linux/net/mctp/test/sock-test.c
Matt Johnston b7e28129b6 net: mctp: Test conflicts of connect() with bind()
The addition of connect() adds new conflict cases to test.

Signed-off-by: Matt Johnston <matt@codeconstruct.com.au>
Link: https://patch.msgid.link/20250710-mctp-bind-v4-7-8ec2f6460c56@codeconstruct.com.au
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-07-15 12:08:39 +02:00

397 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <kunit/static_stub.h>
#include <kunit/test.h>
#include <linux/socket.h>
#include <linux/spinlock.h>
#include "utils.h"
static const u8 dev_default_lladdr[] = { 0x01, 0x02 };
/* helper for simple sock setup: single device, with dev_default_lladdr as its
* hardware address, assigned with a local EID 8, and a route to EID 9
*/
static void __mctp_sock_test_init(struct kunit *test,
struct mctp_test_dev **devp,
struct mctp_test_route **rtp,
struct socket **sockp)
{
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct socket *sock;
unsigned long flags;
u8 *addrs;
int rc;
dev = mctp_test_create_dev_lladdr(sizeof(dev_default_lladdr),
dev_default_lladdr);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev);
addrs = kmalloc(1, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, addrs);
addrs[0] = 8;
spin_lock_irqsave(&dev->mdev->addrs_lock, flags);
dev->mdev->num_addrs = 1;
swap(addrs, dev->mdev->addrs);
spin_unlock_irqrestore(&dev->mdev->addrs_lock, flags);
kfree(addrs);
rt = mctp_test_create_route_direct(dev_net(dev->ndev), dev->mdev, 9, 0);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt);
rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock);
KUNIT_ASSERT_EQ(test, rc, 0);
*devp = dev;
*rtp = rt;
*sockp = sock;
}
static void __mctp_sock_test_fini(struct kunit *test,
struct mctp_test_dev *dev,
struct mctp_test_route *rt,
struct socket *sock)
{
sock_release(sock);
mctp_test_route_destroy(test, rt);
mctp_test_destroy_dev(dev);
}
struct mctp_test_sock_local_output_config {
struct mctp_test_dev *dev;
size_t halen;
u8 haddr[MAX_ADDR_LEN];
bool invoked;
int rc;
};
static int mctp_test_sock_local_output(struct sock *sk,
struct mctp_dst *dst,
struct sk_buff *skb,
mctp_eid_t daddr, u8 req_tag)
{
struct kunit *test = kunit_get_current_test();
struct mctp_test_sock_local_output_config *cfg = test->priv;
KUNIT_EXPECT_PTR_EQ(test, dst->dev, cfg->dev->mdev);
KUNIT_EXPECT_EQ(test, dst->halen, cfg->halen);
KUNIT_EXPECT_MEMEQ(test, dst->haddr, cfg->haddr, dst->halen);
cfg->invoked = true;
kfree_skb(skb);
return cfg->rc;
}
static void mctp_test_sock_sendmsg_extaddr(struct kunit *test)
{
struct sockaddr_mctp_ext addr = {
.smctp_base = {
.smctp_family = AF_MCTP,
.smctp_tag = MCTP_TAG_OWNER,
.smctp_network = MCTP_NET_ANY,
},
};
struct mctp_test_sock_local_output_config cfg = { 0 };
u8 haddr[] = { 0xaa, 0x01 };
u8 buf[4] = { 0, 1, 2, 3 };
struct mctp_test_route *rt;
struct msghdr msg = { 0 };
struct mctp_test_dev *dev;
struct mctp_sock *msk;
struct socket *sock;
ssize_t send_len;
struct kvec vec = {
.iov_base = buf,
.iov_len = sizeof(buf),
};
__mctp_sock_test_init(test, &dev, &rt, &sock);
/* Expect to see the dst configured up with the addressing data we
* provide in the struct sockaddr_mctp_ext
*/
cfg.dev = dev;
cfg.halen = sizeof(haddr);
memcpy(cfg.haddr, haddr, sizeof(haddr));
test->priv = &cfg;
kunit_activate_static_stub(test, mctp_local_output,
mctp_test_sock_local_output);
/* enable and configure direct addressing */
msk = container_of(sock->sk, struct mctp_sock, sk);
msk->addr_ext = true;
addr.smctp_ifindex = dev->ndev->ifindex;
addr.smctp_halen = sizeof(haddr);
memcpy(addr.smctp_haddr, haddr, sizeof(haddr));
msg.msg_name = &addr;
msg.msg_namelen = sizeof(addr);
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &vec, 1, sizeof(buf));
send_len = mctp_sendmsg(sock, &msg, sizeof(buf));
KUNIT_EXPECT_EQ(test, send_len, sizeof(buf));
KUNIT_EXPECT_TRUE(test, cfg.invoked);
