linux/net/mac80211/debugfs_sta.c
Toke Høiland-Jørgensen 4876376988 Revert "mac80211: Dynamically set CoDel parameters per station"
This reverts commit 484a54c2e5. The CoDel
parameter change essentially disables CoDel on slow stations, with some
questionable assumptions, as Dave pointed out in [0]. Quoting from
there:

  But here are my pithy comments as to why this part of mac80211 is so
  wrong...

   static void sta_update_codel_params(struct sta_info *sta, u32 thr)
   {
  -       if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {

  1) sta->local->num_sta is the number of associated, rather than
  active, stations. "Active" stations in the last 50ms or so, might have
  been a better thing to use, but as most people have far more than that
  associated, we end up with really lousy codel parameters, all the
  time. Mistake numero uno!

  2) The STA_SLOW_THRESHOLD was completely arbitrary in 2016.

  -               sta->cparams.target = MS2TIME(50);

  This, by itself, was probably not too bad. 30ms might have been
  better, at the time, when we were battling powersave etc, but 20ms was
  enough, really, to cover most scenarios, even where we had low rate
  2Ghz multicast to cope with. Even then, codel has a hard time finding
  any sane drop rate at all, with a target this high.

  -               sta->cparams.interval = MS2TIME(300);

  But this was horrible, a total mistake, that is leading to codel being
  completely ineffective in almost any scenario on clients or APS.
  100ms, even 80ms, here, would be vastly better than this insanity. I'm
  seeing 5+seconds of delay accumulated in a bunch of otherwise happily
  fq-ing APs....

  100ms of observed jitter during a flow is enough. Certainly (in 2016)
  there were interactions with powersave that I did not understand, and
  still don't, but if you are transmitting in the first place, powersave
  shouldn't be a problemmmm.....

  -               sta->cparams.ecn = false;

  At the time we were pretty nervous about ecn, I'm kind of sanguine
  about it now, and reliably indicating ecn seems better than turning it
  off for any reason.

  [...]

  In production, on p2p wireless, I've had 8ms and 80ms for target and
  interval for years now, and it works great.

I think Dave's arguments above are basically sound on the face of it,
and various experimentation with tighter CoDel parameters in the OpenWrt
community have show promising results[1]. So I don't think there's any
reason to keep this parameter fiddling; hence this revert.

[0] https://lore.kernel.org/linux-wireless/CAA93jw6NJ2cmLmMauz0xAgC2MGbBq6n0ZiZzAdkK0u4b+O2yXg@mail.gmail.com/
[1] https://forum.openwrt.org/t/reducing-multiplexing-latencies-still-further-in-wifi/133605/130

Suggested-By: Dave Taht <dave.taht@gmail.com>
In-memory-of: Dave Taht <dave.taht@gmail.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@toke.dk>
Link: https://patch.msgid.link/20250403183930.197716-1-toke@toke.dk
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2025-04-23 15:22:11 +02:00

