr31(env, GETPC()); \ return fdret; \ } FLOAT_FMADDSUB(maddf_s, 32, 0) FLOAT_FMADDSUB(maddf_d, 64, 0) FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product) FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product) #undef FLOAT_FMADDSUB /* compare operations */ #define FOP_COND_D(op, cond) \ void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ int c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ int c; \ fdt0 = float64_abs(fdt0); \ fdt1 = float64_abs(fdt1); \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered_quiet() is still called. */ FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered() is still called. */ FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(ngle, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) #define FOP_COND_S(op, cond) \ void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1, int cc) \ { \ int c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1, int cc) \ { \ int c; \ fst0 = float32_abs(fst0); \ fst1 = float32_abs(fst1); \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(ngle, float32_unordered(fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) #define FOP_COND_PS(op, condl, condh) \ void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ uint32_t fst0, fsth0, fst1, fsth1; \ int ch, cl; \ fst0 = fdt0 & 0XFFFFFFFF; \ fsth0 = fdt0 >> 32; \ fst1 = fdt1 & 0XFFFFFFFF; \ fsth1 = fdt1 >> 32; \ cl = condl; \ ch = condh; \ update_fcr31(env, GETPC()); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } \ void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1, int cc) \ { \ uint32_t fst0, fsth0, fst1, fsth1; \ int ch, cl; \ fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ fsth0 = float32_abs(fdt0 >> 32); \ fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ fsth1 = float32_abs(fdt1 >> 32); \ cl = condl; \ ch = condh; \ update_fcr31(env, GETPC()); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0), (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status), float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status)) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0), (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(ngle, float32_unordered(fst1, fst0, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) /* R6 compare operations */ #define FOP_CONDN_D(op, cond) \ uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ uint64_t fdt1) \ { \ uint64_t c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) { \ return -1; \ } else { \ return 0; \ } \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered_quiet() is still called. */ FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))) FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) /* * NOTE: the comma operator will make "cond" to eval to false, * but float64_unordered() is still called.