linux/tools/testing/selftests/bpf/benchs/bench_sockmap.c
Jiapeng Chong 7d0b43b68d selftest/bpf/benchs: Remove duplicate sys/types.h header
./tools/testing/selftests/bpf/benchs/bench_sockmap.c: sys/types.h is included more than once.

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=20436
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://patch.msgid.link/20250415061459.11644-1-jiapeng.chong@linux.alibaba.com
2025-04-15 11:03:57 -07:00

599 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <error.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/sendfile.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <argp.h>
#include "bench.h"
#include "bench_sockmap_prog.skel.h"
#define FILE_SIZE (128 * 1024)
#define DATA_REPEAT_SIZE 10
static const char snd_data[DATA_REPEAT_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
/* c1 <-> [p1, p2] <-> c2
* RX bench(BPF_SK_SKB_STREAM_VERDICT):
* ARG_FW_RX_PASS:
* send(p2) -> recv(c2) -> bpf skb passthrough -> recv(c2)
* ARG_FW_RX_VERDICT_EGRESS:
* send(c1) -> verdict skb to tx queuec of p2 -> recv(c2)
* ARG_FW_RX_VERDICT_INGRESS:
* send(c1) -> verdict skb to rx queuec of c2 -> recv(c2)
*
* TX bench(BPF_SK_MSG_VERDIC):
* ARG_FW_TX_PASS:
* send(p2) -> bpf msg passthrough -> send(p2) -> recv(c2)
* ARG_FW_TX_VERDICT_INGRESS:
* send(p2) -> verdict msg to rx queue of c2 -> recv(c2)
* ARG_FW_TX_VERDICT_EGRESS:
* send(p1) -> verdict msg to tx queue of p2 -> recv(c2)
*/
enum SOCKMAP_ARG_FLAG {
ARG_FW_RX_NORMAL = 11000,
ARG_FW_RX_PASS,
ARG_FW_RX_VERDICT_EGRESS,
ARG_FW_RX_VERDICT_INGRESS,
ARG_FW_TX_NORMAL,
ARG_FW_TX_PASS,
ARG_FW_TX_VERDICT_INGRESS,
ARG_FW_TX_VERDICT_EGRESS,
ARG_CTL_RX_STRP,
ARG_CONSUMER_DELAY_TIME,
ARG_PRODUCER_DURATION,
};
#define TXMODE_NORMAL() \
((ctx.mode) == ARG_FW_TX_NORMAL)
#define TXMODE_BPF_INGRESS() \
((ctx.mode) == ARG_FW_TX_VERDICT_INGRESS)
#define TXMODE_BPF_EGRESS() \
((ctx.mode) == ARG_FW_TX_VERDICT_EGRESS)
#define TXMODE_BPF_PASS() \
((ctx.mode) == ARG_FW_TX_PASS)
#define TXMODE_BPF() ( \
TXMODE_BPF_PASS() || \
TXMODE_BPF_INGRESS() || \
TXMODE_BPF_EGRESS())
#define TXMODE() ( \
TXMODE_NORMAL() || \
TXMODE_BPF())
#define RXMODE_NORMAL() \
((ctx.mode) == ARG_FW_RX_NORMAL)
#define RXMODE_BPF_PASS() \
((ctx.mode) == ARG_FW_RX_PASS)
#define RXMODE_BPF_VERDICT_EGRESS() \
((ctx.mode) == ARG_FW_RX_VERDICT_EGRESS)
#define RXMODE_BPF_VERDICT_INGRESS() \
((ctx.mode) == ARG_FW_RX_VERDICT_INGRESS)
#define RXMODE_BPF_VERDICT() ( \
RXMODE_BPF_VERDICT_INGRESS() || \
RXMODE_BPF_VERDICT_EGRESS())
#define RXMODE_BPF() ( \
RXMODE_BPF_PASS() || \
RXMODE_BPF_VERDICT())
#define RXMODE() ( \
RXMODE_NORMAL() || \
RXMODE_BPF())
static struct socmap_ctx {
struct bench_sockmap_prog *skel;
enum SOCKMAP_ARG_FLAG mode;
#define c1 fds[0]
#define p1 fds[1]
#define c2 fds[2]
#define p2 fds[3]
#define sfd fds[4]
int fds[5];