1365 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2003-2005 Devicescape Software, Inc.
* Copyright (c) 2006 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright(c) 2016 Intel Deutschland GmbH
* Copyright (C) 2018 - 2023 Intel Corporation
*/
#include <linux/debugfs.h>
#include <linux/ieee80211.h>
#include "ieee80211_i.h"
#include "debugfs.h"
#include "debugfs_sta.h"
#include "sta_info.h"
#include "driver-ops.h"
/* sta attributes */
#define STA_READ(name, field, format_string) \
static ssize_t sta_ ##name## _read(struct file *file, \
char __user *userbuf, \
size_t count, loff_t *ppos) \
{ \
struct sta_info *sta = file->private_data; \
return mac80211_format_buffer(userbuf, count, ppos, \
format_string, sta->field); \
}
#define STA_READ_D(name, field) STA_READ(name, field, "%d\n")
#define STA_OPS(name) \
static const struct debugfs_short_fops sta_ ##name## _ops = { \
.read = sta_##name##_read, \
.llseek = generic_file_llseek, \
}
#define STA_OPS_RW(name) \
static const struct debugfs_short_fops sta_ ##name## _ops = { \
.read = sta_##name##_read, \
.write = sta_##name##_write, \
.llseek = generic_file_llseek, \
}
#define STA_FILE(name, field, format) \
STA_READ_##format(name, field) \
STA_OPS(name)
STA_FILE(aid, sta.aid, D);
static const char * const sta_flag_names[] = {
#define FLAG(F) [WLAN_STA_##F] = #F
FLAG(AUTH),
FLAG(ASSOC),
FLAG(PS_STA),
FLAG(AUTHORIZED),
FLAG(SHORT_PREAMBLE),
FLAG(WDS),
FLAG(CLEAR_PS_FILT),
FLAG(MFP),
FLAG(BLOCK_BA),
FLAG(PS_DRIVER),
FLAG(PSPOLL),
FLAG(TDLS_PEER),
FLAG(TDLS_PEER_AUTH),
FLAG(TDLS_INITIATOR),
FLAG(TDLS_CHAN_SWITCH),
FLAG(TDLS_OFF_CHANNEL),
FLAG(TDLS_WIDER_BW),
FLAG(UAPSD),
FLAG(SP),
FLAG(4ADDR_EVENT),
FLAG(INSERTED),
FLAG(RATE_CONTROL),
FLAG(TOFFSET_KNOWN),
FLAG(MPSP_OWNER),
FLAG(MPSP_RECIPIENT),
FLAG(PS_DELIVER),
FLAG(USES_ENCRYPTION),
FLAG(DECAP_OFFLOAD),
#undef FLAG
};
static ssize_t sta_flags_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char buf[16 * NUM_WLAN_STA_FLAGS], *pos = buf;
char *end = buf + sizeof(buf) - 1;
struct sta_info *sta = file->private_data;
unsigned int flg;
BUILD_BUG_ON(ARRAY_SIZE(sta_flag_names) != NUM_WLAN_STA_FLAGS);
for (flg = 0; flg < NUM_WLAN_STA_FLAGS; flg++) {
if (test_sta_flag(sta, flg))
pos += scnprintf(pos, end - pos, "%s\n",
sta_flag_names[flg]);
}
return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
}
STA_OPS(flags);
static ssize_t sta_num_ps_buf_frames_read(struct file *file,
char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
char buf[17*IEEE80211_NUM_ACS], *p = buf;
int ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac,
skb_queue_len(&sta->ps_tx_buf[ac]) +
skb_queue_len(&sta->tx_filtered[ac]));
return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
}
STA_OPS(num_ps_buf_frames);
static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char buf[15*IEEE80211_NUM_TIDS], *p = buf;
int i;
struct sta_info *sta = file->private_data;
for (i = 0; i < IEEE80211_NUM_TIDS; i++)
p += scnprintf(p, sizeof(buf)+buf-p, "%x ",
le16_to_cpu(sta->last_seq_ctrl[i]));
p += scnprintf(p, sizeof(buf)+buf-p, "\n");
return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
}
STA_OPS(last_seq_ctrl);
#define AQM_TXQ_ENTRY_LEN 130
static ssize_t sta_aqm_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct ieee80211_local *local = sta->local;
size_t bufsz = AQM_TXQ_ENTRY_LEN * (IEEE80211_NUM_TIDS + 2);
char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
struct txq_info *txqi;
ssize_t rv;
int i;
if (!buf)
return -ENOMEM;
spin_lock_bh(&local->fq.lock);
rcu_read_lock();
p += scnprintf(p,
bufsz + buf - p,
"tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags\n");
for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
if (!sta->sta.txq[i])
continue;
txqi = to_txq_info(sta->sta.txq[i]);
p += scnprintf(p, bufsz + buf - p,
"%d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s%s)\n",
txqi->txq.tid,
txqi->txq.ac,
txqi->tin.backlog_bytes,
txqi->tin.backlog_packets,
txqi->tin.flows,
txqi->cstats.drop_count,
txqi->cstats.ecn_mark,
txqi->tin.overlimit,
txqi->tin.collisions,
txqi->tin.tx_bytes,
txqi->tin.tx_packets,
txqi->flags,
test_bit(IEEE80211_TXQ_STOP, &txqi->flags) ? "STOP" : "RUN",
test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags) ? " AMPDU" : "",
test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags) ? " NO-AMSDU" : "",
test_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ? " DIRTY" : "");
}
rcu_read_unlock();
spin_unlock_bh(&local->fq.lock);
rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return rv;
}
STA_OPS(aqm);
static ssize_t sta_airtime_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct ieee80211_local *local = sta->sdata->local;
size_t bufsz = 400;
char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
u64 rx_airtime = 0, tx_airtime = 0;
s32 deficit[IEEE80211_NUM_ACS];
ssize_t rv;
int ac;
if (!buf)
return -ENOMEM;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
spin_lock_bh(&local->active_txq_lock[ac]);
rx_airtime += sta->airtime[ac].rx_airtime;
tx_airtime += sta->airtime[ac].tx_airtime;
deficit[ac] = sta->airtime[ac].deficit;
spin_unlock_bh(&local->active_txq_lock[ac]);
}
p += scnprintf(p, bufsz + buf - p,
"RX: %llu us\nTX: %llu us\nWeight: %u\n"
"Deficit: VO: %d us VI: %d us BE: %d us BK: %d us\n",
rx_airtime, tx_airtime, sta->airtime_weight,
deficit[0], deficit[1], deficit[2], deficit[3]);
rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return rv;
}
static ssize_t sta_airtime_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct ieee80211_local *local = sta->sdata->local;
int ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