\ */ FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))) FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))) #define FOP_CONDN_S(op, cond) \ uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ uint32_t fst1) \ { \ uint64_t c; \ c = cond; \ update_fcr31(env, GETPC()); \ if (c) { \ return -1; \ } else { \ return 0; \ } \ } /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered_quiet() is still called. */ FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))) FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) /* * NOTE: the comma operator will make "cond" to eval to false, * but float32_unordered() is still called. */ FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status))) FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))) /* MSA */ /* Data format min and max values */ #define DF_BITS(df) (1 << ((df) + 3)) /* Element-by-element access macros */ #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df)) #if !defined(CONFIG_USER_ONLY) #define MEMOP_IDX(DF) \ TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \ cpu_mmu_index(env, false)); #else #define MEMOP_IDX(DF) #endif void helper_msa_ld_b(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); MEMOP_IDX(DF_BYTE) #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) pwd->b[0] = helper_ret_ldub_mmu(env, addr + (0 << DF_BYTE), oi, GETPC()); pwd->b[1] = helper_ret_ldub_mmu(env, addr + (1 << DF_BYTE), oi, GETPC()); pwd->b[2] = helper_ret_ldub_mmu(env, addr + (2 << DF_BYTE), oi, GETPC()); pwd->b[3] = helper_ret_ldub_mmu(env, addr + (3 << DF_BYTE), oi, GETPC()); pwd->b[4] = helper_ret_ldub_mmu(env, addr + (4 << DF_BYTE), oi, GETPC()); pwd->b[5] = helper_ret_ldub_mmu(env, addr + (5 << DF_BYTE), oi, GETPC()); pwd->b[6] = helper_ret_ldub_mmu(env, addr + (6 << DF_BYTE), oi, GETPC()); pwd->b[7] = helper_ret_ldub_mmu(env, addr + (7 << DF_BYTE), oi, GETPC()); pwd->b[8] = helper_ret_ldub_mmu(env, addr + (8 << DF_BYTE), oi, GETPC()); pwd->b[9] = helper_ret_ldub_mmu(env, addr + (9 << DF_BYTE), oi, GETPC()); pwd->b[10] = helper_ret_ldub_mmu(env, addr + (10 << DF_BYTE), oi, GETPC()); pwd->b[11] = helper_ret_ldub_mmu(env, addr + (11 << DF_BYTE), oi, GETPC()); pwd->b[12] = helper_ret_ldub_mmu(env, addr + (12 << DF_BYTE), oi, GETPC()); pwd->b[13] = helper_ret_ldub_mmu(env, addr + (13 << DF_BYTE), oi, GETPC()); pwd->b[14] = helper_ret_ldub_mmu(env, addr + (14 << DF_BYTE), oi, GETPC()); pwd->b[15] = helper_ret_ldub_mmu(env, addr + (15 << DF_BYTE), oi, GETPC()); #else pwd->b[0] = helper_ret_ldub_mmu(env, addr + (7 << DF_BYTE), oi, GETPC()); pwd->b[1] = helper_ret_ldub_mmu(env, addr + (6 << DF_BYTE), oi, GETPC()); pwd->b[2] = helper_ret_ldub_mmu(env, addr + (5 << DF_BYTE), oi, GETPC()); pwd->b[3] = helper_ret_ldub_mmu(env, addr + (4 << DF_BYTE), oi, GETPC()); pwd->b[4] = helper_ret_ldub_mmu(env, addr + (3 << DF_BYTE), oi, GETPC()); pwd->b[5] = helper_ret_ldub_mmu(env, addr + (2 << DF_BYTE), oi, GETPC()); pwd->b[6] = helper_ret_ldub_mmu(env, addr + (1 << DF_BYTE), oi, GETPC()); pwd->b[7] = helper_ret_ldub_mmu(env, addr + (0 << DF_BYTE), oi, GETPC()); pwd->b[8] = helper_ret_ldub_mmu(env, addr + (15 << DF_BYTE), oi, GETPC()); pwd->b[9] = helper_ret_ldub_mmu(env, addr + (14 << DF_BYTE), oi, GETPC()); pwd->b[10] = helper_ret_ldub_mmu(env, addr + (13 << DF_BYTE), oi, GETPC()); pwd->b[11] = helper_ret_ldub_mmu(env, addr + (12 << DF_BYTE), oi, GETPC()); pwd->b[12] = helper_ret_ldub_mmu(env, addr + (11 << DF_BYTE), oi, GETPC()); pwd->b[13] = helper_ret_ldub_mmu(env, addr + (10 << DF_BYTE), oi, GETPC()); pwd->b[14] = helper_ret_ldub_mmu(env, addr + (9 << DF_BYTE), oi, GETPC()); pwd->b[15] = helper_ret_ldub_mmu(env, addr + (8 << DF_BYTE), oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) pwd->b[0] = cpu_ldub_data(env, addr + (0 << DF_BYTE)); pwd->b[1] = cpu_ldub_data(env, addr + (1 << DF_BYTE)); pwd->b[2] = cpu_ldub_data(env, addr + (2 << DF_BYTE)); pwd->b[3] = cpu_ldub_data(env, addr + (3 << DF_BYTE)); pwd->b[4] = cpu_ldub_data(env, addr + (4 << DF_BYTE)); pwd->b[5] = cpu_ldub_data(env, addr + (5 << DF_BYTE)); pwd->b[6] = cpu_ldub_data(env, addr + (6 << DF_BYTE)); pwd->b[7] = cpu_ldub_data(env, addr + (7 << DF_BYTE)); pwd->b[8] = cpu_ldub_data(env, addr + (8 << DF_BYTE)); pwd->b[9] = cpu_ldub_data(env, addr + (9 << DF_BYTE)); pwd->b[10] = cpu_ldub_data(env, addr + (10 << DF_BYTE)); pwd->b[11] = cpu_ldub_data(env, addr + (11 << DF_BYTE)); pwd->b[12] = cpu_ldub_data(env, addr + (12 << DF_BYTE)); pwd->b[13] = cpu_ldub_data(env, addr + (13 << DF_BYTE)); pwd->b[14] = cpu_ldub_data(env, addr + (14 << DF_BYTE)); pwd->b[15] = cpu_ldub_data(env, addr + (15 << DF_BYTE)); #else pwd->b[0] = cpu_ldub_data(env, addr + (7 << DF_BYTE)); pwd->b[1] = cpu_ldub_data(env, addr + (6 << DF_BYTE)); pwd->b[2] = cpu_ldub_data(env, addr + (5 << DF_BYTE)); pwd->b[3] = cpu_ldub_data(env, addr + (4 << DF_BYTE)); pwd->b[4] = cpu_ldub_data(env, addr + (3 << DF_BYTE)); pwd->b[5] = cpu_ldub_data(env, addr + (2 << DF_BYTE)); pwd->b[6] = cpu_ldub_data(env, addr + (1 << DF_BYTE)); pwd->b[7] = cpu_ldub_data(env, addr + (0 << DF_BYTE)); pwd->b[8] = cpu_ldub_data(env, addr + (15 << DF_BYTE)); pwd->b[9] = cpu_ldub_data(env, addr + (14 << DF_BYTE)); pwd->b[10] = cpu_ldub_data(env, addr + (13 << DF_BYTE)); pwd->b[11] = cpu_ldub_data(env, addr + (12 << DF_BYTE)); pwd->b[12] = cpu_ldub_data(env, addr + (11 << DF_BYTE)); pwd->b[13] = cpu_ldub_data(env, addr + (10 << DF_BYTE)); pwd->b[14] = cpu_ldub_data(env, addr + (9 << DF_BYTE)); pwd->b[15] = cpu_ldub_data(env, addr + (8 << DF_BYTE)); #endif #endif } void helper_msa_ld_h(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); MEMOP_IDX(DF_HALF) #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) pwd->h[0] = helper_ret_lduw_mmu(env, addr + (0 << DF_HALF), oi, GETPC()); pwd->h[1] = helper_ret_lduw_mmu(env, addr + (1 << DF_HALF), oi, GETPC()); pwd->h[2] = helper_ret_lduw_mmu(env, addr + (2 << DF_HALF), oi, GETPC()); pwd->h[3] = helper_ret_lduw_mmu(env, addr + (3 << DF_HALF), oi, GETPC()); pwd->h[4] = helper_ret_lduw_mmu(env, addr + (4 << DF_HALF), oi, GETPC()); pwd->h[5] = helper_ret_lduw_mmu(env, addr + (5 << DF_HALF), oi, GETPC()); pwd->h[6] = helper_ret_lduw_mmu(env, addr + (6 << DF_HALF), oi, GETPC()); pwd->h[7] = helper_ret_lduw_mmu(env, addr + (7 << DF_HALF), oi, GETPC()); #else pwd->h[0] = helper_ret_lduw_mmu(env, addr + (3 << DF_HALF), oi, GETPC()); pwd->h[1] = helper_ret_lduw_mmu(env, addr + (2 << DF_HALF), oi, GETPC()); pwd->h[2] = helper_ret_lduw_mmu(env, addr + (1 << DF_HALF), oi, GETPC()); pwd->h[3] = helper_ret_lduw_mmu(env, addr + (0 << DF_HALF), oi, GETPC()); pwd->h[4] = helper_ret_lduw_mmu(env, addr + (7 << DF_HALF), oi, GETPC()); pwd->h[5] = helper_ret_lduw_mmu(env, addr + (6 << DF_HALF), oi, GETPC()); pwd->h[6] = helper_ret_lduw_mmu(env, addr + (5 << DF_HALF), oi, GETPC()); pwd->h[7] = helper_ret_lduw_mmu(env, addr + (4 << DF_HALF), oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) pwd->h[0] = cpu_lduw_data(env, addr + (0 << DF_HALF)); pwd->h[1] = cpu_lduw_data(env, addr + (1 << DF_HALF)); pwd->h[2] = cpu_lduw_data(env, addr + (2 << DF_HALF)); pwd->h[3] = cpu_lduw_data(env, addr + (3 << DF_HALF)); pwd->h[4] = cpu_lduw_data(env, addr + (4 << DF_HALF)); pwd->h[5] = cpu_lduw_data(env, addr + (5 << DF_HALF)); pwd->h[6] = cpu_lduw_data(env, addr + (6 << DF_HALF)); pwd->h[7] = cpu_lduw_data(env, addr + (7 << DF_HALF)); #else pwd->h[0] = cpu_lduw_data(env, addr + (3 << DF_HALF)); pwd->h[1] = cpu_lduw_data(env, addr + (2 << DF_HALF)); pwd->h[2] = cpu_lduw_data(env, addr + (1 << DF_HALF)); pwd->h[3] = cpu_lduw_data(env, addr + (0 << DF_HALF)); pwd->h[4] = cpu_lduw_data(env, addr + (7 << DF_HALF)); pwd->h[5] = cpu_lduw_data(env, addr + (6 << DF_HALF)); pwd->h[6] = cpu_lduw_data(env, addr + (5 << DF_HALF)); pwd->h[7] = cpu_lduw_data(env, addr + (4 << DF_HALF)); #endif #endif } void helper_msa_ld_w(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); MEMOP_IDX(DF_WORD) #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) pwd->w[0] = helper_ret_ldul_mmu(env, addr + (0 << DF_WORD), oi, GETPC()); pwd->w[1] = helper_ret_ldul_mmu(env, addr + (1 << DF_WORD), oi, GETPC()); pwd->w[2] = helper_ret_ldul_mmu(env, addr + (2 << DF_WORD), oi, GETPC()); pwd->w[3] = helper_ret_ldul_mmu(env, addr + (3 << DF_WORD), oi, GETPC()); #else pwd->w[0] = helper_ret_ldul_mmu(env, addr + (1 << DF_WORD), oi, GETPC()); pwd->w[1] = helper_ret_ldul_mmu(env, addr + (0 << DF_WORD), oi, GETPC()); pwd->w[2] = helper_ret_ldul_mmu(env, addr + (3 << DF_WORD), oi, GETPC()); pwd->w[3] = helper_ret_ldul_mmu(env, addr + (2 << DF_WORD), oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) pwd->w[0] = cpu_ldl_data(env, addr + (0 << DF_WORD)); pwd->w[1] = cpu_ldl_data(env, addr + (1 << DF_WORD)); pwd->w[2] = cpu_ldl_data(env, addr + (2 << DF_WORD)); pwd->w[3] = cpu_ldl_data(env, addr + (3 << DF_WORD)); #else pwd->w[0] = cpu_ldl_data(env, addr + (1 << DF_WORD)); pwd->w[1] = cpu_ldl_data(env, addr + (0 << DF_WORD)); pwd->w[2] = cpu_ldl_data(env, addr + (3 << DF_WORD)); pwd->w[3] = cpu_ldl_data(env, addr + (2 << DF_WORD)); #endif #endif } void helper_msa_ld_d(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); MEMOP_IDX(DF_DOUBLE) #if !defined(CONFIG_USER_ONLY) pwd->d[0] = helper_ret_ldq_mmu(env, addr + (0 << DF_DOUBLE), oi, GETPC()); pwd->d[1] = helper_ret_ldq_mmu(env, addr + (1 << DF_DOUBLE), oi, GETPC()); #else pwd->d[0] = cpu_ldq_data(env, addr + (0 << DF_DOUBLE)); pwd->d[1] = cpu_ldq_data(env, addr + (1 << DF_DOUBLE)); #endif } #define MSA_PAGESPAN(x) \ ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN / 8 - 1) >= TARGET_PAGE_SIZE) static inline void