long send_calls;
long read_calls;
long prod_send;
long user_read;
int file_size;
int delay_consumer;
int prod_run_time;
int strp_size;
} ctx = {
.prod_send = 0,
.user_read = 0,
.file_size = FILE_SIZE,
.mode = ARG_FW_RX_VERDICT_EGRESS,
.fds = {0},
.delay_consumer = 0,
.prod_run_time = 0,
.strp_size = 0,
};
static void bench_sockmap_prog_destroy(void)
{
int i;
for (i = 0; i < sizeof(ctx.fds); i++) {
if (ctx.fds[0] > 0)
close(ctx.fds[i]);
}
bench_sockmap_prog__destroy(ctx.skel);
}
static void init_addr(struct sockaddr_storage *ss,
socklen_t *len)
{
struct sockaddr_in *addr4 = memset(ss, 0, sizeof(*ss));
addr4->sin_family = AF_INET;
addr4->sin_port = 0;
addr4->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
*len = sizeof(*addr4);
}
static bool set_non_block(int fd, bool blocking)
{
int flags = fcntl(fd, F_GETFL, 0);
if (flags == -1)
return false;
flags = blocking ? (flags | O_NONBLOCK) : (flags & ~O_NONBLOCK);
return (fcntl(fd, F_SETFL, flags) == 0);
}
static int create_pair(int *c, int *p, int type)
{
struct sockaddr_storage addr;
int err, cfd, pfd;
socklen_t addr_len = sizeof(struct sockaddr_storage);
err = getsockname(ctx.sfd, (struct sockaddr *)&addr, &addr_len);
if (err) {
fprintf(stderr, "getsockname error %d\n", errno);
return err;
}
cfd = socket(AF_INET, type, 0);
if (cfd < 0) {
fprintf(stderr, "socket error %d\n", errno);
return err;
}
err = connect(cfd, (struct sockaddr *)&addr, addr_len);
if (err && errno != EINPROGRESS) {
fprintf(stderr, "connect error %d\n", errno);
return err;
}
pfd = accept(ctx.sfd, NULL, NULL);
if (pfd < 0) {
fprintf(stderr, "accept error %d\n", errno);
return err;
}
*c = cfd;
*p = pfd;
return 0;
}
static int create_sockets(void)
{
struct sockaddr_storage addr;
int err, one = 1;
socklen_t addr_len;
init_addr(&addr, &addr_len);
ctx.sfd = socket(AF_INET, SOCK_STREAM, 0);
if (ctx.sfd < 0) {
fprintf(stderr, "socket error:%d\n", errno);
return ctx.sfd;
}
err = setsockopt(ctx.sfd, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one));
if (err) {
fprintf(stderr, "setsockopt error:%d\n", errno);
return err;
}
err = bind(ctx.sfd, (struct sockaddr *)&addr, addr_len);
if (err) {
fprintf(stderr, "bind error:%d\n", errno);
return err;
}
err = listen(ctx.sfd, SOMAXCONN);
if (err) {
fprintf(stderr, "listen error:%d\n", errno);
return err;
}
err = create_pair(&ctx.c1, &ctx.p1, SOCK_STREAM);
if (err) {
fprintf(stderr, "create_pair 1 error\n");
return err;
}
err = create_pair(&ctx.c2, &ctx.p2, SOCK_STREAM);
if (err) {
fprintf(stderr, "create_pair 2 error\n");
return err;
}
printf("create socket fd c1:%d p1:%d c2:%d p2:%d\n",
ctx.c1, ctx.p1, ctx.c2, ctx.p2);
return 0;
}
static void validate(void)
{
if (env.consumer_cnt != 2 || env.producer_cnt != 1 ||
!env.affinity)
goto err;
return;
err:
fprintf(stderr, "argument '-c 2 -p 1 -a' is necessary");