spin_lock_bh(&local->active_txq_lock[ac]);
sta->airtime[ac].rx_airtime = 0;
sta->airtime[ac].tx_airtime = 0;
sta->airtime[ac].deficit = sta->airtime_weight;
spin_unlock_bh(&local->active_txq_lock[ac]);
}
return count;
}
STA_OPS_RW(airtime);
static ssize_t sta_aql_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct ieee80211_local *local = sta->sdata->local;
size_t bufsz = 400;
char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf;
u32 q_depth[IEEE80211_NUM_ACS];
u32 q_limit_l[IEEE80211_NUM_ACS], q_limit_h[IEEE80211_NUM_ACS];
ssize_t rv;
int ac;
if (!buf)
return -ENOMEM;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
spin_lock_bh(&local->active_txq_lock[ac]);
q_limit_l[ac] = sta->airtime[ac].aql_limit_low;
q_limit_h[ac] = sta->airtime[ac].aql_limit_high;
spin_unlock_bh(&local->active_txq_lock[ac]);
q_depth[ac] = atomic_read(&sta->airtime[ac].aql_tx_pending);
}
p += scnprintf(p, bufsz + buf - p,
"Q depth: VO: %u us VI: %u us BE: %u us BK: %u us\n"
"Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u\n",
q_depth[0], q_depth[1], q_depth[2], q_depth[3],
q_limit_l[0], q_limit_h[0], q_limit_l[1], q_limit_h[1],
q_limit_l[2], q_limit_h[2], q_limit_l[3], q_limit_h[3]);
rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return rv;
}
static ssize_t sta_aql_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
u32 ac, q_limit_l, q_limit_h;
char _buf[100] = {}, *buf = _buf;
if (count > sizeof(_buf))
return -EINVAL;
if (copy_from_user(buf, userbuf, count))
return -EFAULT;
buf[sizeof(_buf) - 1] = '\0';
if (sscanf(buf, "limit %u %u %u", &ac, &q_limit_l, &q_limit_h)
!= 3)
return -EINVAL;
if (ac >= IEEE80211_NUM_ACS)
return -EINVAL;
sta->airtime[ac].aql_limit_low = q_limit_l;
sta->airtime[ac].aql_limit_high = q_limit_h;
return count;
}
STA_OPS_RW(aql);
static ssize_t sta_agg_status_do_read(struct wiphy *wiphy, struct file *file,
char *buf, size_t bufsz, void *data)
{
struct sta_info *sta = data;
char *p = buf;
int i;
struct tid_ampdu_rx *tid_rx;
struct tid_ampdu_tx *tid_tx;
p += scnprintf(p, bufsz + buf - p, "next dialog_token: %#02x\n",
sta->ampdu_mlme.dialog_token_allocator + 1);
p += scnprintf(p, bufsz + buf - p,
"TID\t\tRX\tDTKN\tSSN\t\tTX\tDTKN\tpending\n");
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
bool tid_rx_valid;
tid_rx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_rx[i]);
tid_tx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_tx[i]);
tid_rx_valid = test_bit(i, sta->ampdu_mlme.agg_session_valid);
p += scnprintf(p, bufsz + buf - p, "%02d", i);
p += scnprintf(p, bufsz + buf - p, "\t\t%x",
tid_rx_valid);
p += scnprintf(p, bufsz + buf - p, "\t%#.2x",
tid_rx_valid ?
sta->ampdu_mlme.tid_rx_token[i] : 0);
p += scnprintf(p, bufsz + buf - p, "\t%#.3x",
tid_rx ? tid_rx->ssn : 0);
p += scnprintf(p, bufsz + buf - p, "\t\t%x", !!tid_tx);
p += scnprintf(p, bufsz + buf - p, "\t%#.2x",
tid_tx ? tid_tx->dialog_token : 0);
p += scnprintf(p, bufsz + buf - p, "\t%03d",
tid_tx ? skb_queue_len(&tid_tx->pending) : 0);
p += scnprintf(p, bufsz + buf - p, "\n");
}
return p - buf;
}
static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct wiphy *wiphy = sta->local->hw.wiphy;
size_t bufsz = 71 + IEEE80211_NUM_TIDS * 40;
char *buf = kmalloc(bufsz, GFP_KERNEL);
ssize_t ret;
if (!buf)
return -ENOMEM;
ret = wiphy_locked_debugfs_read(wiphy, file, buf, bufsz,
userbuf, count, ppos,
sta_agg_status_do_read, sta);
kfree(buf);
return ret;
}
static ssize_t sta_agg_status_do_write(struct wiphy *wiphy, struct file *file,
char *buf, size_t count, void *data)
{
struct sta_info *sta = data;
bool start, tx;
unsigned long tid;
char *pos = buf;
int ret, timeout = 5000;
buf = strsep(&pos, " ");
if (!buf)
return -EINVAL;
if (!strcmp(buf, "tx"))
tx = true;
else if (!strcmp(buf, "rx"))
tx = false;
else
return -EINVAL;
buf = strsep(&pos, " ");
if (!buf)
return -EINVAL;
if (!strcmp(buf, "start")) {
start = true;
if (!tx)
return -EINVAL;
} else if (!strcmp(buf, "stop")) {
start = false;
} else {
return -EINVAL;
}
buf = strsep(&pos, " ");
if (!buf)
return -EINVAL;
if (sscanf(buf, "timeout=%d", &timeout) == 1) {
buf = strsep(&pos, " ");
if (!buf || !tx || !start)
return -EINVAL;
}
ret = kstrtoul(buf, 0, &tid);
if (ret || tid >= IEEE80211_NUM_TIDS)
return -EINVAL;
if (tx) {
if (start)
ret = ieee80211_start_tx_ba_session(&sta->sta, tid,
timeout);
else
ret = ieee80211_stop_tx_ba_session(&sta->sta, tid);
} else {
__ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
3, true);
ret = 0;
}
return ret ?: count;
}
static ssize_t sta_agg_status_write(struct file *file,
const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct sta_info *sta = file->private_data;
struct wiphy *wiphy = sta->local->hw.wiphy;
char _buf[26];
return wiphy_locked_debugfs_write(wiphy, file, _buf, sizeof(_buf),
userbuf, count,
sta_agg_status_do_write, sta);
}
STA_OPS_RW(agg_status);
/* link sta attributes */
#define LINK_STA_OPS(name) \
static const struct debugfs_short_fops link_sta_ ##name## _ops = { \
.read = link_sta_##name##_read, \
.llseek = generic_file_llseek, \
}
static ssize_t link_sta_addr_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct link_sta_info *link_sta = file->private_data;
u8 mac[MAC_ADDR_STR_LEN + 2];
snprintf(mac, sizeof(mac), "%pM\n", link_sta->pub->addr);
return simple_read_from_buffer(userbuf, count, ppos, mac,
MAC_ADDR_STR_LEN + 1);
}
LINK_STA_OPS(addr);
static ssize_t link_sta_ht_capa_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
#define PRINT_HT_CAP(_cond, _str) \
do { \
if (_cond) \
p += scnprintf(p, bufsz + buf - p, "\t" _str "\n"); \
} while (0)
char *buf, *p;