ensure_writable_pages(CPUMIPSState *env, target_ulong addr, int mmu_idx, uintptr_t retaddr) { /* FIXME: Probe the actual accesses (pass and use a size) */ if (unlikely(MSA_PAGESPAN(addr))) { /* first page */ probe_write(env, addr, 0, mmu_idx, retaddr); /* second page */ addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; probe_write(env, addr, 0, mmu_idx, retaddr); } } void helper_msa_st_b(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); int mmu_idx = cpu_mmu_index(env, false); MEMOP_IDX(DF_BYTE) ensure_writable_pages(env, addr, mmu_idx, GETPC()); #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) helper_ret_stb_mmu(env, addr + (0 << DF_BYTE), pwd->b[0], oi, GETPC()); helper_ret_stb_mmu(env, addr + (1 << DF_BYTE), pwd->b[1], oi, GETPC()); helper_ret_stb_mmu(env, addr + (2 << DF_BYTE), pwd->b[2], oi, GETPC()); helper_ret_stb_mmu(env, addr + (3 << DF_BYTE), pwd->b[3], oi, GETPC()); helper_ret_stb_mmu(env, addr + (4 << DF_BYTE), pwd->b[4], oi, GETPC()); helper_ret_stb_mmu(env, addr + (5 << DF_BYTE), pwd->b[5], oi, GETPC()); helper_ret_stb_mmu(env, addr + (6 << DF_BYTE), pwd->b[6], oi, GETPC()); helper_ret_stb_mmu(env, addr + (7 << DF_BYTE), pwd->b[7], oi, GETPC()); helper_ret_stb_mmu(env, addr + (8 << DF_BYTE), pwd->b[8], oi, GETPC()); helper_ret_stb_mmu(env, addr + (9 << DF_BYTE), pwd->b[9], oi, GETPC()); helper_ret_stb_mmu(env, addr + (10 << DF_BYTE), pwd->b[10], oi, GETPC()); helper_ret_stb_mmu(env, addr + (11 << DF_BYTE), pwd->b[11], oi, GETPC()); helper_ret_stb_mmu(env, addr + (12 << DF_BYTE), pwd->b[12], oi, GETPC()); helper_ret_stb_mmu(env, addr + (13 << DF_BYTE), pwd->b[13], oi, GETPC()); helper_ret_stb_mmu(env, addr + (14 << DF_BYTE), pwd->b[14], oi, GETPC()); helper_ret_stb_mmu(env, addr + (15 << DF_BYTE), pwd->b[15], oi, GETPC()); #else helper_ret_stb_mmu(env, addr + (7 << DF_BYTE), pwd->b[0], oi, GETPC()); helper_ret_stb_mmu(env, addr + (6 << DF_BYTE), pwd->b[1], oi, GETPC()); helper_ret_stb_mmu(env, addr + (5 << DF_BYTE), pwd->b[2], oi, GETPC()); helper_ret_stb_mmu(env, addr + (4 << DF_BYTE), pwd->b[3], oi, GETPC()); helper_ret_stb_mmu(env, addr + (3 << DF_BYTE), pwd->b[4], oi, GETPC()); helper_ret_stb_mmu(env, addr + (2 << DF_BYTE), pwd->b[5], oi, GETPC()); helper_ret_stb_mmu(env, addr + (1 << DF_BYTE), pwd->b[6], oi, GETPC()); helper_ret_stb_mmu(env, addr + (0 << DF_BYTE), pwd->b[7], oi, GETPC()); helper_ret_stb_mmu(env, addr + (15 << DF_BYTE), pwd->b[8], oi, GETPC()); helper_ret_stb_mmu(env, addr + (14 << DF_BYTE), pwd->b[9], oi, GETPC()); helper_ret_stb_mmu(env, addr + (13 << DF_BYTE), pwd->b[10], oi, GETPC()); helper_ret_stb_mmu(env, addr + (12 << DF_BYTE), pwd->b[11], oi, GETPC()); helper_ret_stb_mmu(env, addr + (11 << DF_BYTE), pwd->b[12], oi, GETPC()); helper_ret_stb_mmu(env, addr + (10 << DF_BYTE), pwd->b[13], oi, GETPC()); helper_ret_stb_mmu(env, addr + (9 << DF_BYTE), pwd->b[14], oi, GETPC()); helper_ret_stb_mmu(env, addr + (8 << DF_BYTE), pwd->b[15], oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) cpu_stb_data(env, addr + (0 << DF_BYTE), pwd->b[0]); cpu_stb_data(env, addr + (1 << DF_BYTE), pwd->b[1]); cpu_stb_data(env, addr + (2 << DF_BYTE), pwd->b[2]); cpu_stb_data(env, addr + (3 << DF_BYTE), pwd->b[3]); cpu_stb_data(env, addr + (4 << DF_BYTE), pwd->b[4]); cpu_stb_data(env, addr + (5 << DF_BYTE), pwd->b[5]); cpu_stb_data(env, addr + (6 << DF_BYTE), pwd->b[6]); cpu_stb_data(env, addr + (7 << DF_BYTE), pwd->b[7]); cpu_stb_data(env, addr + (8 << DF_BYTE), pwd->b[8]); cpu_stb_data(env, addr + (9 << DF_BYTE), pwd->b[9]); cpu_stb_data(env, addr + (10 << DF_BYTE), pwd->b[10]); cpu_stb_data(env, addr + (11 << DF_BYTE), pwd->b[11]); cpu_stb_data(env, addr + (12 << DF_BYTE), pwd->b[12]); cpu_stb_data(env, addr + (13 << DF_BYTE), pwd->b[13]); cpu_stb_data(env, addr + (14 << DF_BYTE), pwd->b[14]); cpu_stb_data(env, addr + (15 << DF_BYTE), pwd->b[15]); #else cpu_stb_data(env, addr + (7 << DF_BYTE), pwd->b[0]); cpu_stb_data(env, addr + (6 << DF_BYTE), pwd->b[1]); cpu_stb_data(env, addr + (5 << DF_BYTE), pwd->b[2]); cpu_stb_data(env, addr + (4 << DF_BYTE), pwd->b[3]); cpu_stb_data(env, addr + (3 << DF_BYTE), pwd->b[4]); cpu_stb_data(env, addr + (2 << DF_BYTE), pwd->b[5]); cpu_stb_data(env, addr + (1 << DF_BYTE), pwd->b[6]); cpu_stb_data(env, addr + (0 << DF_BYTE), pwd->b[7]); cpu_stb_data(env, addr + (15 << DF_BYTE), pwd->b[8]); cpu_stb_data(env, addr + (14 << DF_BYTE), pwd->b[9]); cpu_stb_data(env, addr + (13 << DF_BYTE), pwd->b[10]); cpu_stb_data(env, addr + (12 << DF_BYTE), pwd->b[11]); cpu_stb_data(env, addr + (11 << DF_BYTE), pwd->b[12]); cpu_stb_data(env, addr + (10 << DF_BYTE), pwd->b[13]); cpu_stb_data(env, addr + (9 << DF_BYTE), pwd->b[14]); cpu_stb_data(env, addr + (8 << DF_BYTE), pwd->b[15]); #endif #endif } void helper_msa_st_h(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); int mmu_idx = cpu_mmu_index(env, false); MEMOP_IDX(DF_HALF) ensure_writable_pages(env, addr, mmu_idx, GETPC()); #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) helper_ret_stw_mmu(env, addr + (0 << DF_HALF), pwd->h[0], oi, GETPC()); helper_ret_stw_mmu(env, addr + (1 << DF_HALF), pwd->h[1], oi, GETPC()); helper_ret_stw_mmu(env, addr + (2 << DF_HALF), pwd->h[2], oi, GETPC()); helper_ret_stw_mmu(env, addr + (3 << DF_HALF), pwd->h[3], oi, GETPC()); helper_ret_stw_mmu(env, addr + (4 << DF_HALF), pwd->h[4], oi, GETPC()); helper_ret_stw_mmu(env, addr + (5 << DF_HALF), pwd->h[5], oi, GETPC()); helper_ret_stw_mmu(env, addr + (6 << DF_HALF), pwd->h[6], oi, GETPC()); helper_ret_stw_mmu(env, addr + (7 << DF_HALF), pwd->h[7], oi, GETPC()); #else helper_ret_stw_mmu(env, addr + (3 << DF_HALF), pwd->h[0], oi, GETPC()); helper_ret_stw_mmu(env, addr + (2 << DF_HALF), pwd->h[1], oi, GETPC()); helper_ret_stw_mmu(env, addr + (1 << DF_HALF), pwd->h[2], oi, GETPC()); helper_ret_stw_mmu(env, addr + (0 << DF_HALF), pwd->h[3], oi, GETPC()); helper_ret_stw_mmu(env, addr + (7 << DF_HALF), pwd->h[4], oi, GETPC()); helper_ret_stw_mmu(env, addr + (6 << DF_HALF), pwd->h[5], oi, GETPC()); helper_ret_stw_mmu(env, addr + (5 << DF_HALF), pwd->h[6], oi, GETPC()); helper_ret_stw_mmu(env, addr + (4 << DF_HALF), pwd->h[7], oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) cpu_stw_data(env, addr + (0 << DF_HALF), pwd->h[0]); cpu_stw_data(env, addr + (1 << DF_HALF), pwd->h[1]); cpu_stw_data(env, addr + (2 << DF_HALF), pwd->h[2]); cpu_stw_data(env, addr + (3 << DF_HALF), pwd->h[3]); cpu_stw_data(env, addr + (4 << DF_HALF), pwd->h[4]); cpu_stw_data(env, addr + (5 << DF_HALF), pwd->h[5]); cpu_stw_data(env, addr + (6 << DF_HALF), pwd->h[6]); cpu_stw_data(env, addr + (7 << DF_HALF), pwd->h[7]); #else cpu_stw_data(env, addr + (3 << DF_HALF), pwd->h[0]); cpu_stw_data(env, addr + (2 << DF_HALF), pwd->h[1]); cpu_stw_data(env, addr + (1 << DF_HALF), pwd->h[2]); cpu_stw_data(env, addr + (0 << DF_HALF), pwd->h[3]); cpu_stw_data(env, addr + (7 << DF_HALF), pwd->h[4]); cpu_stw_data(env, addr + (6 << DF_HALF), pwd->h[5]); cpu_stw_data(env, addr + (5 << DF_HALF), pwd->h[6]); cpu_stw_data(env, addr + (4 << DF_HALF), pwd->h[7]); #endif #endif } void helper_msa_st_w(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); int mmu_idx = cpu_mmu_index(env, false); MEMOP_IDX(DF_WORD) ensure_writable_pages(env, addr, mmu_idx, GETPC()); #if !defined(CONFIG_USER_ONLY) #if !defined(HOST_WORDS_BIGENDIAN) helper_ret_stl_mmu(env, addr + (0 << DF_WORD), pwd->w[0], oi, GETPC()); helper_ret_stl_mmu(env, addr + (1 << DF_WORD), pwd->w[1], oi, GETPC()); helper_ret_stl_mmu(env, addr + (2 << DF_WORD), pwd->w[2], oi, GETPC()); helper_ret_stl_mmu(env, addr + (3 << DF_WORD), pwd->w[3], oi, GETPC()); #else helper_ret_stl_mmu(env, addr + (1 << DF_WORD), pwd->w[0], oi, GETPC()); helper_ret_stl_mmu(env, addr + (0 << DF_WORD), pwd->w[1], oi, GETPC()); helper_ret_stl_mmu(env, addr + (3 << DF_WORD), pwd->w[2], oi, GETPC()); helper_ret_stl_mmu(env, addr + (2 << DF_WORD), pwd->w[3], oi, GETPC()); #endif #else #if !defined(HOST_WORDS_BIGENDIAN) cpu_stl_data(env, addr + (0 << DF_WORD), pwd->w[0]); cpu_stl_data(env, addr + (1 << DF_WORD), pwd->w[1]); cpu_stl_data(env, addr + (2 << DF_WORD), pwd->w[2]); cpu_stl_data(env, addr + (3 << DF_WORD), pwd->w[3]); #else cpu_stl_data(env, addr + (1 << DF_WORD), pwd->w[0]); cpu_stl_data(env, addr + (0 << DF_WORD), pwd->w[1]); cpu_stl_data(env, addr + (3 << DF_WORD), pwd->w[2]); cpu_stl_data(env, addr + (2 << DF_WORD), pwd->w[3]); #endif #endif } void helper_msa_st_d(CPUMIPSState *env, uint32_t wd, target_ulong addr) { wr_t *pwd = &(env->active_fpu.fpr[wd].wr); int mmu_idx = cpu_mmu_index(env, false); MEMOP_IDX(DF_DOUBLE) ensure_writable_pages(env, addr, mmu_idx, GETPC()); #if !defined(CONFIG_USER_ONLY) helper_ret_stq_mmu(env, addr + (0 << DF_DOUBLE), pwd->d[0], oi, GETPC()); helper_ret_stq_mmu(env, addr + (1 << DF_DOUBLE), pwd->d[1], oi, GETPC()); #else cpu_stq_data(env, addr + (0 << DF_DOUBLE), pwd->d[0]); cpu_stq_data(env, addr + (1 << DF_DOUBLE), pwd->d[1]); #endif } void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op) { #ifndef CONFIG_USER_ONLY target_ulong index = addr & 0x1fffffff; if (op == 9) { /* Index Store Tag */ memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo, MO_64, MEMTXATTRS_UNSPECIFIED); } else if (op == 5) { /* Index Load Tag */ memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo, MO_64, MEMTXATTRS_UNSPECIFIED); } #endif }