linux/tools/testing/selftests/mm/hugetlb_dio.c
Mark Brown 4ae132c693 selftest: hugetlb_dio: fix test naming
The string logged when a test passes or fails is used by the selftest
framework to identify which test is being reported.  The hugetlb_dio test
not only uses the same strings for every test that is run but it also uses
different strings for test passes and failures which means that test
automation is unable to follow what the test is doing at all.

Pull the existing duplicated logging of the number of free huge pages
before and after the test out of the conditional and replace that and the
logging of the result with a single ksft_print_result() which incorporates
the parameters passed into the test into the output.

Link: https://lkml.kernel.org/r/20241127-kselftest-mm-hugetlb-dio-names-v1-1-22aab01bf550@kernel.org
Fixes: fae1980347 ("selftests: hugetlb_dio: fixup check for initial conditions to skip in the start")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Donet Tom <donettom@linux.ibm.com>
Cc: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-05 19:54:44 -08:00

126 lines
3.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This program tests for hugepage leaks after DIO writes to a file using a
* hugepage as the user buffer. During DIO, the user buffer is pinned and
* should be properly unpinned upon completion. This patch verifies that the
* kernel correctly unpins the buffer at DIO completion for both aligned and
* unaligned user buffer offsets (w.r.t page boundary), ensuring the hugepage
* is freed upon unmapping.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#include <sys/mman.h>
#include "vm_util.h"
#include "../kselftest.h"
void run_dio_using_hugetlb(unsigned int start_off, unsigned int end_off)
{
int fd;
char *buffer = NULL;
char *orig_buffer = NULL;
size_t h_pagesize = 0;
size_t writesize;
int free_hpage_b = 0;
int free_hpage_a = 0;
const int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB;
const int mmap_prot = PROT_READ | PROT_WRITE;
writesize = end_off - start_off;
/* Get the default huge page size */
h_pagesize = default_huge_page_size();
if (!h_pagesize)
ksft_exit_fail_msg("Unable to determine huge page size\n");
/* Open the file to DIO */
fd = open("/tmp", O_TMPFILE | O_RDWR | O_DIRECT, 0664);
if (fd < 0)
ksft_exit_fail_perror("Error opening file\n");
/* Get the free huge pages before allocation */
free_hpage_b = get_free_hugepages();
if (free_hpage_b == 0) {
close(fd);
ksft_exit_skip("No free hugepage, exiting!\n");
}
/* Allocate a hugetlb page */
orig_buffer = mmap(NULL, h_pagesize, mmap_prot, mmap_flags, -1, 0);
if (orig_buffer == MAP_FAILED) {
close(fd);
ksft_exit_fail_perror("Error mapping memory\n");
}
buffer = orig_buffer;
buffer += start_off;
memset(buffer, 'A', writesize);
/* Write the buffer to the file */
if (write(fd, buffer, writesize) != (writesize)) {
munmap(orig_buffer, h_pagesize);
close(fd);
ksft_exit_fail_perror("Error writing to file\n");
}
/* unmap the huge page */
munmap(orig_buffer, h_pagesize);
close(fd);
/* Get the free huge pages after unmap*/
free_hpage_a = get_free_hugepages();
ksft_print_msg("No. Free pages before allocation : %d\n", free_hpage_b);
ksft_print_msg("No. Free pages after munmap : %d\n", free_hpage_a);
/*
* If the no. of free hugepages before allocation and after unmap does
* not match - that means there could still be a page which is pinned.
*/
ksft_test_result(free_hpage_a == free_hpage_b,
"free huge pages from %u-%u\n", start_off, end_off);
}
int main(void)
{
size_t pagesize = 0;
int fd;
ksft_print_header();
/* Open the file to DIO */
fd = open("/tmp", O_TMPFILE | O_RDWR | O_DIRECT, 0664);
if (fd < 0)
ksft_exit_skip("Unable to allocate file: %s\n", strerror(errno));
close(fd);
/* Check if huge pages are free */
if (!get_free_hugepages())
ksft_exit_skip("No free hugepage, exiting\n");
ksft_set_plan(4);
/* Get base page size */
pagesize = psize();
/* start and end is aligned to pagesize */
run_dio_using_hugetlb(0, (pagesize * 3));
/* start is aligned but end is not aligned */
run_dio_using_hugetlb(0, (pagesize * 3) - (pagesize / 2));
/* start is unaligned and end is aligned */
run_dio_using_hugetlb(pagesize / 2, (pagesize * 3));
/* both start and end are unaligned */
run_dio_using_hugetlb(pagesize / 2, (pagesize * 3) + (pagesize / 2));
ksft_finished();
}