exit(1);
}
static int setup_rx_sockmap(void)
{
int verdict, pass, parser, map;
int zero = 0, one = 1;
int err;
parser = bpf_program__fd(ctx.skel->progs.prog_skb_parser);
verdict = bpf_program__fd(ctx.skel->progs.prog_skb_verdict);
pass = bpf_program__fd(ctx.skel->progs.prog_skb_pass);
map = bpf_map__fd(ctx.skel->maps.sock_map_rx);
if (ctx.strp_size != 0) {
ctx.skel->bss->pkt_size = ctx.strp_size;
err = bpf_prog_attach(parser, map, BPF_SK_SKB_STREAM_PARSER, 0);
if (err)
return err;
}
if (RXMODE_BPF_VERDICT())
err = bpf_prog_attach(verdict, map, BPF_SK_SKB_STREAM_VERDICT, 0);
else if (RXMODE_BPF_PASS())
err = bpf_prog_attach(pass, map, BPF_SK_SKB_STREAM_VERDICT, 0);
if (err)
return err;
if (RXMODE_BPF_PASS())
return bpf_map_update_elem(map, &zero, &ctx.c2, BPF_NOEXIST);
err = bpf_map_update_elem(map, &zero, &ctx.p1, BPF_NOEXIST);
if (err < 0)
return err;
if (RXMODE_BPF_VERDICT_INGRESS()) {
ctx.skel->bss->verdict_dir = BPF_F_INGRESS;
err = bpf_map_update_elem(map, &one, &ctx.c2, BPF_NOEXIST);
} else {
err = bpf_map_update_elem(map, &one, &ctx.p2, BPF_NOEXIST);
}
if (err < 0)
return err;
return 0;
}
static int setup_tx_sockmap(void)
{
int zero = 0, one = 1;
int prog, map;
int err;
map = bpf_map__fd(ctx.skel->maps.sock_map_tx);
prog = TXMODE_BPF_PASS() ?
bpf_program__fd(ctx.skel->progs.prog_skmsg_pass) :
bpf_program__fd(ctx.skel->progs.prog_skmsg_verdict);
err = bpf_prog_attach(prog, map, BPF_SK_MSG_VERDICT, 0);
if (err)
return err;
if (TXMODE_BPF_EGRESS()) {
err = bpf_map_update_elem(map, &zero, &ctx.p1, BPF_NOEXIST);
err |= bpf_map_update_elem(map, &one, &ctx.p2, BPF_NOEXIST);
} else {
ctx.skel->bss->verdict_dir = BPF_F_INGRESS;
err = bpf_map_update_elem(map, &zero, &ctx.p2, BPF_NOEXIST);
err |= bpf_map_update_elem(map, &one, &ctx.c2, BPF_NOEXIST);
}
if (err < 0)
return err;
return 0;
}
static void setup(void)
{
int err;
ctx.skel = bench_sockmap_prog__open_and_load();
if (!ctx.skel) {
fprintf(stderr, "error loading skel\n");
exit(1);
}
if (create_sockets()) {
fprintf(stderr, "create_net_mode error\n");
goto err;
}
if (RXMODE_BPF()) {
err = setup_rx_sockmap();
if (err) {
fprintf(stderr, "setup_rx_sockmap error:%d\n", err);
goto err;
}
} else if (TXMODE_BPF()) {
err = setup_tx_sockmap();
if (err) {
fprintf(stderr, "setup_tx_sockmap error:%d\n", err);
goto err;
}
} else {
fprintf(stderr, "unknown sockmap bench mode: %d\n", ctx.mode);
goto err;
}
return;
err:
bench_sockmap_prog_destroy();
exit(1);
}
static void measure(struct bench_res *res)
{
res->drops = atomic_swap(&ctx.prod_send, 0);
res->hits = atomic_swap(&ctx.skel->bss->process_byte, 0);
res->false_hits = atomic_swap(&ctx.user_read, 0);
res->important_hits = atomic_swap(&ctx.send_calls, 0);
res->important_hits |= atomic_swap(&ctx.read_calls, 0) << 32;
}
static void verify_data(int *check_pos, char *buf, int rcv)