int i;
ssize_t bufsz = 512;
struct link_sta_info *link_sta = file->private_data;
struct ieee80211_sta_ht_cap *htc = &link_sta->pub->ht_cap;
ssize_t ret;
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
p = buf;
p += scnprintf(p, bufsz + buf - p, "ht %ssupported\n",
htc->ht_supported ? "" : "not ");
if (htc->ht_supported) {
p += scnprintf(p, bufsz + buf - p, "cap: %#.4x\n", htc->cap);
PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC");
PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40");
PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20");
PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save");
PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled");
PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield");
PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI");
PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI");
PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC");
PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC");
PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack");
PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: "
"3839 bytes");
PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: "
"7935 bytes");
/*
* For beacons and probe response this would mean the BSS
* does or does not allow the usage of DSSS/CCK HT40.
* Otherwise it means the STA does or does not use
* DSSS/CCK HT40.
*/
PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40");
PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40");
/* BIT(13) is reserved */
PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant");
PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection");
p += scnprintf(p, bufsz + buf - p, "ampdu factor/density: %d/%d\n",
htc->ampdu_factor, htc->ampdu_density);
p += scnprintf(p, bufsz + buf - p, "MCS mask:");
for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
p += scnprintf(p, bufsz + buf - p, " %.2x",
htc->mcs.rx_mask[i]);
p += scnprintf(p, bufsz + buf - p, "\n");
/* If not set this is meaningless */
if (le16_to_cpu(htc->mcs.rx_highest)) {
p += scnprintf(p, bufsz + buf - p,
"MCS rx highest: %d Mbps\n",
le16_to_cpu(htc->mcs.rx_highest));
}
p += scnprintf(p, bufsz + buf - p, "MCS tx params: %x\n",
htc->mcs.tx_params);
}
ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return ret;
}
LINK_STA_OPS(ht_capa);
static ssize_t link_sta_vht_capa_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf, *p;
struct link_sta_info *link_sta = file->private_data;
struct ieee80211_sta_vht_cap *vhtc = &link_sta->pub->vht_cap;
ssize_t ret;
ssize_t bufsz = 512;
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
p = buf;
p += scnprintf(p, bufsz + buf - p, "VHT %ssupported\n",
vhtc->vht_supported ? "" : "not ");
if (vhtc->vht_supported) {
p += scnprintf(p, bufsz + buf - p, "cap: %#.8x\n",
vhtc->cap);
#define PFLAG(a, b) \
do { \
if (vhtc->cap & IEEE80211_VHT_CAP_ ## a) \
p += scnprintf(p, bufsz + buf - p, \
"\t\t%s\n", b); \
} while (0)
switch (vhtc->cap & 0x3) {
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895:
p += scnprintf(p, bufsz + buf - p,
"\t\tMAX-MPDU-3895\n");
break;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991:
p += scnprintf(p, bufsz + buf - p,
"\t\tMAX-MPDU-7991\n");
break;
case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454:
p += scnprintf(p, bufsz + buf - p,
"\t\tMAX-MPDU-11454\n");
break;
default:
p += scnprintf(p, bufsz + buf - p,
"\t\tMAX-MPDU-UNKNOWN\n");
}
switch (vhtc->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
case 0:
p += scnprintf(p, bufsz + buf - p,
"\t\t80Mhz\n");
break;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
p += scnprintf(p, bufsz + buf - p,
"\t\t160Mhz\n");
break;
case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
p += scnprintf(p, bufsz + buf - p,
"\t\t80+80Mhz\n");
break;
default:
p += scnprintf(p, bufsz + buf - p,
"\t\tUNKNOWN-MHZ: 0x%x\n",
(vhtc->cap >> 2) & 0x3);
}
PFLAG(RXLDPC, "RXLDPC");
PFLAG(SHORT_GI_80, "SHORT-GI-80");
PFLAG(SHORT_GI_160, "SHORT-GI-160");
PFLAG(TXSTBC, "TXSTBC");
p += scnprintf(p, bufsz + buf - p,
"\t\tRXSTBC_%d\n", (vhtc->cap >> 8) & 0x7);
PFLAG(SU_BEAMFORMER_CAPABLE, "SU-BEAMFORMER-CAPABLE");
PFLAG(SU_BEAMFORMEE_CAPABLE, "SU-BEAMFORMEE-CAPABLE");
p += scnprintf(p, bufsz + buf - p,
"\t\tBEAMFORMEE-STS: 0x%x\n",
(vhtc->cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK) >>
IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
p += scnprintf(p, bufsz + buf - p,
"\t\tSOUNDING-DIMENSIONS: 0x%x\n",
(vhtc->cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK)
>> IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT);
PFLAG(MU_BEAMFORMER_CAPABLE, "MU-BEAMFORMER-CAPABLE");
PFLAG(MU_BEAMFORMEE_CAPABLE, "MU-BEAMFORMEE-CAPABLE");
PFLAG(VHT_TXOP_PS, "TXOP-PS");
PFLAG(HTC_VHT, "HTC-VHT");
p += scnprintf(p, bufsz + buf - p,
"\t\tMPDU-LENGTH-EXPONENT: 0x%x\n",
(vhtc->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT);
PFLAG(VHT_LINK_ADAPTATION_VHT_UNSOL_MFB,
"LINK-ADAPTATION-VHT-UNSOL-MFB");
p += scnprintf(p, bufsz + buf - p,
"\t\tLINK-ADAPTATION-VHT-MRQ-MFB: 0x%x\n",
(vhtc->cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB) >> 26);
PFLAG(RX_ANTENNA_PATTERN, "RX-ANTENNA-PATTERN");
PFLAG(TX_ANTENNA_PATTERN, "TX-ANTENNA-PATTERN");
p += scnprintf(p, bufsz + buf - p, "RX MCS: %.4x\n",
le16_to_cpu(vhtc->vht_mcs.rx_mcs_map));
if (vhtc->vht_mcs.rx_highest)
p += scnprintf(p, bufsz + buf - p,
"MCS RX highest: %d Mbps\n",
le16_to_cpu(vhtc->vht_mcs.rx_highest));
p += scnprintf(p, bufsz + buf - p, "TX MCS: %.4x\n",
le16_to_cpu(vhtc->vht_mcs.tx_mcs_map));
if (vhtc->vht_mcs.tx_highest)