__mctp_sock_test_fini(test, dev, rt, sock);
}
static void mctp_test_sock_recvmsg_extaddr(struct kunit *test)
{
struct sockaddr_mctp_ext recv_addr = { 0 };
u8 rcv_buf[1], rcv_data[] = { 0, 1 };
u8 haddr[] = { 0xaa, 0x02 };
struct mctp_test_route *rt;
struct mctp_test_dev *dev;
struct mctp_skb_cb *cb;
struct mctp_sock *msk;
struct sk_buff *skb;
struct mctp_hdr hdr;
struct socket *sock;
struct msghdr msg;
ssize_t recv_len;
int rc;
struct kvec vec = {
.iov_base = rcv_buf,
.iov_len = sizeof(rcv_buf),
};
__mctp_sock_test_init(test, &dev, &rt, &sock);
/* enable extended addressing on recv */
msk = container_of(sock->sk, struct mctp_sock, sk);
msk->addr_ext = true;
/* base incoming header, using a nul-EID dest */
hdr.ver = 1;
hdr.dest = 0;
hdr.src = 9;
hdr.flags_seq_tag = MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM |
MCTP_HDR_FLAG_TO;
skb = mctp_test_create_skb_data(&hdr, &rcv_data);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb);
mctp_test_skb_set_dev(skb, dev);
/* set incoming extended address data */
cb = mctp_cb(skb);
cb->halen = sizeof(haddr);
cb->ifindex = dev->ndev->ifindex;
memcpy(cb->haddr, haddr, sizeof(haddr));
/* Deliver to socket. The route input path pulls the network header,
* leaving skb data at type byte onwards. recvmsg will consume the
* type for addr.smctp_type
*/
skb_pull(skb, sizeof(hdr));
rc = sock_queue_rcv_skb(sock->sk, skb);
KUNIT_ASSERT_EQ(test, rc, 0);
msg.msg_name = &recv_addr;
msg.msg_namelen = sizeof(recv_addr);
iov_iter_kvec(&msg.msg_iter, ITER_DEST, &vec, 1, sizeof(rcv_buf));
recv_len = mctp_recvmsg(sock, &msg, sizeof(rcv_buf),
MSG_DONTWAIT | MSG_TRUNC);
KUNIT_EXPECT_EQ(test, recv_len, sizeof(rcv_buf));
/* expect our extended address to be populated from hdr and cb */
KUNIT_EXPECT_EQ(test, msg.msg_namelen, sizeof(recv_addr));
KUNIT_EXPECT_EQ(test, recv_addr.smctp_base.smctp_family, AF_MCTP);
KUNIT_EXPECT_EQ(test, recv_addr.smctp_ifindex, dev->ndev->ifindex);
KUNIT_EXPECT_EQ(test, recv_addr.smctp_halen, sizeof(haddr));
KUNIT_EXPECT_MEMEQ(test, recv_addr.smctp_haddr, haddr, sizeof(haddr));
__mctp_sock_test_fini(test, dev, rt, sock);
}
static const struct mctp_test_bind_setup bind_addrany_netdefault_type1 = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = MCTP_NET_ANY, .bind_type = 1,
};
static const struct mctp_test_bind_setup bind_addrany_net2_type1 = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = 2, .bind_type = 1,
};
/* 1 is default net */
static const struct mctp_test_bind_setup bind_addr8_net1_type1 = {
.bind_addr = 8, .bind_net = 1, .bind_type = 1,
};
static const struct mctp_test_bind_setup bind_addrany_net1_type1 = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = 1, .bind_type = 1,
};
/* 2 is an arbitrary net */
static const struct mctp_test_bind_setup bind_addr8_net2_type1 = {
.bind_addr = 8, .bind_net = 2, .bind_type = 1,
};
static const struct mctp_test_bind_setup bind_addr8_netdefault_type1 = {
.bind_addr = 8, .bind_net = MCTP_NET_ANY, .bind_type = 1,
};
static const struct mctp_test_bind_setup bind_addrany_net2_type2 = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = 2, .bind_type = 2,
};
static const struct mctp_test_bind_setup bind_addrany_net2_type1_peer9 = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = 2, .bind_type = 1,
.have_peer = true, .peer_addr = 9, .peer_net = 2,
};
struct mctp_bind_pair_test {
const struct mctp_test_bind_setup *bind1;
const struct mctp_test_bind_setup *bind2;
int error;
};
/* Pairs of binds and whether they will conflict */
static const struct mctp_bind_pair_test mctp_bind_pair_tests[] = {
/* Both ADDR_ANY, conflict */
{ &bind_addrany_netdefault_type1, &bind_addrany_netdefault_type1,
EADDRINUSE },
/* Same specific EID, conflict */
{ &bind_addr8_netdefault_type1, &bind_addr8_netdefault_type1,
EADDRINUSE },
/* ADDR_ANY vs specific EID, OK */