{
for (int i = 0 ; i < rcv; i++) {
if (buf[i] != snd_data[(*check_pos) % DATA_REPEAT_SIZE]) {
fprintf(stderr, "verify data fail");
exit(1);
}
(*check_pos)++;
if (*check_pos >= FILE_SIZE)
*check_pos = 0;
}
}
static void *consumer(void *input)
{
int rcv, sent;
int check_pos = 0;
int tid = (long)input;
int recv_buf_size = FILE_SIZE;
char *buf = malloc(recv_buf_size);
int delay_read = ctx.delay_consumer;
if (!buf) {
fprintf(stderr, "fail to init read buffer");
return NULL;
}
while (true) {
if (tid == 1) {
/* consumer 1 is unused for tx test and stream verdict test */
if (RXMODE_BPF() || TXMODE())
return NULL;
/* it's only for RX_NORMAL which service as reserve-proxy mode */
rcv = read(ctx.p1, buf, recv_buf_size);
if (rcv < 0) {
fprintf(stderr, "fail to read p1");
return NULL;
}
sent = send(ctx.p2, buf, recv_buf_size, 0);
if (sent < 0) {
fprintf(stderr, "fail to send p2");
return NULL;
}
} else {
if (delay_read != 0) {
if (delay_read < 0)
return NULL;
sleep(delay_read);
delay_read = 0;
}
/* read real endpoint by consumer 0 */
atomic_inc(&ctx.read_calls);
rcv = read(ctx.c2, buf, recv_buf_size);
if (rcv < 0 && errno != EAGAIN) {
fprintf(stderr, "%s fail to read c2 %d\n", __func__, errno);
return NULL;
}
verify_data(&check_pos, buf, rcv);
atomic_add(&ctx.user_read, rcv);
}
}
return NULL;
}
static void *producer(void *input)
{
int off = 0, fp, need_sent, sent;
int file_size = ctx.file_size;
struct timespec ts1, ts2;
int target;
FILE *file;
file = tmpfile();
if (!file) {
fprintf(stderr, "create file for sendfile");
return NULL;
}
/* we need simple verify */
for (int i = 0; i < file_size; i++) {
if (fwrite(&snd_data[off], sizeof(char), 1, file) != 1) {
fprintf(stderr, "init tmpfile error");
return NULL;
}
if (++off >= sizeof(snd_data))
off = 0;
}
fflush(file);
fseek(file, 0, SEEK_SET);
fp = fileno(file);
need_sent = file_size;
clock_gettime(CLOCK_MONOTONIC, &ts1);
if (RXMODE_BPF_VERDICT())
target = ctx.c1;
else if (TXMODE_BPF_EGRESS())
target = ctx.p1;
else
target = ctx.p2;
set_non_block(target, true);
while (true) {
if (ctx.prod_run_time) {
clock_gettime(CLOCK_MONOTONIC, &ts2);
if (ts2.tv_sec - ts1.tv_sec > ctx.prod_run_time)
return NULL;
}
errno = 0;
atomic_inc(&ctx.send_calls);
sent = sendfile(target, fp, NULL, need_sent);
if (sent < 0) {
if (errno != EAGAIN && errno != ENOMEM && errno != ENOBUFS) {
fprintf(stderr, "sendfile return %d, errorno %d:%s\n",
sent, errno, strerror(errno));
return NULL;
}
continue;
} else if (sent < need_sent) {
need_sent -= sent;
atomic_add(&ctx.prod_send, sent);
continue;
}
atomic_add(&ctx.prod_send, need_sent);
need_sent = file_size;
lseek(fp, 0, SEEK_SET);
}
return NULL;
}
static void report_progress(int iter, struct bench_res *res, long delta_ns)
{
double speed_mbs, prod_mbs, bpf_mbs, send_hz, read_hz;
prod_mbs = res->drops / 1000000.0 / (delta_ns / 1000000000.0);