p += scnprintf(p, bufsz + buf - p,
"MCS TX highest: %d Mbps\n",
le16_to_cpu(vhtc->vht_mcs.tx_highest));
#undef PFLAG
}
ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return ret;
}
LINK_STA_OPS(vht_capa);
static ssize_t link_sta_he_capa_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf, *p;
size_t buf_sz = PAGE_SIZE;
struct link_sta_info *link_sta = file->private_data;
struct ieee80211_sta_he_cap *hec = &link_sta->pub->he_cap;
struct ieee80211_he_mcs_nss_supp *nss = &hec->he_mcs_nss_supp;
u8 ppe_size;
u8 *cap;
int i;
ssize_t ret;
buf = kmalloc(buf_sz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
p = buf;
p += scnprintf(p, buf_sz + buf - p, "HE %ssupported\n",
hec->has_he ? "" : "not ");
if (!hec->has_he)
goto out;
cap = hec->he_cap_elem.mac_cap_info;
p += scnprintf(p, buf_sz + buf - p,
"MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
cap[0], cap[1], cap[2], cap[3], cap[4], cap[5]);
#define PRINT(fmt, ...) \
p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \
##__VA_ARGS__)
#define PFLAG(t, n, a, b) \
do { \
if (cap[n] & IEEE80211_HE_##t##_CAP##n##_##a) \
PRINT("%s", b); \
} while (0)
#define PFLAG_RANGE(t, i, n, s, m, off, fmt) \
do { \
u8 msk = IEEE80211_HE_##t##_CAP##i##_##n##_MASK; \
u8 idx = ((cap[i] & msk) >> (ffs(msk) - 1)) + off; \
PRINT(fmt, (s << idx) + (m * idx)); \
} while (0)
#define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \
do { \
if (cap[i] == IEEE80211_HE_##t ##_CAP##i##_##n##_##a) { \
PRINT("%s", b); \
break; \
} \
PFLAG_RANGE(t, i, n, s, m, off, fmt); \
} while (0)
PFLAG(MAC, 0, HTC_HE, "HTC-HE");
PFLAG(MAC, 0, TWT_REQ, "TWT-REQ");
PFLAG(MAC, 0, TWT_RES, "TWT-RES");
PFLAG_RANGE_DEFAULT(MAC, 0, DYNAMIC_FRAG, 0, 1, 0,
"DYNAMIC-FRAG-LEVEL-%d", NOT_SUPP, "NOT-SUPP");
PFLAG_RANGE_DEFAULT(MAC, 0, MAX_NUM_FRAG_MSDU, 1, 0, 0,
"MAX-NUM-FRAG-MSDU-%d", UNLIMITED, "UNLIMITED");
PFLAG_RANGE_DEFAULT(MAC, 1, MIN_FRAG_SIZE, 128, 0, -1,
"MIN-FRAG-SIZE-%d", UNLIMITED, "UNLIMITED");
PFLAG_RANGE_DEFAULT(MAC, 1, TF_MAC_PAD_DUR, 0, 8, 0,
"TF-MAC-PAD-DUR-%dUS", MASK, "UNKNOWN");
PFLAG_RANGE(MAC, 1, MULTI_TID_AGG_RX_QOS, 0, 1, 1,
"MULTI-TID-AGG-RX-QOS-%d");
if (cap[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) {
switch (((cap[2] << 1) | (cap[1] >> 7)) & 0x3) {
case 0:
PRINT("LINK-ADAPTATION-NO-FEEDBACK");
break;
case 1:
PRINT("LINK-ADAPTATION-RESERVED");
break;
case 2:
PRINT("LINK-ADAPTATION-UNSOLICITED-FEEDBACK");
break;
case 3:
PRINT("LINK-ADAPTATION-BOTH");
break;
}
}
PFLAG(MAC, 2, ALL_ACK, "ALL-ACK");
PFLAG(MAC, 2, TRS, "TRS");
PFLAG(MAC, 2, BSR, "BSR");
PFLAG(MAC, 2, BCAST_TWT, "BCAST-TWT");
PFLAG(MAC, 2, 32BIT_BA_BITMAP, "32BIT-BA-BITMAP");
PFLAG(MAC, 2, MU_CASCADING, "MU-CASCADING");
PFLAG(MAC, 2, ACK_EN, "ACK-EN");
PFLAG(MAC, 3, OMI_CONTROL, "OMI-CONTROL");
PFLAG(MAC, 3, OFDMA_RA, "OFDMA-RA");
switch (cap[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) {
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0:
PRINT("MAX-AMPDU-LEN-EXP-USE-EXT-0");
break;
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1:
PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-1");
break;
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2:
PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-2");
break;
case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3:
PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-3");
break;
}
PFLAG(MAC, 3, AMSDU_FRAG, "AMSDU-FRAG");
PFLAG(MAC, 3, FLEX_TWT_SCHED, "FLEX-TWT-SCHED");
PFLAG(MAC, 3, RX_CTRL_FRAME_TO_MULTIBSS, "RX-CTRL-FRAME-TO-MULTIBSS");
PFLAG(MAC, 4, BSRP_BQRP_A_MPDU_AGG, "BSRP-BQRP-A-MPDU-AGG");
PFLAG(MAC, 4, QTP, "QTP");
PFLAG(MAC, 4, BQR, "BQR");
PFLAG(MAC, 4, PSR_RESP, "PSR-RESP");
PFLAG(MAC, 4, NDP_FB_REP, "NDP-FB-REP");
PFLAG(MAC, 4, OPS, "OPS");
PFLAG(MAC, 4, AMSDU_IN_AMPDU, "AMSDU-IN-AMPDU");
PRINT("MULTI-TID-AGG-TX-QOS-%d", ((cap[5] << 1) | (cap[4] >> 7)) & 0x7);
PFLAG(MAC, 5, SUBCHAN_SELECTIVE_TRANSMISSION,
"SUBCHAN-SELECTIVE-TRANSMISSION");
PFLAG(MAC, 5, UL_2x996_TONE_RU, "UL-2x996-TONE-RU");
PFLAG(MAC, 5, OM_CTRL_UL_MU_DATA_DIS_RX, "OM-CTRL-UL-MU-DATA-DIS-RX");
PFLAG(MAC, 5, HE_DYNAMIC_SM_PS, "HE-DYNAMIC-SM-PS");
PFLAG(MAC, 5, PUNCTURED_SOUNDING, "PUNCTURED-SOUNDING");
PFLAG(MAC, 5, HT_VHT_TRIG_FRAME_RX, "HT-VHT-TRIG-FRAME-RX");
cap = hec->he_cap_elem.phy_cap_info;
p += scnprintf(p, buf_sz + buf - p,
"PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
cap[0], cap[1], cap[2], cap[3], cap[4], cap[5], cap[6],
cap[7], cap[8], cap[9], cap[10]);
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_IN_2G,
"CHANNEL-WIDTH-SET-40MHZ-IN-2G");
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
"CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G");
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_160MHZ_IN_5G,
"CHANNEL-WIDTH-SET-160MHZ-IN-5G");
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G,
"CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G");
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G,
"CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G");
PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G,
"CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G");
switch (cap[1] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK) {
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ:
PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ");
break;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ:
PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ");
break;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ:
PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ");
break;
case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ:
PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ");
break;
}
PFLAG(PHY, 1, DEVICE_CLASS_A,
"IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A");
PFLAG(PHY, 1, LDPC_CODING_IN_PAYLOAD,
"LDPC-CODING-IN-PAYLOAD");
PFLAG(PHY, 1, HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US,
"HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US");
PRINT("MIDAMBLE-RX-MAX-NSTS-%d", ((cap[2] << 1) | (cap[1] >> 7)) & 0x3);
PFLAG(PHY, 2, NDP_4x_LTF_AND_3_2US, "NDP-4X-LTF-AND-3-2US");
PFLAG(PHY, 2, STBC_TX_UNDER_80MHZ, "STBC-TX-UNDER-80MHZ");
PFLAG(PHY, 2, STBC_RX_UNDER_80MHZ, "STBC-RX-UNDER-80MHZ");
PFLAG(PHY, 2, DOPPLER_TX, "DOPPLER-TX");
PFLAG(PHY, 2, DOPPLER_RX, "DOPPLER-RX");
PFLAG(PHY, 2, UL_MU_FULL_MU_MIMO, "UL-MU-FULL-MU-MIMO");
PFLAG(PHY, 2, UL_MU_PARTIAL_MU_MIMO, "UL-MU-PARTIAL-MU-MIMO");
switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK) {
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM:
PRINT("DCM-MAX-CONST-TX-NO-DCM");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK:
PRINT("DCM-MAX-CONST-TX-BPSK");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK:
PRINT("DCM-MAX-CONST-TX-QPSK");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM:
PRINT("DCM-MAX-CONST-TX-16-QAM");
break;
}
PFLAG(PHY, 3, DCM_MAX_TX_NSS_1, "DCM-MAX-TX-NSS-1");
PFLAG(PHY, 3, DCM_MAX_TX_NSS_2, "DCM-MAX-TX-NSS-2");
switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK) {
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM:
PRINT("DCM-MAX-CONST-RX-NO-DCM");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK:
PRINT("DCM-MAX-CONST-RX-BPSK");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK:
PRINT("DCM-MAX-CONST-RX-QPSK");
break;
case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM:
PRINT("DCM-MAX-CONST-RX-16-QAM");
break;
}
PFLAG(PHY, 3, DCM_MAX_RX_NSS_1, "DCM-MAX-RX-NSS-1");
PFLAG(PHY, 3, DCM_MAX_RX_NSS_2, "DCM-MAX-RX-NSS-2");
PFLAG(PHY, 3, RX_PARTIAL_BW_SU_IN_20MHZ_MU,
"RX-PARTIAL-BW-SU-IN-20MHZ-MU");
PFLAG(PHY, 3, SU_BEAMFORMER, "SU-BEAMFORMER");
PFLAG(PHY, 4, SU_BEAMFORMEE, "SU-BEAMFORMEE");
PFLAG(PHY, 4, MU_BEAMFORMER, "MU-BEAMFORMER");
PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_UNDER_80MHZ, 0, 1, 4,
"BEAMFORMEE-MAX-STS-UNDER-%d");
PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_ABOVE_80MHZ, 0, 1, 4,
"BEAMFORMEE-MAX-STS-ABOVE-%d");
PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ, 0, 1, 1,
"NUM-SND-DIM-UNDER-80MHZ-%d");
PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ, 0, 1, 1,
"NUM-SND-DIM-ABOVE-80MHZ-%d");
PFLAG(PHY, 5, NG16_SU_FEEDBACK, "NG16-SU-FEEDBACK");
PFLAG(PHY, 5, NG16_MU_FEEDBACK, "NG16-MU-FEEDBACK");
PFLAG(PHY, 6, CODEBOOK_SIZE_42_SU, "CODEBOOK-SIZE-42-SU");
PFLAG(PHY, 6, CODEBOOK_SIZE_75_MU, "CODEBOOK-SIZE-75-MU");
PFLAG(PHY, 6, TRIG_SU_BEAMFORMING_FB, "TRIG-SU-BEAMFORMING-FB");
PFLAG(PHY, 6, TRIG_MU_BEAMFORMING_PARTIAL_BW_FB,
"MU-BEAMFORMING-PARTIAL-BW-FB");
PFLAG(PHY, 6, TRIG_CQI_FB, "TRIG-CQI-FB");
PFLAG(PHY, 6, PARTIAL_BW_EXT_RANGE, "PARTIAL-BW-EXT-RANGE");
PFLAG(PHY, 6, PARTIAL_BANDWIDTH_DL_MUMIMO,
"PARTIAL-BANDWIDTH-DL-MUMIMO");
PFLAG(PHY, 6, PPE_THRESHOLD_PRESENT, "PPE-THRESHOLD-PRESENT");
PFLAG(PHY, 7, PSR_BASED_SR, "PSR-BASED-SR");
PFLAG(PHY, 7, POWER_BOOST_FACTOR_SUPP, "POWER-BOOST-FACTOR-SUPP");
PFLAG(PHY, 7, HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
"HE-SU-MU-PPDU-4XLTF-AND-08-US-GI");
PFLAG_RANGE(PHY, 7, MAX_NC, 0, 1, 1, "MAX-NC-%d");
PFLAG(PHY, 7, STBC_TX_ABOVE_80MHZ, "STBC-TX-ABOVE-80MHZ");
PFLAG(PHY, 7, STBC_RX_ABOVE_80MHZ, "STBC-RX-ABOVE-80MHZ");
PFLAG(PHY, 8, HE_ER_SU_PPDU_4XLTF_AND_08_US_GI,
"HE-ER-SU-PPDU-4XLTF-AND-08-US-GI");
PFLAG(PHY, 8, 20MHZ_IN_40MHZ_HE_PPDU_IN_2G,
"20MHZ-IN-40MHZ-HE-PPDU-IN-2G");
PFLAG(PHY, 8, 20MHZ_IN_160MHZ_HE_PPDU, "20MHZ-IN-160MHZ-HE-PPDU");
PFLAG(PHY, 8, 80MHZ_IN_160MHZ_HE_PPDU, "80MHZ-IN-160MHZ-HE-PPDU");
PFLAG(PHY, 8, HE_ER_SU_1XLTF_AND_08_US_GI,
"HE-ER-SU-1XLTF-AND-08-US-GI");
PFLAG(PHY, 8, MIDAMBLE_RX_TX_2X_AND_1XLTF,
"MIDAMBLE-RX-TX-2X-AND-1XLTF");
switch (cap[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK) {
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242:
PRINT("DCM-MAX-RU-242");
break;
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484:
PRINT("DCM-MAX-RU-484");
break;
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996:
PRINT("DCM-MAX-RU-996");
break;
case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996:
PRINT("DCM-MAX-RU-2x996");
break;
}
PFLAG(PHY, 9, LONGER_THAN_16_SIGB_OFDM_SYM,
"LONGER-THAN-16-SIGB-OFDM-SYM");
PFLAG(PHY, 9, NON_TRIGGERED_CQI_FEEDBACK,
"NON-TRIGGERED-CQI-FEEDBACK");
PFLAG(PHY, 9, TX_1024_QAM_LESS_THAN_242_TONE_RU,
"TX-1024-QAM-LESS-THAN-242-TONE-RU");
PFLAG(PHY, 9, RX_1024_QAM_LESS_THAN_242_TONE_RU,
"RX-1024-QAM-LESS-THAN-242-TONE-RU");
PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB,
"RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB");
PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB,
"RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB");
switch (u8_get_bits(cap[9],
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK)) {
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US:
PRINT("NOMINAL-PACKET-PADDING-0US");
break;
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US:
PRINT("NOMINAL-PACKET-PADDING-8US");
break;
case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US:
PRINT("NOMINAL-PACKET-PADDING-16US");
break;
}
#undef PFLAG_RANGE_DEFAULT
#undef PFLAG_RANGE
#undef PFLAG
#define PRINT_NSS_SUPP(f, n) \
do { \
int _i; \
u16 v = le16_to_cpu(nss->f); \
p += scnprintf(p, buf_sz + buf - p, n ": %#.4x\n", v); \
for (_i = 0; _i < 8; _i += 2) { \