{ &bind_addrany_netdefault_type1, &bind_addr8_netdefault_type1, 0 },
/* ADDR_ANY different types, OK */
{ &bind_addrany_net2_type2, &bind_addrany_net2_type1, 0 },
/* ADDR_ANY different nets, OK */
{ &bind_addrany_net2_type1, &bind_addrany_netdefault_type1, 0 },
/* specific EID, NET_ANY (resolves to default)
* vs specific EID, explicit default net 1, conflict
*/
{ &bind_addr8_netdefault_type1, &bind_addr8_net1_type1, EADDRINUSE },
/* specific EID, net 1 vs specific EID, net 2, ok */
{ &bind_addr8_net1_type1, &bind_addr8_net2_type1, 0 },
/* ANY_ADDR, NET_ANY (doesn't resolve to default)
* vs ADDR_ANY, explicit default net 1, OK
*/
{ &bind_addrany_netdefault_type1, &bind_addrany_net1_type1, 0 },
/* specific remote peer doesn't conflict with any-peer bind */
{ &bind_addrany_net2_type1_peer9, &bind_addrany_net2_type1, 0 },
/* bind() NET_ANY is allowed with a connect() net */
{ &bind_addrany_net2_type1_peer9, &bind_addrany_netdefault_type1, 0 },
};
static void mctp_bind_pair_desc(const struct mctp_bind_pair_test *t, char *desc)
{
char peer1[25] = {0}, peer2[25] = {0};
if (t->bind1->have_peer)
snprintf(peer1, sizeof(peer1), ", peer %d net %d",
t->bind1->peer_addr, t->bind1->peer_net);
if (t->bind2->have_peer)
snprintf(peer2, sizeof(peer2), ", peer %d net %d",
t->bind2->peer_addr, t->bind2->peer_net);
snprintf(desc, KUNIT_PARAM_DESC_SIZE,
"{bind(addr %d, type %d, net %d%s)} {bind(addr %d, type %d, net %d%s)} -> error %d",
t->bind1->bind_addr, t->bind1->bind_type,
t->bind1->bind_net, peer1,
t->bind2->bind_addr, t->bind2->bind_type,
t->bind2->bind_net, peer2, t->error);
}
KUNIT_ARRAY_PARAM(mctp_bind_pair, mctp_bind_pair_tests, mctp_bind_pair_desc);
static void mctp_test_bind_invalid(struct kunit *test)
{
struct socket *sock;
int rc;
/* bind() fails if the bind() vs connect() networks mismatch. */
const struct mctp_test_bind_setup bind_connect_net_mismatch = {
.bind_addr = MCTP_ADDR_ANY, .bind_net = 1, .bind_type = 1,
.have_peer = true, .peer_addr = 9, .peer_net = 2,
};
mctp_test_bind_run(test, &bind_connect_net_mismatch, &rc, &sock);
KUNIT_EXPECT_EQ(test, -rc, EINVAL);
sock_release(sock);
}
static int
mctp_test_bind_conflicts_inner(struct kunit *test,
const struct mctp_test_bind_setup *bind1,
const struct mctp_test_bind_setup *bind2)
{
struct socket *sock1 = NULL, *sock2 = NULL, *sock3 = NULL;
int bind_errno;
/* Bind to first address, always succeeds */
mctp_test_bind_run(test, bind1, &bind_errno, &sock1);
KUNIT_EXPECT_EQ(test, bind_errno, 0);
/* A second identical bind always fails */
mctp_test_bind_run(test, bind1, &bind_errno, &sock2);
KUNIT_EXPECT_EQ(test, -bind_errno, EADDRINUSE);
/* A different bind, result is returned */
mctp_test_bind_run(test, bind2, &bind_errno, &sock3);
if (sock1)
sock_release(sock1);
if (sock2)
sock_release(sock2);
if (sock3)
sock_release(sock3);
return bind_errno;
}
static void mctp_test_bind_conflicts(struct kunit *test)
{
const struct mctp_bind_pair_test *pair;
int bind_errno;
pair = test->param_value;
bind_errno =
mctp_test_bind_conflicts_inner(test, pair->bind1, pair->bind2);
KUNIT_EXPECT_EQ(test, -bind_errno, pair->error);
/* swapping the calls, the second bind should still fail */
bind_errno =
mctp_test_bind_conflicts_inner(test, pair->bind2, pair->bind1);
KUNIT_EXPECT_EQ(test, -bind_errno, pair->error);
}
static void mctp_test_assumptions(struct kunit *test)
{
/* check assumption of default net from bind_addr8_net1_type1 */
KUNIT_ASSERT_EQ(test, mctp_default_net(&init_net), 1);
}
static struct kunit_case mctp_test_cases[] = {
KUNIT_CASE(mctp_test_assumptions),
KUNIT_CASE(mctp_test_sock_sendmsg_extaddr),
KUNIT_CASE(mctp_test_sock_recvmsg_extaddr),
KUNIT_CASE_PARAM(mctp_test_bind_conflicts, mctp_bind_pair_gen_params),
KUNIT_CASE(mctp_test_bind_invalid),
{}
};
static struct kunit_suite mctp_test_suite = {
.name = "mctp-sock",
.test_cases = mctp_test_cases,
};
kunit_test_suite(mctp_test_suite);