speed_mbs = res->false_hits / 1000000.0 / (delta_ns / 1000000000.0);
bpf_mbs = res->hits / 1000000.0 / (delta_ns / 1000000000.0);
send_hz = (res->important_hits & 0xFFFFFFFF) / (delta_ns / 1000000000.0);
read_hz = (res->important_hits >> 32) / (delta_ns / 1000000000.0);
printf("Iter %3d (%7.3lfus): ",
iter, (delta_ns - 1000000000) / 1000.0);
printf("Send Speed %8.3lf MB/s (%8.3lf calls/s), BPF Speed %8.3lf MB/s, "
"Rcv Speed %8.3lf MB/s (%8.3lf calls/s)\n",
prod_mbs, send_hz, bpf_mbs, speed_mbs, read_hz);
}
static void report_final(struct bench_res res[], int res_cnt)
{
double verdict_mbs_mean = 0.0;
long verdict_total = 0;
int i;
for (i = 0; i < res_cnt; i++) {
verdict_mbs_mean += res[i].hits / 1000000.0 / (0.0 + res_cnt);
verdict_total += res[i].hits / 1000000.0;
}
printf("Summary: total trans %8.3lu MB \u00B1 %5.3lf MB/s\n",
verdict_total, verdict_mbs_mean);
}
static const struct argp_option opts[] = {
{ "rx-normal", ARG_FW_RX_NORMAL, NULL, 0,
"simple reserve-proxy mode, no bfp enabled"},
{ "rx-pass", ARG_FW_RX_PASS, NULL, 0,
"run bpf prog but no redir applied"},
{ "rx-strp", ARG_CTL_RX_STRP, "Byte", 0,
"enable strparser and set the encapsulation size"},
{ "rx-verdict-egress", ARG_FW_RX_VERDICT_EGRESS, NULL, 0,
"forward data with bpf(stream verdict)"},
{ "rx-verdict-ingress", ARG_FW_RX_VERDICT_INGRESS, NULL, 0,
"forward data with bpf(stream verdict)"},
{ "tx-normal", ARG_FW_TX_NORMAL, NULL, 0,
"simple c-s mode, no bfp enabled"},
{ "tx-pass", ARG_FW_TX_PASS, NULL, 0,
"run bpf prog but no redir applied"},
{ "tx-verdict-ingress", ARG_FW_TX_VERDICT_INGRESS, NULL, 0,
"forward msg to ingress queue of another socket"},
{ "tx-verdict-egress", ARG_FW_TX_VERDICT_EGRESS, NULL, 0,
"forward msg to egress queue of another socket"},
{ "delay-consumer", ARG_CONSUMER_DELAY_TIME, "SEC", 0,
"delay consumer start"},
{ "producer-duration", ARG_PRODUCER_DURATION, "SEC", 0,
"producer duration"},
{},
};
static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
switch (key) {
case ARG_FW_RX_NORMAL...ARG_FW_TX_VERDICT_EGRESS:
ctx.mode = key;
break;
case ARG_CONSUMER_DELAY_TIME:
ctx.delay_consumer = strtol(arg, NULL, 10);
break;
case ARG_PRODUCER_DURATION:
ctx.prod_run_time = strtol(arg, NULL, 10);
break;
case ARG_CTL_RX_STRP:
ctx.strp_size = strtol(arg, NULL, 10);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
/* exported into benchmark runner */
const struct argp bench_sockmap_argp = {
.options = opts,
.parser = parse_arg,
};
/* Benchmark performance of creating bpf local storage */
const struct bench bench_sockmap = {
.name = "sockmap",
.argp = &bench_sockmap_argp,
.validate = validate,
.setup = setup,
.producer_thread = producer,
.consumer_thread = consumer,
.measure = measure,
.report_progress = report_progress,
.report_final = report_final,
};