switch ((v >> _i) & 0x3) { \
case 0: \
PRINT(n "-%d-SUPPORT-0-7", _i / 2); \
break; \
case 1: \
PRINT(n "-%d-SUPPORT-0-9", _i / 2); \
break; \
case 2: \
PRINT(n "-%d-SUPPORT-0-11", _i / 2); \
break; \
case 3: \
PRINT(n "-%d-NOT-SUPPORTED", _i / 2); \
break; \
} \
} \
} while (0)
PRINT_NSS_SUPP(rx_mcs_80, "RX-MCS-80");
PRINT_NSS_SUPP(tx_mcs_80, "TX-MCS-80");
if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) {
PRINT_NSS_SUPP(rx_mcs_160, "RX-MCS-160");
PRINT_NSS_SUPP(tx_mcs_160, "TX-MCS-160");
}
if (cap[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) {
PRINT_NSS_SUPP(rx_mcs_80p80, "RX-MCS-80P80");
PRINT_NSS_SUPP(tx_mcs_80p80, "TX-MCS-80P80");
}
#undef PRINT_NSS_SUPP
#undef PRINT
if (!(cap[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT))
goto out;
p += scnprintf(p, buf_sz + buf - p, "PPE-THRESHOLDS: %#.2x",
hec->ppe_thres[0]);
ppe_size = ieee80211_he_ppe_size(hec->ppe_thres[0], cap);
for (i = 1; i < ppe_size; i++) {
p += scnprintf(p, buf_sz + buf - p, " %#.2x",
hec->ppe_thres[i]);
}
p += scnprintf(p, buf_sz + buf - p, "\n");
out:
ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return ret;
}
LINK_STA_OPS(he_capa);
static ssize_t link_sta_eht_capa_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf, *p;
size_t buf_sz = PAGE_SIZE;
struct link_sta_info *link_sta = file->private_data;
struct ieee80211_sta_eht_cap *bec = &link_sta->pub->eht_cap;
struct ieee80211_eht_cap_elem_fixed *fixed = &bec->eht_cap_elem;
struct ieee80211_eht_mcs_nss_supp *nss = &bec->eht_mcs_nss_supp;
u8 *cap;
int i;
ssize_t ret;
static const char *mcs_desc[] = { "0-7", "8-9", "10-11", "12-13"};
buf = kmalloc(buf_sz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
p = buf;
p += scnprintf(p, buf_sz + buf - p, "EHT %ssupported\n",
bec->has_eht ? "" : "not ");
if (!bec->has_eht)
goto out;
p += scnprintf(p, buf_sz + buf - p,
"MAC-CAP: %#.2x %#.2x\n",
fixed->mac_cap_info[0], fixed->mac_cap_info[1]);
p += scnprintf(p, buf_sz + buf - p,
"PHY-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
fixed->phy_cap_info[0], fixed->phy_cap_info[1],
fixed->phy_cap_info[2], fixed->phy_cap_info[3],
fixed->phy_cap_info[4], fixed->phy_cap_info[5],
fixed->phy_cap_info[6], fixed->phy_cap_info[7],
fixed->phy_cap_info[8]);
#define PRINT(fmt, ...) \
p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \
##__VA_ARGS__)
#define PFLAG(t, n, a, b) \
do { \
if (cap[n] & IEEE80211_EHT_##t##_CAP##n##_##a) \
PRINT("%s", b); \
} while (0)
cap = fixed->mac_cap_info;
PFLAG(MAC, 0, EPCS_PRIO_ACCESS, "EPCS-PRIO-ACCESS");
PFLAG(MAC, 0, OM_CONTROL, "OM-CONTROL");
PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE1, "TRIG-TXOP-SHARING-MODE1");
PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE2, "TRIG-TXOP-SHARING-MODE2");
PFLAG(MAC, 0, RESTRICTED_TWT, "RESTRICTED-TWT");
PFLAG(MAC, 0, SCS_TRAFFIC_DESC, "SCS-TRAFFIC-DESC");
switch ((cap[0] & 0xc0) >> 6) {
case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895:
PRINT("MAX-MPDU-LEN: 3985");
break;
case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991:
PRINT("MAX-MPDU-LEN: 7991");
break;
case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454:
PRINT("MAX-MPDU-LEN: 11454");
break;
}
cap = fixed->phy_cap_info;
PFLAG(PHY, 0, 320MHZ_IN_6GHZ, "320MHZ-IN-6GHZ");
PFLAG(PHY, 0, 242_TONE_RU_GT20MHZ, "242-TONE-RU-GT20MHZ");
PFLAG(PHY, 0, NDP_4_EHT_LFT_32_GI, "NDP-4-EHT-LFT-32-GI");
PFLAG(PHY, 0, PARTIAL_BW_UL_MU_MIMO, "PARTIAL-BW-UL-MU-MIMO");
PFLAG(PHY, 0, SU_BEAMFORMER, "SU-BEAMFORMER");
PFLAG(PHY, 0, SU_BEAMFORMEE, "SU-BEAMFORMEE");
i = cap[0] >> 7;
i |= (cap[1] & 0x3) << 1;
PRINT("BEAMFORMEE-80-NSS: %i", i);
PRINT("BEAMFORMEE-160-NSS: %i", (cap[1] >> 2) & 0x7);
PRINT("BEAMFORMEE-320-NSS: %i", (cap[1] >> 5) & 0x7);
PRINT("SOUNDING-DIM-80-NSS: %i", (cap[2] & 0x7));
PRINT("SOUNDING-DIM-160-NSS: %i", (cap[2] >> 3) & 0x7);
i = cap[2] >> 6;
i |= (cap[3] & 0x1) << 3;
PRINT("SOUNDING-DIM-320-NSS: %i", i);
PFLAG(PHY, 3, NG_16_SU_FEEDBACK, "NG-16-SU-FEEDBACK");
PFLAG(PHY, 3, NG_16_MU_FEEDBACK, "NG-16-MU-FEEDBACK");
PFLAG(PHY, 3, CODEBOOK_4_2_SU_FDBK, "CODEBOOK-4-2-SU-FDBK");
PFLAG(PHY, 3, CODEBOOK_7_5_MU_FDBK, "CODEBOOK-7-5-MU-FDBK");
PFLAG(PHY, 3, TRIG_SU_BF_FDBK, "TRIG-SU-BF-FDBK");
PFLAG(PHY, 3, TRIG_MU_BF_PART_BW_FDBK, "TRIG-MU-BF-PART-BW-FDBK");
PFLAG(PHY, 3, TRIG_CQI_FDBK, "TRIG-CQI-FDBK");
PFLAG(PHY, 4, PART_BW_DL_MU_MIMO, "PART-BW-DL-MU-MIMO");
PFLAG(PHY, 4, PSR_SR_SUPP, "PSR-SR-SUPP");
PFLAG(PHY, 4, POWER_BOOST_FACT_SUPP, "POWER-BOOST-FACT-SUPP");
PFLAG(PHY, 4, EHT_MU_PPDU_4_EHT_LTF_08_GI, "EHT-MU-PPDU-4-EHT-LTF-08-GI");
PRINT("MAX_NC: %i", cap[4] >> 4);
PFLAG(PHY, 5, NON_TRIG_CQI_FEEDBACK, "NON-TRIG-CQI-FEEDBACK");
PFLAG(PHY, 5, TX_LESS_242_TONE_RU_SUPP, "TX-LESS-242-TONE-RU-SUPP");
PFLAG(PHY, 5, RX_LESS_242_TONE_RU_SUPP, "RX-LESS-242-TONE-RU-SUPP");
PFLAG(PHY, 5, PPE_THRESHOLD_PRESENT, "PPE_THRESHOLD_PRESENT");
switch (cap[5] >> 4 & 0x3) {
case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US:
PRINT("NOMINAL_PKT_PAD: 0us");
break;
case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US:
PRINT("NOMINAL_PKT_PAD: 8us");
break;
case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US:
PRINT("NOMINAL_PKT_PAD: 16us");
break;
case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US:
PRINT("NOMINAL_PKT_PAD: 20us");
break;
}
i = cap[5] >> 6;
i |= cap[6] & 0x7;
PRINT("MAX-NUM-SUPP-EHT-LTF: %i", i);
PFLAG(PHY, 5, SUPP_EXTRA_EHT_LTF, "SUPP-EXTRA-EHT-LTF");
i = (cap[6] >> 3) & 0xf;
PRINT("MCS15-SUPP-MASK: %i", i);
PFLAG(PHY, 6, EHT_DUP_6GHZ_SUPP, "EHT-DUP-6GHZ-SUPP");
PFLAG(PHY, 7, 20MHZ_STA_RX_NDP_WIDER_BW, "20MHZ-STA-RX-NDP-WIDER-BW");
PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_80MHZ, "NON-OFDMA-UL-MU-MIMO-80MHZ");
PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_160MHZ, "NON-OFDMA-UL-MU-MIMO-160MHZ");
PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_320MHZ, "NON-OFDMA-UL-MU-MIMO-320MHZ");
PFLAG(PHY, 7, MU_BEAMFORMER_80MHZ, "MU-BEAMFORMER-80MHZ");
PFLAG(PHY, 7, MU_BEAMFORMER_160MHZ, "MU-BEAMFORMER-160MHZ");
PFLAG(PHY, 7, MU_BEAMFORMER_320MHZ, "MU-BEAMFORMER-320MHZ");
PFLAG(PHY, 7, TB_SOUNDING_FDBK_RATE_LIMIT, "TB-SOUNDING-FDBK-RATE-LIMIT");
PFLAG(PHY, 8, RX_1024QAM_WIDER_BW_DL_OFDMA, "RX-1024QAM-WIDER-BW-DL-OFDMA");
PFLAG(PHY, 8, RX_4096QAM_WIDER_BW_DL_OFDMA, "RX-4096QAM-WIDER-BW-DL-OFDMA");
#undef PFLAG
PRINT(""); /* newline */
if (!(link_sta->pub->he_cap.he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) {
u8 *mcs_vals = (u8 *)(&nss->only_20mhz);
for (i = 0; i < 4; i++)
PRINT("EHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u",
mcs_desc[i],
mcs_vals[i] & 0xf, mcs_vals[i] >> 4);
} else {
u8 *mcs_vals = (u8 *)(&nss->bw._80);
for (i = 0; i < 3; i++)
PRINT("EHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u",
mcs_desc[i + 1],
mcs_vals[i] & 0xf, mcs_vals[i] >> 4);
mcs_vals = (u8 *)(&nss->bw._160);
for (i = 0; i < 3; i++)
PRINT("EHT bw <= 160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u",
mcs_desc[i + 1],
mcs_vals[i] & 0xf, mcs_vals[i] >> 4);
mcs_vals = (u8 *)(&nss->bw._320);
for (i = 0; i < 3; i++)
PRINT("EHT bw <= 320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u",
mcs_desc[i + 1],
mcs_vals[i] & 0xf, mcs_vals[i] >> 4);
}
if (cap[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
u8 ppe_size = ieee80211_eht_ppe_size(bec->eht_ppe_thres[0], cap);
p += scnprintf(p, buf_sz + buf - p, "EHT PPE Thresholds: ");
for (i = 0; i < ppe_size; i++)
p += scnprintf(p, buf_sz + buf - p, "0x%02x ",
bec->eht_ppe_thres[i]);
PRINT(""); /* newline */
}
out:
ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
kfree(buf);
return ret;
}
LINK_STA_OPS(eht_capa);
#define DEBUGFS_ADD(name) \
debugfs_create_file(#name, 0400, \
sta->debugfs_dir, sta, &sta_ ##name## _ops)
#define DEBUGFS_ADD_COUNTER(name, field) \
debugfs_create_ulong(#name, 0400, sta->debugfs_dir, &sta->field);
void ieee80211_sta_debugfs_add(struct sta_info *sta)
{
struct ieee80211_local *local = sta->local;
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations;
u8 mac[MAC_ADDR_STR_LEN + 1];
if (!stations_dir)
return;
snprintf(mac, sizeof(mac), "%pM", sta->sta.addr);
/*
* This might fail due to a race condition:
* When mac80211 unlinks a station, the debugfs entries
* remain, but it is already possible to link a new
* station with the same address which triggers adding
* it to debugfs; therefore, if the old station isn't
* destroyed quickly enough the old station's debugfs
* dir might still be around.
*/
sta->debugfs_dir = debugfs_create_dir(mac, stations_dir);
DEBUGFS_ADD(flags);
DEBUGFS_ADD(aid);
DEBUGFS_ADD(num_ps_buf_frames);
DEBUGFS_ADD(last_seq_ctrl);
DEBUGFS_ADD(agg_status);
/* FIXME: Kept here as the statistics are only done on the deflink */
DEBUGFS_ADD_COUNTER(tx_filtered, deflink.status_stats.filtered);
DEBUGFS_ADD(aqm);
DEBUGFS_ADD(airtime);
if (wiphy_ext_feature_isset(local->hw.wiphy,
NL80211_EXT_FEATURE_AQL))
DEBUGFS_ADD(aql);
debugfs_create_xul("driver_buffered_tids", 0400, sta->debugfs_dir,
&sta->driver_buffered_tids);
drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs_dir);
}
void ieee80211_sta_debugfs_remove(struct sta_info *sta)
{
debugfs_remove_recursive(sta->debugfs_dir);
sta->debugfs_dir = NULL;
}
#undef DEBUGFS_ADD
#undef DEBUGFS_ADD_COUNTER
#define DEBUGFS_ADD(name) \
debugfs_create_file(#name, 0400, \
link_sta->debugfs_dir, link_sta, &link_sta_ ##name## _ops)
#define DEBUGFS_ADD_COUNTER(name, field) \
debugfs_create_ulong(#name, 0400, link_sta->debugfs_dir, &link_sta->field)
void ieee80211_link_sta_debugfs_add(struct link_sta_info *link_sta)
{
if (WARN_ON(!link_sta->sta->debugfs_dir))
return;
/* For non-MLO, leave the files in the main directory. */
if (link_sta->sta->sta.valid_links) {
char link_dir_name[10];
snprintf(link_dir_name, sizeof(link_dir_name),
"link-%d", link_sta->link_id);
link_sta->debugfs_dir =
debugfs_create_dir(link_dir_name,
link_sta->sta->debugfs_dir);
DEBUGFS_ADD(addr);
} else {
if (WARN_ON(link_sta != &link_sta->sta->deflink))
return;
link_sta->debugfs_dir = link_sta->sta->debugfs_dir;
}
DEBUGFS_ADD(ht_capa);
DEBUGFS_ADD(vht_capa);
DEBUGFS_ADD(he_capa);
DEBUGFS_ADD(eht_capa);
DEBUGFS_ADD_COUNTER(rx_duplicates, rx_stats.num_duplicates);
DEBUGFS_ADD_COUNTER(rx_fragments, rx_stats.fragments);
}
void ieee80211_link_sta_debugfs_remove(struct link_sta_info *link_sta)
{
if (!link_sta->debugfs_dir || !link_sta->sta->debugfs_dir) {
link_sta->debugfs_dir = NULL;
return;
}
if (link_sta->debugfs_dir == link_sta->sta->debugfs_dir) {
WARN_ON(link_sta != &link_sta->sta->deflink);
link_sta->sta->debugfs_dir = NULL;
return;
}
debugfs_remove_recursive(link_sta->debugfs_dir);
link_sta->debugfs_dir = NULL;
}
void ieee80211_link_sta_debugfs_drv_add(struct link_sta_info *link_sta)
{
if (WARN_ON(!link_sta->debugfs_dir))
return;
drv_link_sta_add_debugfs(link_sta->sta->local, link_sta->sta->sdata,
link_sta->pub, link_sta->debugfs_dir);
}
void ieee80211_link_sta_debugfs_drv_remove(struct link_sta_info *link_sta)
{
if (!link_sta->debugfs_dir)
return;
if (WARN_ON(link_sta->debugfs_dir == link_sta->sta->debugfs_dir))
return;
/* Recreate the directory excluding the driver data */
debugfs_remove_recursive(link_sta->debugfs_dir);
link_sta->debugfs_dir = NULL;
ieee80211_link_sta_debugfs_add(link_sta);
}